用于组织消融的方法和器械与流程

文档序号:11315440阅读:251来源:国知局
用于组织消融的方法和器械与流程
本申请是申请日为2012年06月03日,申请号为201280027522.x,发明名称为“用于组织消融的方法和器械”的申请的分案申请。相关申请的交叉引用本申请还因优先权而依赖于2011年6月3日提交的名称为“methodandapparatusfortissueablation”且转让给本发明的申请人的美国临时专利申请第61/493,344号,该申请在此通过引用全文并入本文。发明领域本发明涉及医疗器械和医疗过程。更具体地,本发明涉及一种用于消融组织的装置,该装置包括定中心或定位附件以便将该装置定位成离待消融的组织恒定的距离。发明背景在50岁以上的人群中,几乎有25%的人都患有结肠息肉。尽管多数息肉都可通过结肠镜检查而检测到并且通过勒除器可以很容易地去除,然而,使用勒除器技术很难去除无蒂的扁平息肉,并且无蒂的扁平息肉具有如出血和穿孔等并发症的高风险。近年来,随着成像技术的发展,更多的扁平息肉被检测到。内窥镜不能切除的息肉需要通过外科手术去除。大多数结肠癌都是从结肠息肉发展而来的,并且为防止结肠癌,必需将这些息肉安全且彻底地切除。巴雷特食管是癌症前期的症状,具有胃食管反流病(gerd)的美国人中有10-14%的人具有该症状,并且巴雷特食管已被证实是食管腺癌的前期损害,是发达国家中上升最快的癌症。癌症的发生率在过去的二十年里已经升高超过了6倍,死亡率升高了7倍。食道癌的5年死亡率为85%。消融巴雷特上皮细胞已经表明能防止其发展成食道癌。30%的育龄妇女都患有功能失调性子宫出血(dub),或者月经过多。这些相关症状已经大大地影响了女性的健康和生活质量。这种情况通常是通过子宫内膜消融或子宫切除来治疗。在这些女性中手术介入的比率非常高。几乎30%的美国女性在60岁时都会遭遇到子宫切除,其中这些女性中50-70%的女性是因为月经过多或dub而做的手术。fda已经证实子宫内膜消融术对于具有非正常子宫出血和具有小于2cm的壁间肌瘤的女性有效。已经表明,子宫黏膜下肌瘤的出现以及大子宫尺寸降低了标准子宫内膜消融的功效。在五种fda认可的全球消融装置(即,子宫热球治疗系统、热水灌注法、诺舒、heroption、和微波消融)中,只有微波消融(mea)被证实对于小于3cm且不封闭子宫内膜腔的子宫黏膜下肌瘤,以及大到14cm的子宫有效。已知的巴雷特食管的消融治疗包括激光治疗(ertan等,am.j.gastro.,90-2201-2203[1995])、超声波消融(bremner等,gastro.endo.,43:6[1996])、利用光敏剂药物的光动力性疗法(pdt)(overholt等,semin.surq.oncol.,1:372-376(1995)、比如利用bicap探针的多极电凝法(sampliner等)、氩等离子体凝结法(apc;)、射频消融(sharma等,gastrointestendosc)和冷冻消融法(johnston等,gastrointestendosc)。治疗在内窥镜以及穿过内窥镜的通道或沿着内窥镜的装置的帮助下进行。然而,常规的技术存在一些固有的缺陷,且在临床上没有得到广泛的应用。首先,大多数的手持消融装置(bicap探针、apc、冷冻消融法)都是产生小消融焦点的定焦装置(pointandshootdevice)。该消融机构依赖于操作者、麻烦并且耗时。第二,因为目标组织因患者移动、呼吸运动、正常蠕动和血管搏动而移动,因而目标组织的消融深度不一致,且会产生不均匀的消融。表面的消融会产生不彻底的消融,将残余的肿瘤组织留下。而较深的消融结果会产生出血、形成狭窄和穿孔等并发症。在常规装置中,这些缺点和并发症都被报导过。例如,射频消融利用基于刚性双极气囊的电极和射频热能。通过将电极与患病的巴雷特食管直接接触来递送热能,可以相对均匀地、大面积的消融。然而,刚性电极不适应食道尺寸的变化,且因食道直径的变化而对于消融弯曲的食道内的病变、作为朝向顶部的食道变窄的近端食道病变以及胃肠接合处的食道中的病变没有效果。巴雷特食管中的瘤状疾病也不能利用刚性双极射频电极来治疗。由于其尺寸和刚度,电极不能穿过该范围。此外,脱落组织对电极的粘附作用会阻碍射频能量的递送,因而会产生不完全的消融。电极尺寸被限制到3cm,因而在治疗具有较大长度的巴雷特食管时需要反复应用。光动力疗法(pdt)是两个分开的手术,其包括输注被肿瘤和肿瘤发生前的组织吸收和保留的光敏剂。然后将该组织暴露到所选波长的光中,该所选波长的光激活光敏剂并导致组织破坏。pdt会带来形成狭窄等并发症,并且其光敏性仅限于使用在疾病的最高阶段。另外,光敏剂的不规则吸收产生不完全的消融和残余的肿瘤组织。已经对动物模型和人类进行了与液氮直接接触对食道组织进行冷冻消融的研究(rodgers等,cryobiology,22:86-92(1985);rodgers等,ann.thorac.surq.55:52-7[1983]),并且该冷冻消融已用来治疗巴雷特食管(johnston等,gastrointestendosc)和早期食道癌(grana等,int.surg.,66:295[1981])。直接喷射液态n2或co2(冷冻消融)或者氩(apc)来消融食道中的巴雷特组织的喷射导管已被说明。这些技术存在常规手持装置的缺点。使用该探针进行治疗比较麻烦,并且需要操作者通过直接观察内窥镜来控制操作。食道因呼吸或心脏或动脉博动或运动的连续移动会造成消融剂不均匀地被分布,并产生不均匀和/或不完全的消融。导管对表面上皮细胞的靠近或直接接触会造成较深的组织损伤,产生穿孔、出血或形成狭窄。而因食道移动将导管太远布置则会产生不完全的巴雷特消融,需要多次治疗时间或掩盖损伤,存在食道癌的连续风险。食道中低温气体的膨胀会带来不可抑制的恶心,这可能会产生食道撕裂或穿孔,因而需要连续抽吸冷冻剂。通常利用勒除器切除术,同时使用或不使用单极电灼术,来切除结肠息肉。在进行勒除器切除术之后,利用氩等离子体凝聚或激光治疗对扁平息肉或残余息肉进行治疗。这两种治疗都由于前面提到的缺陷而是不足的。因此,由于利用传统内窥镜切除或消融技术具有出血、穿孔和残余疾病的高风险,大多数扁平息肉需经历外科手术切除。传统上用于组织消融的大部分常规气囊导管对气囊本身或安装在气囊上的射频(rf)线圈等加热元件进行加热或冷却。这需要气囊导管与被消融表面直接接触。当气囊导管缩小时,上皮细胞粘附到导管并脱落,因而产生出血。血会干扰能量的递送,且因此减小能量。此外,能量的再应用会对已脱落的表面衬里的区域产生更深的烧灼。而且,不能利用气囊导管来治疗非圆筒形器官,像子宫或鼻窦,并且气囊导管也不能提供中空器官中的非圆周形或焦点消融。此外,如果使用在加热后按指数规律地膨胀的作为消融剂的冷冻剂,则气囊导管可能产生封闭的腔体并俘获逸出的冷冻剂,产生诸如穿孔和撕裂等并发症。因此,本领域需要一种用于将消融剂递送到组织表面的改进的方法和系统,以便为目标组织提供一致的、可控的并且均匀的消融,并最小化将消融剂引入患者所带来的不利副作用。发明概述在一个实施方案中,本说明书公开了一种与组织消融系统结合使用的装置,包括:手柄,具有在其远端上的抗压端口、消融剂可以行进穿过的流动通道以及在其近端上的用于所述消融剂的入口和rf供给的一个或多个连接端口;绝热导管,其附接于所述勒除器手柄的所述抗压端口,包括消融剂可以行进穿过的轴和沿着其长度以便释放所述消融剂的一个或多个端口;以及在一个或多个不同的位置处附接于所述导管轴的一个或多个定位元件,其中所述定位元件被配置成将所述导管定位在离待消融组织的预定距离处。任选地,手柄具有用于附接消融剂入口和rf供给两者的一个抗压端口。手柄具有用于附接消融剂入口的一个单独的抗压端口和用于附接rf供给或电供给的一个单独的端口。在另一个实施方案中,本说明书公开了与组织消融系统结合使用的装置,包括:手柄,具有在其远端上的抗压端口、穿过所述手柄的流动通道以及在其近端上用于rf供给或电供给的连接端口,所述流动通道与消融剂可以行进穿过的预先附接的绳(cord)是连续的;绝热导管,其附接于所述手柄的所述抗压端口,包括消融剂可以行进穿过的轴和沿着其长度以便释放所述消融剂的一个或多个端口;以及在一个或多个不同的位置处附接于所述导管轴的一个或多个定位元件,其中所述定位元件被配置成将所述导管定位在离待消融组织的预定距离处。任选地,所述导管的远端被设计成刺穿目标。在另一个实施方案中,本说明书公开了与组织消融系统结合使用的装置,包括:食管探针,具有在其远端上的抗压端口、消融剂可以行进穿过的流动通道以及其近端上用于所述消融剂的入口和rf供给或电供给的一个或多个连接端口;绝热导管,其附接于所述食管探针的所述抗压端口,包括消融剂可以行进穿过的轴和沿着其长度以便释放所述消融剂的一个或多个端口;以及在所述导管的任一端处设置成超出所述一个或多个端口的一个或多个可充气定位气囊,其中所述定位气囊被配置成将所述导管定位在离待消融组织的预定距离处。任选地,导管是双管腔,其中第一管腔促进消融剂传输且第二管腔包含用于rf消融的电极。导管沿着其长度具有不同的绝热。本说明书还涉及一种组织消融装置,包括:液体储器,其中所述储器包括出口连接器,所述出口连接器能够抵抗至少1atm的压力以便附接可重复使用的绳;加热部件,其包括:容纳在加热元件内的一定长度的卷曲管件,其中激活所述加热元件使得所述卷曲管件从第一温度升高到第二温度且其中所述升高使得所述卷曲管件内的液体转化成蒸气;以及连接至所述卷曲管件的入口;连接至所述卷曲管件的出口;以及附接至入口和/或出口的至少一个抗压连接件;绳,其将所述储器的所述出口连接至所述加热部件的所述入口;单次使用的绳,其将基于蒸气的消融装置的抗压入口端口连接至所述加热部件的出口。在一个实施方案中,液体储器被集成在操作室设备发生器内。在一个实施方案中,所述液体是水且所述蒸气是蒸汽。在一个实施方案中,抗压连接件是鲁尔锁连接件。在一个实施方案中,卷曲管件是铜。在一个实施方案中,组织消融装置还包括踏板开关,其中仅当所述踏板开关被下压时蒸气产生并通向所述单次使用的绳中。在另一个实施方案中,仅当从所述踏板开关去除压力时蒸气产生并通向所述单次使用的绳中。在另一个实施方案中,本说明书公开了一种用于将蒸气供给至消融装置的蒸气消融系统,包括:单次使用的无菌流体容器,其附接了用于将流体源连接至蒸气消融导管的手柄内的加热单元的可压缩的管件。管件穿过泵,泵将流体以预定的速度递送至加热单元内。在流体容器与加热单元之间存在诸如单向阀的机构以防止蒸气从加热单元回流。加热单元连接于消融导管以将蒸气从加热单元递送至消融部位。蒸气的流动由微处理器控制。微处理器在开路系统中使用预先编程的算法或在闭环系统中使用结合在消融系统中的来自一个或多个传感器的信息或两个都用于控制蒸气的递送。在一个实施方案中,消融装置的手柄由绝热材料制成以防止操作者热损伤。加热单元被封闭在手柄内。在导管穿过内窥镜的通道后,手柄锁定到内窥镜的通道中。操作者可以通过握持绝热手柄操纵导管或通过操作靠近绝热手柄的导管操作导管。本说明书还涉及蒸气消融系统,包括:容器,其内具有无菌液体;泵,其与所述容器流体相通;第一过滤器,其被设置在所述容器与所述泵之间并与所述容器和所述泵流体相通;加热部件,其与所述泵流体相通;阀,其被设置在所述泵和所述加热容器之间且与所述泵和所述加热容器流体相通;导管,其与所述加热部件流体相通,所述导管在其操作端包括至少一个开口;以及微处理器,其与所述泵和所述加热部件可操作地相通,其中所述微处理器控制所述泵以控制所述液体从所述容器穿过所述第一过滤器、穿过所述泵并进入所述加热部件的流速,其中所述液体经由从所述加热部件至所述流体的传热而被转化成蒸气,其中所述流体至所述蒸气的所述转化导致体积膨胀和压力升高,其中所述压力升高迫使所述蒸气进入所述导管并离开所述至少一个开口,且其中所述加热部件的温度由所述微处理器控制。在一个实施方案中,蒸气消融系统还包括所述导管上的至少一个传感器,其中由所述传感器获得的信息被传输至所述微处理器,且其中所述信息由所述微处理器使用以调节所述泵和所述加热部件且由此调节蒸气流量。在一个实施方案中,至少一个传感器包括温度传感器、流量传感器或压力传感器中的一个或多个。在一个实施方案中,蒸气消融系统还包括所述液体容器上的螺旋帽和所述第一过滤器上的刺穿针,其中所述螺旋帽被所述刺穿针刺穿以提供所述容器与所述第一过滤器之间的流体相通。在一个实施方案中,液体容器和导管是一次性的且配置成单次使用。在一个实施方案中,流体容器、第一过滤器、泵、加热部件以及导管通过无菌管件连接且其中所述泵与所述加热部件之间的连接件以及所述加热部件与所述导管之间的连接件是抗压的。本说明书还涉及一种组织消融系统,包括:导管,其具有近端和远端以及所述近端和所述远端之间的管腔,所述导管包括:手柄,其靠近所述导管的近端且容纳流体加热室和包围所述室的加热元件,线从所述加热元件向远侧延伸并通向控制器;延伸并覆盖所述导管的长度且在所述导管的所述远端设置在所述手柄与所述加热元件之间的绝热鞘;以及靠近所述导管的所述远端的用于使蒸气通过的至少一个开口;以及控制器,其经由所述线可操作地连接至所述加热元件,其中所述控制器能够调节供给至所述加热元件的能量且进一步其中所述控制器能够调节供给至所述导管的液体的流速;其中液体被供给至所述加热室,且然后在所述加热室内通过从所述加热元件传热至所述室而被转化成蒸气,其中所述液体成蒸气的所述转化导致所述导管内的体积膨胀和压力升高,且其中所述压力升高推动所述蒸气穿过所述导管并离开所述至少一个开口。在一个实施方案中,组织消融系统还包括附接至所述流体供应部的抗压配件和在所述抗压配件内以防止蒸气回流入所述流体供应部的单向阀。在一个实施方案中,组织消融系统还包括所述导管上的至少一个传感器,其中由所述传感器获得的信息被传输至所述微处理器,且其中所述信息由所述微处理器使用以调节所述泵和所述加热部件且由此调节蒸气流量。在一个实施方案中,组织消融系统包括所述导管内的金属框架,其中所述金属框架与所述加热室热接触并将热传导至所述导管管腔,由此防止所述蒸气冷凝。在多个实施方案中,所述金属框架包括具有以有规律隔开的间隔向外延伸的肋片(fin)的金属骨架、金属螺旋状物或金属网且其中所述金属框架包括铜、不锈钢或其他含铁材料中的至少一种。在一个实施方案中,加热元件包括加热块,其中所述加热块由所述控制器供电。在多个实施方案中,加热元件使用磁感应、微波、高强度聚焦超声或红外能中的一种来加热所述加热室和其内的流体。附图简述当通过参考结合附图考虑的详细描述来更好地理解本发明的这些和其他特征和优势时,它们将被进一步理解,在附图中:图1阐释了根据本发明一个实施方案的消融装置;图2a阐释了其上分布有端口的消融装置的纵截面;图2b阐释了根据本发明一个实施方案的消融装置上的端口的横截面;图2c阐释了根据本发明另一个实施方案的消融装置上的端口的横截面;图2d阐释了根据本发明一个实施方案的消融装置的导管;图2e阐释了根据本发明一个实施方案的从常规的勒除器手柄延伸的导管形式的消融装置;图2f阐释了根据本发明另一个实施方案的从常规的勒除器手柄延伸的导管形式的具有预先附接的绳的消融装置的横截面;图2g阐释了根据本发明一个实施方案的从常规的食管探针延伸的导管形式的消融装置;图3a阐释了根据本发明一个实施方案的设置在具有巴雷特食管的上胃肠道中以选择地消融巴雷特组织的消融装置;图3b阐释了根据本发明另一个实施方案的设置在具有巴雷特食管的上胃肠道中以选择地消融巴雷特组织的消融装置;图3c是阐释了根据本发明一个实施方案的使用消融装置的基本程序步骤的流程图;图4a阐释了根据本发明一个实施方案的设置在结肠中以消融扁平结肠息肉的消融装置;图4b阐释了根据本发明另一个实施方案的设置在结肠中以消融扁平结肠息肉的消融装置;图5a阐释了根据本发明一个实施方案的具有同轴导管设计的消融装置;图5b阐释了根据本发明一个实施方案的局部展开的定位装置;图5c阐释了根据本发明一个实施方案的完全展开的定位装置;图5d阐释了根据本发明一个实施方案的具有锥形定位元件的消融装置;图5e阐释了根据本发明一个实施方案的具有盘形定位元件的消融装置;图6阐释了利用根据本发明一个实施方案的消融装置进行治疗的具有出血的血管病变的上胃肠道;图7阐释了利用根据本发明一个实施方案的消融装置对女性子宫执行的子宫内膜消融;图8阐释了利用根据本发明一个实施方案的消融装置对鼻通道执行的窦消融;图9阐释了利用根据本发明一个实施方案的消融装置对肺部系统执行的支气管和大疱消融;图10阐释了利用根据本发明一个实施方案的消融装置对男性泌尿系统中增大的前列腺执行的前列腺消融;图11阐释了利用根据本发明一个实施方案的消融装置对女性子宫执行的纤维瘤消融;图12阐释了根据本发明一个实施方案的利用rf加热器将蒸气供给至消融装置的蒸气递送系统;图13阐释了根据本发明一个实施方案的利用电阻加热器将蒸气供给至消融装置的蒸气递送系统;图14阐释了根据本发明一个实施方案的利用加热线圈将蒸气供给至消融装置的蒸气递送系统;图15阐释了根据本发明一个实施方案的图14的加热线圈蒸气递送系统的加热部件和卷曲管件;图16a阐释了根据本发明一个实施方案的图14的加热线圈蒸气递送系统的单次使用的绳和消融装置之间未组装的界面连接;图16b阐释了根据本发明一个实施方案的图14的加热线圈蒸气递送系统的单次使用的绳和消融装置之间组装的界面连接;图17阐释了根据本发明另一个实施方案的利用加热器或换热器单元将蒸气供给至消融装置的蒸气消融系统;图18阐释了图17的蒸气消融系统的流体容器、过滤器构件以及泵;图19阐释了图17的蒸气消融系统的流体容器、过滤器构件、泵、加热器或换热器单元以及微控制器的第一视图;图20阐释了图17的蒸气消融系统的流体容器、过滤器构件、泵、加热器或换热器单元以及微控制器的第二视图;图21阐释了图17的蒸气消融系统的未组装的过滤器构件,描绘了设置在其内的过滤器;图22阐释了图17的蒸气消融系统的微控制器的一个实施方案;图23阐释了与图17的蒸气消融系统一起使用的导管组件的一个实施方案;图24阐释了与图17的蒸气消融系统一起使用的换热器单元的一个实施方案;图25阐释了与本发明的蒸气消融系统一起使用的换热器单元的另一个实施方案;图26阐释了感应加热用于加热室;图27a阐释了在本发明的蒸气消融系统中与感应加热一起使用的线圈的一个实施方案;图27b阐释了在本发明的蒸气消融系统中与感应加热一起使用的导管手柄的一个实施方案;图28a是阐释了在本发明的蒸气消融系统中与感应加热一起使用的导管的一个实施方案的前视截面示意图;图28b是阐释了在本发明的蒸气消融系统中与感应加热一起使用的导管的一个实施方案的纵向截面示意图;图28c是阐释了在本发明的蒸气消融系统中与感应加热一起使用的具有金属螺旋物(metalspiral)的导管的另一个实施方案的纵向截面示意图;图28d是阐释了在本发明的蒸气消融系统中与感应加热一起使用的具有网格的导管的另一个实施方案的纵向截面示意图;以及图29阐释了在本发明的蒸气消融系统中使用微波将流体转化成蒸气的加热单元的一个实施方案。发明详细描述本发明涉及一种消融装置,包括导管,在导管的一个或多个末端处具有一个或多个定中心或定位附件以将导管和其输注端口固定在离消融组织的固定距离处,其不受器官运动影响。一个或多个喷射端口的布置允许均匀喷射消融剂,从而产生诸如在巴雷特食管中所遇到的大面积的均匀消融。消融剂的流动受到微处理器的控制且取决于待消融组织的长度或面积、待消融组织的类型和深度以及输注端口离待消融组织的距离或待消融组织中的输注端口的距离中的一个或多个。本发明还涉及与组织消融系统结合使用的装置,包括:手柄,其具有在其远端上的抗压端口、消融剂可以行进穿过的流动通道以及其近端上用于所述消融剂的入口和rf供给或电供给的一个或多个连接端口;附接于所述手柄的所述抗压端口的绝热导管,包括消融剂可以行进穿过的轴和沿着其长度用于释放所述消融剂的一个或多个端口;以及在一个或多个不同的位置处附接于所述导管轴的一个或多个定位元件,其中所述定位元件被配置成将所述导管定位在离待消融组织的预定距离处或定位在待消融组织中。在一个实施方案中,手柄具有用于附接消融剂入口和rf供给的一个抗压端口。在另一个实施方案中,手柄具有用于附接消融剂入口的一个单独的抗压端口和用于附接rf供给或电供给的一个单独的端口。本发明还涉及与组织消融系统结合使用的装置,包括:手柄,其具有在其远端上的抗压端口、穿过所述手柄的流动通道以及在其近端上用于rf供给或电供给的连接端口,所述流动通道与消融剂可以行进穿过的预先附接的绳是连续的;附接于所述手柄的所述抗压端口的绝热导管,包括消融剂可以行进穿过的轴和沿着其长度用于释放所述消融剂的一个或多个端口;以及在一个或多个不同的位置处附接于所述导管轴的一个或多个定位元件,其中所述定位元件被配置成将所述导管定位在离待消融组织的预定距离处或定位在待消融组织中。在一个实施方案中,所述导管的远端被设计成刺穿目标组织以将消融剂递送至准确的深度和位置。本发明还涉及与组织消融系统结合使用的装置,包括:食管探针,其具有在其远端上的抗压端口、消融剂可以行进穿过的流动通道以及在其近端上用于所述消融剂的入口和rf供给的一个或多个连接端口;附接于所述食管探针的所述抗压端口的绝热导管,包括消融剂可以行进穿过的轴和沿着其长度用于释放所述消融剂的一个或多个端口;以及在所述导管的任一端处设置成超出所述一个或多个端口的一个或多个可充气定位气囊,其中所述定位气囊被配置成将所述导管定位在离待消融组织的预定距离处。在一个实施方案中,导管是双管腔,其中第一管腔促进消融剂传输且第二管腔包含用于rf消融的电极。在一个实施方案中,导管沿着其长度具有不同的绝热。本发明还涉及一种用于将蒸气供给至消融装置的蒸气递送系统,包括:液体储器,其中所述储器包括用于附接可重复使用的绳的抗压出口连接器;将所述储器的出口连接至加热部件的入口的可重复使用的绳;动力驱动的加热部件,所述加热部件包含在其内的用于将液体转化成蒸气的一定长度的卷曲管件和在所述加热部件的入口端和出口端处的抗压连接件;以及单次使用的绳,其将基于蒸气的消融装置的抗压入口端口连接至所述加热部件的出口。在一个实施方案中,液体储器被集成在操作室设备发生器内。在一个实施方案中,液体是水且所得到的所述蒸气是蒸汽。在一个实施方案中,抗压连接件是鲁尔锁型。在一个实施方案中,卷曲管件是铜。在一个实施方案中,用于将蒸气供给至消融装置的蒸气递送系统还包括由操作者使用的踏板开关以将更多的蒸气递送至消融装置。“治疗(treat)”、“治疗(treatment)”及其变化形式是指与健康状况有关的一个或多个症状或预兆的程度、频率或严重度的任何减轻。“持续时间”及其变化形式是指从开始到结束的规定治疗的时间过程,不管该治疗是否因为健康状况得到改善或是治疗因其它原因中止而结束。在治疗的持续时间中,可规定多个治疗周期,在这些治疗周期中,对受试者施用一个或多个规定刺激。“周期”是指作为规定治疗计划的一部分而将一“剂量”的刺激施用至受试者内的时间。术语“和/或”是指一个或所有所列要素或者所列要素中的任何两个或更多个的组合。在说明书和权利要求书中出现的术语“包含”及其变化形式不具有限制的意思。除非另有规定,否则“一个(a)”、“一个(an)”、“该(the)”、“一个或多个”以及“至少一个”可以互换使用且意指一个或一个以上。对于在此公开的包括分立步骤的任何方法,可以以任何可行的顺序来进行这些步骤。而且,适当地,可同时进行两个或多个步骤的任何组合。还在本文中,数值范围端点的列举包括在该范围内包含的所有数字(例如,1-5包括1、1.5、2、2.75、3、3.80、4、5等)。除非另有规定,否则在说明书和权利要求书中使用的表示部件数量、分子量等所有数字都应被理解成在所有例子中都可由术语“约”修饰。因此,除非另有规定,否则在说明书和权利要求书中提到的数字参数都是近似值,都可以根据本发明所要获得的预期性能进行变化。一点也不是意图将等同原则限制到权利要求的保护范围,至少应该根据提供的有效数字并运用普通的四舍五入技术得到的数字来解释每个数字参数。尽管提出的本发明较宽范围的数值范围和参数是近似值,但是,在具体实施例中提出的数值都尽可能精确。然而,所有数值固有地包含在其各自试验测量中发现的必然从标准偏差中产生的范围。诸如蒸汽、加热的气体的消融剂,或者诸如但不限于液氮的冷冻剂是廉价且容易得到的,并且经由输注端口导入到组织上,保持在固定且恒定的距离处,瞄准以进行消融。这允许将消融剂均匀地分布在目标组织上。微处理器基于待消融组织的特征、需要消融的深度以及端口离组织的距离根据预定方法来控制消融剂的流动。微处理器可以利用温度、压力或其它感测数据来控制消融剂的流动。此外,设置一个或多个抽吸端口,以从目标组织附近抽吸消融剂。可以通过连续输注消融剂,或者通过由微处理器确定和控制的输注和去除消融剂的循环,对目标段进行治疗。应该理解的是,在此描述的装置和实施方案与包含执行控制指令的微处理器的控制器一致执行。该控制器可以是任何形式的计算机装置,包括桌上型、膝上型和移动装置,并且可以通过有线或无线形式与消融装置进行控制信号的通信。本发明涉及多个实施方案。提供下面的公开内容以使本领域的技术人员能够实践本发明。此说明书中使用的语言不应该被解释为对任何一个特定实施方案的一般否决或用于限制权利要求超出本文使用的术语的意义。本文界定的一般原理可以适用于其他实施方案和应用而并不偏离本发明的精神和范围。此外,所使用的术语和用语用于描述示例性实施方案的目的且不应被认为具有限制作用。因而,本发明应被给予包含与所公开的原理和特征一致的多种变型、改进和等同替换的最宽的保护范围。为了简化,没有详细描述在本发明的相关
技术领域
中已知的技术材料的有关细节,以免不必要地混淆本发明。图1阐释了根据本发明一个实施方案的消融装置。该消融装置包括导管10,其具有为可充气气囊11的末端定中心或定位附件。导管10由绝热材料制成或由绝热材料覆盖,以防止消融能量从导管本体中逸出。消融装置包括用于输注消融剂的一个或多个输注端口12和用于去除消融剂的一个或多个抽吸端口13。在一个实施方案中,输注端口12和抽吸端口13是相同的。在一个实施方案中,输注端口12可以以不同的角度引导消融剂。消融剂存储在连接于导管10的储器14中。消融剂的递送由微处理器15控制且治疗的启动由治疗医护人员利用诸如踏板开关16的输入装置来控制。在其它实施方案中,输入装置可以是语音识别系统(其对诸如“开始”、“更多”、“更少”等命令作出响应)、鼠标、开关、脚垫(footpad)或者本领域技术人员已知的任何其它输入装置。在一个实施方案中,微处理器15将来自输入装置的信号,例如置于踏板开关上的压力或提供“更多”或“更少”消融剂的声音命令,转变成确定是否分配更多或更少消融剂的控制信号。可选择的传感器17监测消融组织中或其附近的变化以引导消融剂流。在一个实施方案中,可选的传感器17还包括温度传感器。可选的红外线、电磁、声或射频能发射体和传感器18测量中空器官的尺寸。在一个实施方案中,包含有微处理器15的用户界面允许医护人员界定装置、器官以及健康状况,这又产生温度、循环、音量(声音)和标准rf设置值的默认设置值。在一个实施方案中,医护人员可以进一步改动这些默认值。用户界面还包括所有关键变量的标准显示器以及对值是否超过或低于某些水平发出的警报。消融装置还包括安全机构以防止使用者在操纵导管时被灼伤,包括绝热且任选地,冷空气吹洗、冷水吹洗以及表示治疗开始和结束的警报/声音。在一个实施方案中,可充气气囊具有1mm到10cm之间的直径。在一个实施方案中,可充气气囊可以与端口隔开1mm到10cm的距离。在一个实施方案中,端口开口的尺寸在1μm到lcm之间。应该理解的是,可充气气囊用来固定装置,且因此被配置成与消融区域不接触。该可充气气囊可以具有与中空器官在3个或更多个点接触的任何形状。本领域的技术人员将理解,利用三角测量可以计算导管距病变的距离。可选地,红外线、电磁、声或射频能发射体和传感器18能够测量中空器官的尺寸。红外线、电磁、声或射频能量从发射体18发射出并从组织反射到发射体18中的检测器中。可以使用反射数据来确定中空腔的尺寸。应该理解的是,发射体与传感器18可以合并成既能够发射能量又能够检测反射能的一个收发两用机。图2α阐释了消融装置的纵截面,阐释了输注端口的分布。图2β阐释了根据本发明一个实施方案的消融装置上的输注端口的分布的横截面图。图2α和2b中分别阐释的导管10的纵截面和横截面阐释了为在中空器官20中提供圆周形的消融区域而产生消融剂21的均匀分布的输注端口12的一种布置。图2c阐释了根据本发明另一个实施方案的消融装置上的输注端口的分布的横截面图。图2c中阐释的输注端口12的布置产生消融剂21的集中分布和在中空器官20中的消融的集中区域。对于本文所述的所有实施方案,应该理解的是,端口的尺寸、端口的数目,以及端口之间的距离将由所需消融剂的量、中空器官能够承受的压力、由端口到表面的距离测量出的中空器官的尺寸、待消融组织的长度(其大致是待消融的表面区域)、待消融组织的特征和所需消融的深度来决定。在一个实施方案中,具有至少一个直径为1μm到1cm之间的端口开口。在另一个实施方案中,具有两个或更多个直径为1μm到lcm之间且围绕该装置的圆周等距隔开的端口开口。图2d阐释了消融装置的另一个实施方案。蒸气消融导管包括具有已知长度23的一个或多个定位附件22的绝热导管21。蒸气消融导管具有一个或多个蒸气输注端口25。具有输注端口25的蒸气消融导管21的长度24由待消融组织的长度或面积决定。蒸气29通过蒸气输注端口25递送。导管21优选地被定位在定位附件22的中心,且输注端口25被周向布置以沿圆周方向来消融和递送蒸气。在另一个实施方案中,可以朝向定位附件22的外周来定位导管21,且可以非周向地布置输注端口25,优选地线性地布置在一侧以病灶消融和递送蒸气。定位附件22是可充气气囊、有或没有覆盖盘的绝热膜的线网盘、圆锥形附件、环形附件或被设计成适于所需中空身体器官或中空身体通道的自由形式附件中的一种,下文会进一步描述。可选的红外线、电磁、声或射频能发射体和传感器28可被并入,以测量中空器官的尺寸。蒸气消融导管还可以包括可选的同轴片材27,以便以与冠状金属支架类似的方式限制定位附件22。在一个实施方案中,片材由具有压缩线性形式和非压缩形式的定位附件形状的记忆金属或记忆材料制成。可选地,内窥镜的通道可以通过例如充当约束鞘来执行限制定位附件22的功能。可选的传感器26配置在导管上以测量与蒸气递送或消融有关的变化。传感器是温度、压力、图像或化学传感器中的一种。可选地,一种或多种红外线、电磁、声或射频能发射体和传感器28可以测量中空器官的尺寸。红外线、电磁、声或射频能从发射体28中发射出来并从组织反射回到发射体28中的检测器。可以使用反射数据来确定中空腔的尺寸。在一个或多个点进行测量以获得中空器官尺寸的精确估计。还可以使用数据来产生中空器官的局部解剖图像。来自诊断测试的额外的数据可以用于证实或补充来自上述测量的数据。图2e阐释了根据本发明一个实施方案的从常规的手柄22延伸的导管21的形式的消融装置20。导管21具有上述类型且从手柄22延伸并附接于手柄22。在一个实施方案中,导管21是绝热的以保护使用者免受可能由于热蒸气加热导管造成的灼伤。在一个实施方案中,导管由确保导管的外部温度在使用期间将保持低于60℃的材料构成。手柄22在与导管21附接的位置处包括抗压端口。手柄22还包括流动通道,在流动通道内引导蒸气穿过导管21。在一个实施方案中,勒除器手柄22包括用于连接蒸气流和rf供给的单个附接端口23。在另一个实施方案(未显示)中,勒除器手柄包括用于连接蒸气流和rf供给的两个单独的附接端口。附接端口23经由抗压连接器与蒸气供给绳连接。在一个实施方案中,连接器是鲁尔锁型。在一个实施方案中,导管21是双管腔导管。第一管腔起到递送蒸气至消融部位的作用。在一个实施方案中,蒸气通过靠近导管21的远端设置的小端口24被释放。导管21的远端被设计成使得其可以刺穿组织以递送蒸气至目标组织内的期望的深度和位置。在一个实施方案中,导管21的远端逐渐变窄成尖点。第二管腔容纳用于rf消融的电极。在一个实施方案中,通过使用微处理器来实现蒸气或rf波的递送。在另一个实施方案中,使用者可以通过使用手柄22上的致动器(未显示)来释放蒸气或使目标组织经受rf波。在一个实施方案中,导管沿着其长度具有变化的或不同的绝热。在一个实施方案中,消融装置20包括一种机构,在该机构中抓握住待消融的组织并定勒除器内的组织的尺寸的勒除器用于确定待递送的蒸气量。图2f阐释了根据本发明另一个实施方案的具有预先附接的绳25的呈从常规的手柄22延伸的导管21的形式的消融装置27的横截面。绳25直接附接于蒸气递送系统,消除了系统与消融装置之间的一个界面且由此降低了系统因断开而发生故障的几率。在此实施方案中,手柄22包括用于rf或电供给的单独的附接端口(未显示)。图2g阐释了根据本发明一个实施方案的呈从常规的食管探针26延伸的导管21的形式的消融装置29。在一个实施方案中,导管21是绝热的且接收来自探针26所包含的流动通道的蒸气。导管21包括用于递送蒸气至目标组织的多个小端口。蒸气的递送由微处理器控制。在一个实施方案中,导管21还包括两个可充气气囊28,一个可充气气囊28在其远端超出最后一个蒸气端口24,而另一个可充气气囊28在其近端,靠近导管21的附接于探针26的位置。所有蒸气端口被设置在这两个气囊之间。一旦装置29被插入在食管内,气囊28膨胀以使导管21保持定位且使期望的治疗区域内包含蒸气。在一个实施方案中,气囊必须与消融区域隔开大于0mm,优选1mm且理想地是1cm的距离。在一个实施方案中,每一个气囊在膨胀时的直径在10到100mm,优选15-40mm的范围内,但是本领域的技术人员将理解精确的尺寸取决于患者食管的尺寸。在一个实施方案中,附接于食管探针26的导管21是双管腔导管。第一管腔起到递送蒸气至消融部位的作用,如上所述。第二管腔容纳用于rf消融的电极。图3a阐释了根据本发明一个实施方案的置于具有巴雷特食管的上胃肠道中以选择性地消融巴雷特组织的消融装置。上胃肠道包括巴雷特食管31、胃贲门32、胃食管交接部33和移位鳞柱交接部34。胃食管交接部33和移位鳞柱交接部34之间的区域是瞄准以进行消融的巴雷特食管31。贲门32的远端是胃35,而贲门32的近端是食管36。消融装置穿过食管36且定位装置11设置在胃贲门32中,接靠胃食管交接部33。这将消融导管10及其端口12固定在食管36的中央并允许将消融剂21均匀地递送到巴雷特食管31。在一个实施方案中,在进行消融之前,首先将定位装置固定到不经受消融的解剖结构。如果患者是进行外周消融或是第一次消融时,优选地将定位附件布置在胃贲门中,接靠胃食管交接部。如果患者是进行任何残余疾病的病灶消融,则优选地使用图4b所示的导管系统,正如下面描述的。在一个实施方案中,定位附件必须隔开消融区域超过0mm,优选1mm,理想地是1cm的距离。在一个实施方案中,定位装置的尺寸在10-100mm,优选20-40mm的范围内,但本领域的技术人员将理解精确尺寸依赖于患者食管的尺寸。消融剂21递送通过输注端口12受到与消融装置连接的微处理器15的控制。消融剂的递送依赖于待消融的组织和所需的消融深度,由预定的程序指令引导。在一个实施方案中,目标程序温度将需要是约-100-200摄氏度,优选50-75摄氏度,在后面的表中会进一步阐释。在一个实施方案中,食管压力应该不超过5atm,且优选低于0.5atm。在一个实施方案中,目标程序温度在不到1分钟内,优选地在不到5秒钟内获得,并且能够保持长达10分钟,优选1-10秒钟,然后冷却到身体温度。本领域的技术人员将知道可以进行重复治疗直到获得所需的消融效果为止。任选的传感器17监控诸如温度和压力的管腔内参数并可以通过输注端口12增加或减少消融剂21的流动以获得足够的加热或冷却,产生足够的消融。传感器17监控诸如温度和压力的管腔内参数,且可以通过可选的抽吸端口13增加或减少消融剂21的去除量,以获得足够的加热或冷却,以便对巴雷特食管31进行足够的消融。图3b阐释了根据本发明另一个实施方案的置于具有巴雷特食管的上胃肠道中以选择性地消融巴雷特组织的消融装置。如图3b所示,定位装置11是线网盘。在一个实施方案中,定位附件必须与消融区域隔开超过0mm,优选1mm,理想地是1cm的距离。在一个实施方案中,定位附件可去除地固定在贲门或胃食管(eg)交接部(对于远端附件)或固定于食管中位于巴雷特组织的大致最高程度上面超过0.1mm,优选为大约1cm处(对于近端附件)。图3b是巴雷特消融装置的定位元件11为线网盘的另一个实施方案。线网可以具有可选的绝热膜以防止消融剂逸出。在当前的实施方案中,使用两个线网盘将消融导管定位在食管中央。两个盘之间的距离由待消融组织的长度来确定,在此情况下,该长度就是巴雷特食管的长度。可选的红外线、电磁、声或射频能发射体和传感器18可以被并入以测量食管的直径。图3c是阐释了根据本发明一个实施方案使用消融装置的基本程序步骤的流程图。在步骤302中,将消融装置的导管插入到待消融的器官中。例如,为了对患者的巴雷特食管进行消融,导管经由患者的食管插入到巴雷特食管中。在步骤304中,展开消融装置的定位元件并测量器官的尺寸。在一个实施方案中,如果定位元件是气囊,则气囊被充气以将消融装置定位到距离待消融组织的已知预定距离处。在各种实施方案中,中空器官的直径可以通过使用诸如钡x射线或计算机x射线断层摄影术(ct)扫描的放射性试验来预先确定,或可以通过使用压力体积循环即通过确定将固定体积的气囊中的压力升高到固定水平(例如latm)所需的体积来预先确定。在另一个实施方案中,如果定位装置是盘形的,则设置外周环以便使操作的医护人员从视觉上了解中空器官的直径。在本发明的各个实施方案中,定位装置能够使消融装置的导管在非圆柱形身体腔中居中,且腔的体积由导管的长度或子宫探子来测量。可选地,可以使用红外线、电磁、声或射频能发射体和传感器中的一种或多种来测量中空器官的尺寸。红外线、电磁、声或射频能从发射体发射出并从组织反射到发射体的检测器。可以使用反射数据来确定中空腔的尺寸。可以在一个或多个点进行测量来获得对中空器官尺寸的精确估计。还可以使用来自多个点的数据来产生中官器官的局部解剖图像或者用来计算中空器官的体积。在一个实施方案中,定位附件必须与端口隔开0mm或以上,优选大于0.1mm,且更优选1cm的距离。定位装置的尺寸依赖于被消融的中空器官并且在1mm-10cm的范围内。在一个实施方案中,定位元件的直径在0.01mm到100mm之间。在一个实施方案中,第一定位元件包括具有0.01mm到10cm之间的直径的圆形体。在步骤306中,通过经由设置在导管上的输注端口自动递送例如蒸汽的消融剂来消融器官。消融剂通过输注端口的递送由与消融装置连接的微处理器来控制。依赖于待消融组织和所需消融的深度,消融剂的递送由预定程序指令来引导。在本发明的一个实施方案中,如果消融剂是蒸汽,则消融剂的剂量通过进行剂量测定研究来确定,以确定消融子宫内膜组织的剂量。能够确定消融剂总剂量的变量是待治疗组织的体积(或质量),其通过利用导管的长度和器官(对于圆筒形器官而言)的直径来计算。然后利用微处理器控制的蒸汽发生器来递送所确定剂量的消融剂。任选地,消融剂的递送可以由操作者使用预定的剂量测定参数来控制。在一个实施方案中,通过首先确定治疗病症和期望的组织效果,且然后发现对应的温度,来提供剂量,正如下面的表1和表2所示。表1温度℃组织效果37-40没有明显的组织效果41-44在几小时内可逆的细胞损坏45-49在较短间隔内不可逆的细胞损坏50-69在较短间隔内不可逆的细胞损坏-消融坏死70组织收缩、h-键断裂的阈值温度70-99凝固和止血100-200组织的干燥和碳化>200组织葡萄糖的炭化表2病症最高温度℃ent/肺部鼻息肉60-80鼻甲切除术70-85大疱疾病70-85肺复位70-85泌尿生殖器子宫月经过多80-90子宫内膜异位症80-90子宫纤维瘤90-100良性前列腺肥大90-100胃肠病巴雷特食管60-75食管发育不良60-80血管gi失调55-75扁平息肉60-80此外,所需的消融深度决定了最高温度的保持时间。对于表面消融(巴雷特),最高温度的保持时间非常短(迅速灼烧),且不允许热递送到更深的层。这会防止损坏更深的正常组织,且因此防止患者不适和并发症。对于较深组织的消融,最高温度的保持时间会更长一些,因而允许热渗透得更深一些。图4a阐释了根据本发明一个实施方案的置于结肠中用来消融扁平结肠息肉的消融装置。消融导管10穿过结肠镜40。定位装置11布置在正常结肠42中相对于患者的gi道靠近待消融的扁平结肠息肉41。定位装置11是可充气气囊、带有或不带有覆盖盘的绝热膜的线网盘、锥形附件、环形附件或被设计成适于结肠内腔的自由形式附件中的一种。定位装置11使导管10朝向定位装置11的外周布置,将其较靠近息肉41布置以进行非周周形的消融。因此,定位装置11在距离息肉41预定距离处将导管固定到结肠42,以便均匀并集中地递送消融剂21。消融剂21通过输注端口12的递送由连接于消融装置的微处理器15来控制,并依赖于组织和所需消融的深度。消融剂21的递送依赖于待消融组织和所需消融的区域和深度,由预定程序指令来引导。任选的红外线、电磁、声或射频能发射体和传感器18被结合以测量结肠的直径。消融装置允许对患病息肉粘膜进行集中消融而不损坏远离导管端口定位的正常结肠粘膜。在一个实施方案中,定位附件必须与消融区域隔开大于0.1mm的距离,理想地为超过5mm的距离。在一个实施方案中,定位元件相对于患者的gi道接近结肠息肉。图4b阐释了根据本发明另一个实施方案的置于结肠42中以消融扁平结肠息肉41的消融装置。如图4b所示,定位装置11是位于导管10尖端的锥形附件。锥形附件具有已知长度“1”和直径“d”,其用于计算消融扁平结肠息肉41所需的热能的量。消融剂21通过定位装置11从输注端口12引导至息肉41。在一个实施方案中,定位附件11必须与消融区域隔开大于0.1mm、优选1mm且更优选1cm的距离。在一个实施方案中,长度“l”大于0.1mm,优选5到10mm之间。在一个实施方案中,直径“d”依赖于息肉的尺寸,并且可以是1mm到10cm之间,优选l到5cm。任选的红外线、电磁、声或射频能发射体和传感器18被结合以测量结肠的直径。还可以使用本实施方案来消融在内窥镜用勒除器切除掉较大的广基型结肠息肉之后在边缘上残余的赘生组织。图5a阐释了根据本发明一个实施方案的具有同轴导管设计的消融装置。同轴设计具有手柄52a、输注端口53a、内鞘54a和外鞘55a。外鞘55a用于将定位装置56a限制在闭合位置并包围端口57a。图5b阐释了部分展开的定位装置56b,端口57b仍然位于外鞘55b内。通过将导管54b从鞘55b推开来部分展开定位装置56b。图5c阐释了完全展开的定位装置56c。输注端口57c离开鞘55c。包含输注端口57c的导管54c的长度“l”和定位元件56c的直径“d”是预定的/已知的,且用于计算所需热能的量。图5d阐释了定位元件的锥形设计。定位元件56d是具有已知长度“1”和直径“d”的锥形,已知长度“1”和直径“d”用于计算消融所需热能的量。图5e阐释了定位元件56e的盘形设计,包括圆周环59e。圆周环59e设置于距导管54e固定的预定距离处,并用于估计患者身体的中空器官或中空通道的直径。图6阐释了利用根据本发明一个实施方案的消融装置进行治疗的具有出血的血管病变的上胃肠道。血管病变是溃疡62底部中的可见脉管61。消融导管63穿过内窥镜64的通道。锥形定位元件65布置在可见脉管61上方。锥形定位元件65具有已知的长度“1”和直径“d”,其用于计算用于凝固可见脉管以实现止血所需的热能的量。锥形定位元件具有可选的绝热膜,其防止热能或蒸气从患病部位逃逸。在一个实施方案中,定位附件必须与消融区域隔开大于0.1mm、优选1mm且更优选1cm的距离。在一个实施方案中,长度“1”大于0.1mm、优选5到10mm之间。在一个实施方案中,直径“d”依赖于病变的尺寸,且可以在1mm到10cm之间,优选1-5cm。图7阐释了使用根据本发明一个实施方案的消融装置进行女性子宫的子宫内膜消融。阐释了包括阴道70、子宫颈71、子宫72、子宫内膜73、输卵管74、叶鞘75和子宫底部76的女性生殖道的横截面图。消融装置的导管77经子宫颈71插入子宫72中。在一个实施方案中,导管77具有两个定位元件:锥形定位元件78和盘形定位元件79。定位元件78是锥形的,具有覆盖锥形定位元件78的绝热膜。锥形元件78将导管77定位在子宫颈71的中央,且绝热膜防止热能或消融剂通过子宫颈71逸出。第二盘形定位元件79在子宫底部76附近展开,将导管77定位在空腔的中间。消融剂778通过输注端口777以便将消融剂778均匀地递送到子宫腔中。导管的消融段的预定长度“1”和定位元件79的直径“d”允许对腔尺寸进行估计,并用于计算消融子宫内膜衬里所需热能的量。靠近子宫内膜表面配置的可选的温度传感器7可用于控制消融剂778的递送。利用多重红外线、电磁、声或射频能发射体和传感器的可选的局部照相测绘可用于定义具有因纤维瘤等情况而不规则或变形的子宫腔的患者中的腔尺寸和形状。另外,来自诊断测试的数据可用于确定子宫腔尺寸、形状或其它特性。在一个实施方案中,消融剂是蒸气或蒸汽,其冷却时会收缩。与致冷剂会膨胀或是在热液消融中使用的热流体保持体积不变相比,蒸汽变成具有较小体积的水。对于致冷剂和热流体二者来说,增加能量递送与增大消融剂体积有关,增大消融剂体积进而需要去除消融剂的机构,否则药的供应会产生并发症,比如穿孔。然而,蒸汽在冷却时变成占据明显小的体积的水;因此,能量递送增加与剩余消融剂的体积增加无关,因而无需继续去除。这进一步降低经由输卵管74或子宫颈71泄漏热能的风险,因而减小热损伤附近健康组织的风险。在一个实施方案中,定位附件必须与消融区域隔开大于0.1mm、优选1mm、更优选1cm的距离。在另一个实施方案中,定位附件可以位于消融区域中,只要不覆盖很大的表面区域即可。对于子宫内膜的消融,为获得预期的治疗效果不需要消融100%的组织。在一个实施方案中,优选的远端定位附件是靠近中央本体区域定位的未覆盖的线网。在一个实施方案中,优选的近端定位装置是覆盖的线网,其被拉入子宫颈,将装置定中心,并封闭子宫颈。一个或多个这种定位装置对于补偿子宫中解剖变化可能是有利的。近端定位装置优选地是椭圆形的,具有0.1mm到10cm之间(优选lcm到5cm)的长轴和0.lmm到5cm之间(优选0.5cm到lcm)的短轴。远端定位装置优选地为圆形,具有0.1mm到10cm、优选lcm到5cm的直径。图8阐释了利用根据本发明一个实施方案的消融装置在鼻通道中执行的窦消融。阐释了包括鼻孔81、鼻通道82、额窦83、筛窦84,以及患病的窦上皮细胞85的鼻通道和鼻窦的横截面图。导管86经鼻孔81和鼻通道82插入额窦83或筛窦84中。在一个实施方案中,导管86具有两个定位元件:锥形定位元件87和盘形定位元件88。定位元件87是锥形的,且具有绝热膜覆盖物。锥形元件87将导管86定位在窦开口80的中央,且绝热膜防止热能或消融剂通过开口逸出。第二盘形定位元件88在额窦腔83或筛窦腔84中展开,将导管86定位在任一窦腔的中间。消融剂8通过输注端口89,以将消融剂8均匀地递送到窦腔中。导管的消融段的预定长度“1”和定位元件88的直径“d”允许对窦腔尺寸进行估计,并用于计算消融患病的窦上皮细胞85所需的热能的量。靠近患病的窦上皮细胞85配置了可选的温度传感器888以控制消融剂8的递送。在一个实施方案中,消融剂是蒸气,其冷却后会收缩。这进一步降低泄漏热能的风险,因而减小热损伤附近健康组织的风险。在一个实施方案中,定位元件的尺寸范围与在子宫内膜的应用中的尺寸范围类似,优选的最大范围是其一半。利用多重红外线、电磁、声或射频能发射体和传感器的可选的局部照相测绘可用于定义具有因鼻息肉等情况而不规则或变形的腔的患者中的腔尺寸和形状。图9阐释了根据本发明一个实施方案的利用消融装置在肺系中执行的支气管和大疱的消融。阐释了具有支气管91、正常肺泡92、大疱病变93,以及支气管肿疡94的肺系的横截面。在一个实施方案中,导管96通过支气管镜95的通道插入支气管91并进入到大疱病变93中。导管96具有两个定位元件:锥形定位元件97和盘形定位元件98。定位元件97是锥形的,具有绝热膜覆盖物。锥形元件97将导管96定位在支气管91的中央,且绝热膜防止热能或消融剂通过开口逸出到正常支气管中。第二盘形定位元件98在大疱腔93中展开,将导管96定位在大疱腔93的中间。消融剂9通过输注端口99以均匀地递送到窦腔中。导管96的消融段的预定长度“1”和定位元件98的直径“d”允许对大疱腔尺寸进行估计,并用于计算消融患病的大疱腔93所需的热能的量。可选地,可以利用胸部cat扫描或mri的放射学估计来计算腔的尺寸。可选的温度传感器在大疱腔93的表面的附近设置,以控制消融剂9的递送。在一个实施方案中,消融剂是蒸汽,其在冷却时会收缩。这进一步降低了热能泄漏到正常支气管中的风险,从而降低了热损伤附近正常组织的风险。在一个实施方案中,定位附件必须与消融区域隔开超过0.1mm,优选1mm,更优选1cm的距离。在另一个实施方案中,定位附件可以位于消融区域中,只要不占据很大的表面区域即可。在一个实施方案中,优选地具有两个定位附件。在另一个实施方案中,使用内窥镜作为具有一个定位元件的一个固定点。定位装置为0.lmm到5cm之间(优选地为lmm到2cm)。远端定位装置优选地为圆形的,具有0.1mm到10cm、优选地为lcm到5cm的直径。在消融支气管肿疡94的另一个实施方案中,导管96通过支气管镜95的通道插入支气管91并前进穿过支气管肿疡94。定位元件98是盘形的,具有绝热膜覆盖物。定位元件98将导管定位在支气管91的中央,且绝热膜防止热能或消融剂通过开口逸出到正常支气管中。消融剂9以非圆周方式通过输注端口99以均匀地将消融剂递送到支气管肿疡94中。导管的消融段的预定长度“1”和定位元件98的直径“d”用来计算消融支气管肿疡94所需的热能的量。使用内窥镜、腹腔镜、立体导向器或放射性引导,导管能够前进到期望的消融部位。任选地,使用磁性导航,导管能够行进至期望的位置。图10阐释了利用根据本发明一个实施方案的装置对男性泌尿系统中增大的前列腺执行的前列腺消融。阐释了包含增大的前列腺1001、膀胱1002以及尿道1003的男性泌尿生殖道的横截面。尿道1003被增大的前列腺1001挤压。消融导管1005穿过在障碍物远端置于尿道1003中的膀胱镜1004。定位元件1006展开以将导管定位在尿道1003的中央且一个或多个绝热针1007被穿过以刺入前列腺1001。蒸气消融剂1008穿过绝热针1007,因而对患病的前列腺组织进行消融,从而使前列腺收缩。增大的前列腺的尺寸可以使用前列腺内尿道与前列腺外尿道之间的差来计算。标准值可以被用作基准。可以设置用于输注冷却流体进入尿道中的额外端口以防止在消融能量递送至前列腺以进行消融时损伤尿道,从而防止诸如狭窄形成的并发症。在一个实施方案中,定位附件必须与消融区域隔开大于0.1mm、优选lmm到5mm且不超过2cm的距离。在另一个实施方案中,定位附件可以在膀胱中展开,并向后拉入到尿道开口/膀胱颈中,从而固定导管。在一个实施方案中,定位装置的直径在0.1mm到10cm之间。图11阐释了利用根据本发明一个实施方案的消融装置对女性子宫执行的纤维瘤消融。阐释了包含子宫纤维瘤1111、子宫1112以及子宫颈1113的女性泌尿生殖道的横截面。消融导管1115穿过置于子宫内子宫纤维瘤1111远端的子宫镜1114。消融导管1115具有刺穿尖端1120,其有助于刺入子宫纤维瘤1111。定位元件1116展开以将导管定位在纤维瘤的中央,而绝热针1117被穿过以刺穿纤维瘤组织1111。蒸气消融剂1118穿过针1117,因而对子宫纤维瘤1111进行消融,使纤维瘤收缩。图12阐释了根据本发明一个实施方案的利用rf加热器将蒸气供给至消融装置的蒸气递送系统。在一个实施方案中,使用蒸气作为本发明所述的消融装置所使用的消融剂。rf加热器64位于含有液体44的压力器皿42附近。rf加热器64加热器皿42,而器皿42又加热液体44。液体44温度升高并开始蒸发,使器皿42中的压力增大。可以通过提供控制电阻加热器64的热开关46,使器皿42中的压力保持相当恒定。一旦液体44的温度达到预定温度,则热开关46关闭rf加热器64。可以经由控制阀50来释放压力器皿42中所产生的蒸气。当蒸气排出器皿42时,在器皿中产生压力降,使温度降低。热开关46测量到温度降低,且rf加热器64重新开始加热液体44。在一个实施方案中,可以将器皿42的目标温度设置成约108℃,提供连续的蒸气供给。当蒸气被释放时,其经历压力降,压力降使蒸气的温度减小到大约90-100℃。当器皿42中的液体44蒸发且蒸气排出器皿42时,液体44的量缓慢减少。可选地,器皿42经由泵49连接至包含液体44的储器43,在感测到器皿42中的压力或温度降低之后由控制器24启动泵49,以将额外的液体44递送到器皿42。蒸气递送导管16经由流体连接器56连接于器皿42。当控制阀50打开时,器皿42经由连接器56与递送导管16流体相通。控制开关60可用于经由致动器48开启和关闭蒸气递送。例如,控制开关60可以经由致动器48物理地打开和关闭阀50,以控制来自器皿42的蒸气流的递送。开关60可被配置成控制蒸气的其它属性,例如方向、流量、压力、体积、喷射直径或其它参数。作为物理地控制蒸气属性的替代方案或者除物理地控制蒸气属性之外,开关60还可以与控制器24电连通。控制器24控制rf加热器64,而rf加热器64又响应于操作者对开关60的致动来控制蒸气的属性。此外,控制器24可以控制与导管16或器皿42相关联的阀温度或者压力调节器。可以使用流量计52来测量经由导管16递送的蒸气的流量、压力或体积。控制器24控制器皿42中的温度和压力,以及流经控制阀50的蒸气的时间、速率、流量和体积。这些参数由操作者11设定。利用108℃的目标温度,在器皿42中产生的压力可约为25磅每平方英寸(psi)(1.72巴)。图13阐释了根据本发明一个实施方案的利用电阻加热器将蒸气供给至消融装置的蒸气递送系统。在一个实施方案中,将所产生的蒸气用作本发明所述的消融装置所使用的消融剂。电阻加热器40位于压力器皿42附近。器皿42含有液体44。电阻加热器40加热器皿42,而器皿42又加热液体44。因此,液体44加热并开始蒸发。在液体44开始蒸发时,器皿42中的蒸气使器皿中的压力增大。可以通过提供控制电阻加热器40的热开关46,使器皿42中的压力保持相当恒定。当液体44的温度达到预定温度时,热开关46关闭电阻加热器40。可以通过控制阀50来释放压力器皿42中所产生的蒸气。当蒸气排出器皿42时,器皿42经历压力降。器皿42的压力降使温度降低。热开关46测量到温度降低,且电阻加热器40重新开始加热液体44。在一个实施方案中,可以将器皿42的目标温度设置成约108℃,提供连续的蒸气供给。在蒸气被释放时,其经历压力降,压力降使蒸气的温度减小到90-100℃的范围。当器皿42中的液体44蒸发并且蒸气排出器皿42时,液体44的量缓慢减少。器皿42经由泵49连接于包含液体44的另一个器皿43,在感测到器皿42中的压力或温度降低之后由控制器24启动泵49以将额外的液体44递送到器皿42中。蒸气递送导管16经由流体连接器56连接于器皿42。当控制阀50打开时,器皿42经由连接器56与递送导管16流体相通。控制开关60可用于通过致动器48开启和关闭蒸气递送。例如,控制开关60可以通过致动器48物理地打开和关闭阀50,以控制来自器皿42的蒸气流的递送。开关60可被配置成控制蒸气的其它属性,例如方向、流量、压力、体积、喷射直径或其它参数。作为物理地控制蒸气属性的替代方案或者除物理地控制蒸气属性之外,开关60还可以与控制器24电连通。控制器24控制电阻加热器40,而电阻加热器40又响应于操作者对开关60的致动来控制蒸气的属性。此外,控制器24可以控制与导管16或器皿42相关联的阀温度或者压力调节器。可以使用流量计52来测量经由导管16递送的蒸气的流量、压力,或体积。控制器24控制器皿42中的温度和压力,以及流经控制阀50的蒸气的时间、速率、流量和体积。这些参数可以由操作者11设定。利用108℃的目标温度,在器皿42中产生的压力可为约25磅每平方英寸(psi)(1.72巴)。图14阐释了根据本发明一个实施方案的利用加热线圈将蒸气供给至消融装置的蒸气递送系统。在一个实施方案中,所产生的蒸气被用作与本发明所描述的消融装置一起使用的消融剂。蒸气递送系统包括常规的发生器1400,该发生器1400通常用在操作室中以便为专门的工具,即切割器提供动力。发生器1400被改动以包括集成的液体储器1401。在一个实施方案中,储器1401填充有室温纯水。发生器1400的储器1401部分经由可重复使用的活性绳(activecord)1403连接于加热部件1405。在一个实施方案中,可重复使用的活性绳1403可以被使用多达200次。绳1403的两端经由连接件固定附着以经受住操作压力,且优选经受住最大压力,使得绳不会被断开。在一个实施方案中,连接件可抵抗至少1atm的压力。在一个实施方案中,连接件是鲁尔锁型。绳1403具有管腔,液体通过管腔流向加热部件1405。在一个实施方案中,加热部件1405包括卷曲长度的管件1406。当液体流过卷曲管件1406时,液体被周围的加热部件1405以类似于常规的换热器的方式加热。当液体被加热时,液体被气化。加热部件包括连接器1407,其适应来自卷曲管件1406的蒸气的出口。单次使用的绳1408的一端在连接器1407处附接于加热部件1405。连接器1407被设计成经受住由卷曲管件1406内的蒸气在操作期间产生的压力。在一个实施方案中,连接器1407是鲁尔锁型。消融装置1409经由能够经受住系统产生的压力的连接件而被附接于单次使用的绳1408的另一端。在一个实施方案中,消融装置集成有导管。在另一个实施方案中,消融装置集成有探针。单次使用的绳1408具有特定的管腔直径且具有特定的长度以确保所容纳的蒸气不会冷凝成液体,而同时为使用者提供足够的松弛以便于操作。此外,单次使用的绳1408提供足够的绝热,使得相关人员在接触绳时不会被灼伤。在一个实施方案中,单次使用的绳具有小于3mm、优选小于2.6mm的管腔直径以及具有不长于1米的长度。在一个实施方案中,系统包括踏板开关1402,使用者可以通过踏板开关1402将更多的蒸气供给至消融装置。下压踏板开关1402使得液体从储器1401流入加热部件1405中,在此处液体在卷曲管件1406内变成蒸气。接着,蒸气经由单次使用的绳1408流向消融装置。消融装置包括致动器,使用者可以通过致动器打开装置上的小端口,释放蒸气并消融目标组织。图15阐释了根据本发明的实施方案的图14的加热线圈蒸气递送系统的加热部件1505和卷曲管件1506。液体穿过可重复使用的活性绳(未显示)而到达加热部件1505的一侧上的连接件1502处。液体随后行进穿过加热部件1505内的卷曲管件1506。卷曲管件由材料构成且被特别配置成向液体提供最佳的传热。在一个实施方案中,卷曲管件1506是铜。加热部件1505的温度被设定在使得液体在穿过卷曲管件1506时被转化成蒸气的范围内。在一个实施方案中,加热部件1505的温度可以由使用者通过使用温度设定刻度盘1508来设定。在一个实施方案中,加热部件包括开/闭开关1509且通过使用附接的ac电源线1503被供电。在另一个实施方案中,加热部件通过集成入连接至储器的活性绳的和/或由连接至储器的活性绳促进的电连接件接收电。蒸气穿过卷曲管件1506的端并通过连接器1507离开加热部件1505。在一个实施方案中,连接器1507位于加热部件1505的与入口连接件1502相对的侧。单次使用的绳(未显示)附接于连接器1507并将蒸气供给至消融装置。图16a阐释了根据本发明的实施方案的图14的加热线圈蒸气递送系统的消融装置1608和单次使用的绳1601之间未组装的界面连接。在此实施方案中,消融装置1608和单次使用的绳1601经由凸对凸双鲁尔锁适配器1605来连接。单次使用的绳1601的端被螺纹连接以形成鲁尔锁界面的凹端1602且连接至适配器1605的一端。消融装置1608在其非操作端包括小突起,该小突起也被螺纹连接以形成鲁尔锁界面的凹端1607且连接至适配器1605的另一端。螺纹连接的鲁尔锁界面提供了牢固的连接且能够经受住加热线圈蒸气递送系统产生的压力而不会断开。图16b阐释了根据本发明的实施方案的图14的加热线圈蒸气递送系统的消融装置1608和单次使用的绳1601之间组装的界面连接。描绘了凸对凸的双鲁尔锁适配器1605将两个部件固定在一起。双鲁尔锁界面提供了稳定的密封,允许消融装置之间的可互换性,且能够使使用者快速替换单次使用的绳。图17阐释了根据本发明的另一个实施方案的利用加热器或换热器单元将蒸气供给至消融装置的蒸气消融系统。在所描绘的实施方案中,用于转化成蒸气的水被供给在一次性的、单次使用的无菌流体容器1705中。容器1705被无菌螺旋盖1710密封,设置在第一过滤器构件1720的第一端上的连接器1715刺穿无菌螺旋盖1710。第一过滤器构件1720的与第一端相对的第二端被连接至泵1725,以便从流体容器1705抽吸水,穿过第一过滤器构件1720,然后进入加热器或换热器单元1730。系统包括微控制器或微处理器1735,以便控制泵1725和加热器或换热器单元1730的作用。加热器或换热器单元1730将水转化成蒸气(蒸汽)。在加热步骤期间产生的压力的增加驱动蒸气穿过任选的第二过滤器构件1740并进入消融导管1750。在一个实施方案中,加热器或换热器单元1730在其近端包括单向阀以防止蒸气返回泵1725。在多个实施方案中,靠近导管1750的远端设置的任选的传感器1745测量蒸气的温度、压力或流量中的一个或多个并将信息发送至微控制器1735,微控制器1735又控制泵1725的速率和由加热器或换热器单元1730提供的气化能量的水平。图18阐释了图17的蒸气消融系统的流体容器1805、第一过滤器构件1820以及泵1825。正如在所描绘的实施方案中看到的,系统包括水填充的、一次性的、单次使用的无菌流体容器1805和泵1825,且其间设置有第一过滤器构件1820。第一过滤器构件1820通过两个,分别是第一长度的无菌管件1807和第二长度的无菌管件1822被连接至容器1805和泵1825,且包括用于净化消融系统中使用的水的过滤器。图19和20分别阐释了图17的蒸气消融系统的流体容器1905、2005,第一过滤器构件1920、2020,泵1925、2025,加热器或换热器单元1930、2030以及微控制器1935、2035的第一和第二视图。容器1905、2005通过第一长度的无菌管件1907、2007连接至第一过滤器构件1920、2020且第一过滤器构件1920、2020通过第二长度的无菌管件1922、2022连接至泵1925、2025。第三长度的无菌管件1927、2027将泵1925、2025连接至加热器或换热器单元1930、2030。微控制器1935、2035通过第一组控制线1928、2028可操作地连接至泵1925、2025且通过第二组控制线1929、2029可操作地连接至加热器或换热器单元1930、2030。箭头1901、2001描绘了水从容器1905、2005穿过第一过滤器构件1920、2020和泵1925、2025并进入加热器或换热器构件1930、2030流动的方向,水在加热器或换热器构件1930、2030中被转化成蒸气。箭头1931、2031描绘了蒸气从加热器或换热器单元1930、2030进入使用在消融过程中的消融导管(未显示)的流动方向。图21阐释了图17的蒸气消融系统的未组装的第一过滤器构件2120,描绘了设置在其内的过滤器2122。在一个实施方案中,第一过滤器构件2120包括近端部分2121、远端部分2123以及过滤器2122。近端部分2121和远端部分2123固定在一起并将过滤器2122容纳在其内。图21还描绘了一次性的、单次使用的无菌流体容器2105以及将容器2105连接至第一过滤器构件2120的近端部分2121的第一长度的无菌管件2107。图22阐释了图17的蒸气消融系统的微控制器2200的一个实施方案。在多个实施方案中,微控制器2200包括连接至泵和加热器或换热器单元以便控制所述部件的多根控制线2228和用于接收来自靠近消融导管的远端设置的光学传感器的流量、压力以及温度信息的多根传输线2247。图23阐释了与图17的蒸气消融系统一起使用的导管组件2350的一个实施方案。蒸气经由附接于组件2350的连接器部件2352的近端的管2348被从加热器或换热器单元递送至导管组件2350。在其远端具有固定附接的一次性长度的柔性管件2358的一次性导管2356被装配到连接器部件2352上。第二过滤器构件2354被设置在连接器部件2352与一次性导管2356之间以便净化由加热器或换热器单元供给的蒸气。连接器部件2352在其远端包括以短的距离隔开设置的两个垫圈2353以接合覆盖的一次性导管2356并形成双级密封,由此防止蒸气在部件之间渗漏。一旦一次性导管2356被装配到连接器部件2352的远端,导管连接器2357在一次性柔性管件2358和一次性导管2356上滑动,且然后被咬合到连接器部件2352上的位置。导管连接器2357起到使一次性导管2356保持在合适位置的作用且还有助于防止蒸气渗漏。在多个实施方案中,一次性柔性管件2358在其远端或接近远端处包括一个或多个孔洞或端口2359以便将消融蒸气递送至目标组织。图24阐释了与图17的蒸气消融系统一起使用的换热器单元2430的一个实施方案。换热器单元2430包括由加热元件2434围绕的一定长度的卷曲管件2435。水2432在接近所述换热器单元2430的第一端的入口端口2433处进入换热器单元2430的卷曲管件2435。当水2432在卷曲管件2435内流动时,水通过从已经被加热元件2434加热的所述卷曲管件2435散发的热被转化成蒸气(蒸汽)2438。蒸气2438在靠近所述换热器单元2430的第二端的出口端口2437处离开换热器单元2430的卷曲管件2435且然后被递送至用于消融过程的消融导管(未显示)。图25阐释了与本发明的蒸气消融系统一起使用的换热器单元2560的另一个实施方案。在所描绘的实施方案中,换热器单元2560包括圆柱形的、钢笔尺寸的“蛤壳”型加热块。换热器单元2560的加热块包括沿着一侧通过铰链2563牢固附接的第一半部分2561和第二半部分2562,其中半部分2561、2562折叠在一起且连接在相对的侧上。在一个实施方案中,半部分的与具有铰链的侧相对的侧包括用于将两个半部分保持在一起的夹具。在一个实施方案中,其中一个半部分包括用于操纵换热器单元2560的手柄2564。当两个半部分折叠在一起时,换热器单元2560紧贴地包封圆柱形的导管流体加热室2551,圆柱形的导管流体加热室2551附接于消融导管2550的近端,与该近端排成一排且与该近端流体相通。换热器单元2560的每一个半部分2561、2562包括用于加热块的多个加热元件2565。加热块的定位和装配使其置于与导管流体加热室2551紧密热接触。当在操作中时,加热元件2565加热该加热块,加热块将热传递至导管流体加热室2551,导管流体加热室2551又加热室2551内的水,将所述水转化成蒸气。加热块并不直接接触水。在一个实施方案中,导管流体加热室2551包括多个线性凹陷2591,其沿着部件的长度拉伸且与加热元件2565平行。当闭合半部分2561、2562时,任选地从半部分2561、2562的内表面突起的加热元件2565接触线性凹陷2591且装配在线性凹陷2591内。这也增大了加热块与加热元件之间的接触表面积,提高了换热的效率。鲁尔装配联接器2549被设置在导管流体加热室2551的近端处以便连接供给无菌水的管。在一个实施方案中,单向阀被包括在导管流体加热室2551的近端处,鲁尔装配件2549的远侧,以防止蒸气在压力下传输向水源。如上所述,导管流体加热室被设计成消融导管的一部分,且与导管的其余部分一起是单次使用的和一次性的。在另一个实施方案中,室是可重复使用的,在这种情况下,鲁尔装配件被定位在导管轴与室之间。加热块被设计成使用时与加热室轴向对准,是可重复使用的且不会在其掉落地面时损坏。在一个实施方案中,加热块的重量和尺寸被设计成使得其可以被集成到消融导管的钢笔尺寸和形状的手柄内。手柄是绝热的以防止操作者受伤。在一个实施方案中,加热块从操纵台接收其动力,操纵台本身被线路供电且设计成提供700-1000w的功率,由流体气化速率决定。加热块和所有输出连接件是与线电压电绝缘的。在一个实施方案中,操纵台包括用户界面,这允许调节功率与流体流速匹配。此外,在一个实施方案中,泵诸如注射泵被用于控制流体到加热室和加热元件的流动。在一个实施方案中,注射体积是至少10ml且理想地是60ml。在上述实施方案中,与蒸气消融系统一起使用的导管使用预期使成本最低的材料来设计。在一个实施方案中,与导管一起使用的管件能够经受住至少125℃的温度且可以弯曲通过内窥镜的弯曲半径(约1英寸)而不会缩陷。在一个实施方案中,导管的穿过内窥镜的截面是7弗伦奇(2.3mm)直径且具有215cm的最小长度。在一个实施方案中,由导管轴材料来提供抗热性,导管轴材料遮蔽内窥镜免受超热的蒸气温度。在一个实施方案中,换热器单元被设计成与内窥镜的活组织检查通道直接接触或非常接近活组织检查通道以使医护人员处置受热部件的可能性最小。使换热器单元非常接近内窥镜手柄也使蒸气需要行进穿过的导管的长度最短,因而使热损失和预先冷凝最少。在多个实施方案中,其他装置用于加热导管流体加热室内的流体。图26阐释了利用感应加热来加热室2605。当交流电流穿过室2605内的线的线圈时,线圈产生磁场。通量2610的磁线切过围绕线圈的空气。当室2605包括含铁材料诸如铁、不锈钢或铜时,称为涡流电流的电流被引起在室2605内流动,导致局部加热室2605。图27a阐释了在本发明的蒸气消融系统中与感应加热一起使用的线圈2770的一个实施方案。线圈围绕导管流体加热室2751定位。穿过线圈的交流电流产生磁场并导致导管流体加热室2751加热。受加热的室加热其内的流体,将流体转化成蒸气,蒸气进入导管2750用于消融过程。线圈本身并不加热,这使得其触摸安全。鲁尔装配联接器2749被设置在导管流体加热室2751的近端处用于连接供给无菌水的管。在一个实施方案中,单向阀(未显示)被包括在导管流体加热室2751的近端处,鲁尔装配件2749的远侧,以防止蒸气向水源传输。在一个实施方案中,绝热材料(未显示)被设置在线圈2770与加热室2751之间。在另一个实施方案中,室2751被悬浮在线圈2770的中心,且两者之间没有物理接触。在此实施方案中,其间的空气起到绝热材料的作用。优化室的设计以增大其表面积以使接触和传热最大,这又导致更有效率的蒸气产生。图27b阐释了在本发明的蒸气消融系统中与感应加热一起使用的导管手柄2772的一个实施方案。手柄2772是绝热的且结合了感应线圈。在一个实施方案中,手柄2772在其远端包括绝热的尖端2773,在导管插入到内窥镜中后,绝热的尖端2773接合内窥镜通道。导管2750连接于加热室2751,加热室2751又经由绝热连接器2774与泵连接。在一个实施方案中,加热室2751的长度和直径小于手柄2772和感应线圈的长度和直径,因而加热室2751可以以同轴方式在手柄2772内滑动,同时在由感应线圈产生的磁场内保持恒定位置。操作者可以通过抓握绝热连接器2774并将导管2750移入和移出手柄2772来操纵导管2750,这又移动导管尖端进入和离开内窥镜的远端。在此设计中,导管2750的受热部分在内窥镜的通道内且在绝热的手柄2772内,因而在操作期间的任何时候都不会接触操作者。绝热的尖端2773上的任选的传感器2775可以感测导管何时未接合内窥镜且暂时使导管的加热功能失效以防止意外激活和对操作者的热损伤。关于图27b,导管2750和加热室2751是系统的受热部件,而手柄2772、绝热的尖端2773以及绝热连接器2774是冷部件且因此使用者触摸安全。图28a和28b分别是阐释了在本发明的蒸气消融系统中与感应加热一起使用的导管2880的一个实施方案的前视和纵向截面示意图。导管2880包括绝热的手柄2886,绝热的手柄2886包括加热室2851和感应线圈2884。加热室2851在其近端包括鲁尔锁2849。鲁尔锁2849具有防止蒸气从室2851回流的单向阀。流体在室内的气化导致体积膨胀且压力升高,这推动蒸气离开室2849并进入导管本体。感应线圈2884包括从导管2880的近端延伸的线2886以便递送交流电流。手柄2886连接于导管2880,具有由绝热材料制得的外部绝热鞘2881。在多个实施方案中,绝热材料是聚醚醚酮(peek)、聚四氟乙烯(ptfe)、氟化乙烯丙烯(fep)、聚醚嵌段酰胺(peba)、聚酰亚胺或类似材料。在多个实施方案中,靠近导管2880的远端定位的任选的传感器2887测量蒸气的温度、压力或流量中的一个或多个并将信息发送至微处理器,微处理器又控制流体的流速和提供给室2851的气化能。微控制器基于所感测到的信息调节流体流速和室温度,由此控制蒸气的流量且又控制流向目标组织的消融能量。在一个实施方案中,导管2880包括内部柔性的金属骨架2883。在多个实施方案中,骨架2883包括铜、不锈钢或其他含铁材料。骨架2883与加热室2851热接触,使得来自室2851的热被动传导通过金属骨架2883以加热导管2880的内部,因而维持呈气化状态且相对恒定温度的蒸汽。在多个实施方案中,骨架2883延伸穿过导管2880的特定部分或整个长度。在一个实施方案中,骨架2883包括以规律间隔的肋片2882,其保持骨架2883在导管2880的中心以便均匀地加热导管管腔。在另一个实施方案中,如图28c所示,导管包括代替骨架的内部金属螺旋物2888。在又一个实施方案中,如图28d所示,导管包括代替骨架的内部金属网格2889。同时参考图28b、28c以及28d,水2832以预定的速率进入鲁尔锁2849。水在加热室2851内被转化成蒸气2838。金属骨架2883、螺旋物2888以及网格2889均从加热室2851传导热进入导管管腔中以防止蒸气在导管内冷凝并确保消融蒸气将从其远端处的一个或多个孔洞或端口排出导管。图29阐释了在本发明的蒸气消融系统中使用微波2991将流体转化成蒸气的加热单元2990的一个实施方案。微波2991被引向导管流体加热室2951,加热室2951并将其内的流体转化成蒸气。蒸气进入导管2950以便用于消融过程。鲁尔装配联接器2949被设置在导管流体加热室2951的近端以便连接供给无菌水的管。在一个实施方案中,单向阀(未显示)被包括在导管流体加热室2951的近端,鲁尔装配件2949的远侧,以防止蒸气向水源传输。在多个实施方案中,其他能源诸如高强度聚焦超声(hifu)和红外能被用于加热导管流体加热室内的流体。利用加热线圈的蒸气递送系统的一个优势在于蒸气更靠近使用位置来产生。常规的蒸气递送系统通常靠近系统内的储存液体的位置或就在此位置处产生蒸气。在到达使用位置之前,蒸气于是必须穿过较长长度的管件,有时超过2米。由于行进的距离,因而当蒸气在管件内从环境温度冷却时,系统有时候可以递送热的液体。本发明的装置和方法可用来以可重新形成上皮的完全治愈方式使目标组织受控的集中或外周消融至变化的深度。另外,蒸气可以用于治疗/消融良性和恶性组织生长,导致消融组织的破坏、液化和吸收。可以基于组织的类型和所需消融的深度来调节治疗的剂量和方式。该消融装置不仅可以用于治疗巴雷特食管和食管发育不良、扁平结肠息肉、胃肠出血病变、子宫内膜消融、肺部消融,还可以用于治疗任何粘膜、粘膜下层或外周病变,例如炎性病变、瘤、息肉和脉管病变。消融装置还可用于治疗身体中任何空器官或中空身体通道的病灶或外周粘膜或粘膜下层病变。中空器官可以是胃肠道、胰腺道、生殖道、呼吸道或诸如血管等脉管结构中的一种。消融装置可以通过内窥镜、放射线、外科手术方式或直接目测地布置。在多个实施方案中,可以将无线内窥镜或单纤维内窥镜并入为装置的一部分。在另一个实施方案中,磁性导航或立体引导导航可以用于引导导管至期望的位置。射线透不过的或超声透过的材料可以并入导管本体内,用于放射性局部化。含铁材料或磁铁材料可以并入导管中以有助于磁性导航。尽管在本文中已经描述和阐释了本发明的示例性实施方案,然而应该理解的是,这些实施方案仅仅是出于说明的目的。本领域的技术人员应该知道,在不脱离本发明的精神和范围的情况下,还可以对形式和细节进行各种变形。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1