基于钛酸铝且包括玻璃相的陶瓷体的制作方法

文档序号:1836808阅读:805来源:国知局
专利名称:基于钛酸铝且包括玻璃相的陶瓷体的制作方法
背景技术
本发明涉及基于钛酸铝的陶瓷体及其制备方法,所述陶瓷体在高温应用中具有改进的性质。具体来说,本发明涉及一种陶瓷体,该陶瓷体包含钛酸铝或钛酸铝-富铝红柱石的晶相以及碱金属或碱土金属的铝硅酸盐的玻璃相,对热分解和热循环生长或尺寸完整性的变化具有很高的抗性。
人们已经提出将钛酸铝用于高温用途,例如用作柴油机微粒过滤器和催化转化器的基材,本领域中众所周知的一个这方面的例子是蜂窝体基材(honeycomb substrate)。另外,在具有很高抗热冲击性和极限使用温度的应用中使用钛酸铝是有利的。这种应用的例子是用于高热梯度条件下的蜂窝状基材。通常例如这样的结构会经受严酷环境,需要它们具有高抗热冲击性、低热膨胀和良好的机械性质。另外,所述陶瓷材料必须在长时间经受高温处理之后,仍保持这些所需的性质,在所需的温度范围内进行反复的循环之后,其尺寸完整性不会发生显著的变化。
本领域中已知钛酸铝在长时间经受高温的情况下会分解成氧化铝和二氧化钛,如果包含稀土氧化物和氧化铁,可以为连续的高温应用提供稳定性(美国专利第4,483,944号和第4,855,265号)。但是,包含钛酸铝的蜂窝体基材的一个最大的难题是在高温下反复循环之后的热循环生长或尺寸变化。美国专利第4,767,731号指出通过将玻璃相的含量保持在小于5%,可以提高富铝红柱石-钛酸铝陶瓷体抵抗热循环的耐久性。
本发明发现,向基于钛酸铝的陶瓷体中加入惊人大量的玻璃对热循环生长(thermal cycling growth)具有有益的影响,如果加入Fe2O3形成Fe2TiO5相作为钛酸铝中的稳定剂,除非加入量极少,否则都会使情况恶化。然后可以将钛酸铝与碱金属或碱土金属铝硅酸盐玻璃的组合挤出并烧结,形成蜂窝体结构。所得的结构制得具有减小的热循环生长和良好的热耐久性的产品。

发明内容
本发明涉及包含50-95重量%的钛酸铝晶相和5-50重量%的玻璃相的陶瓷体。除了所述钛酸铝相以外,本发明的陶瓷体可任选包含最高40重量%的次要晶相,例如富铝红柱石。
玻璃是铝硅酸盐,以氧化物重量百分数为基准计,其包含50-90重量%的SiO2、1-25重量%的Al2O3、0.5-10重量%的TiO2、0.5-20重量%的R2O和0.5-20重量%的R’O,其中R选自Li、Na、K、Ru、Cs、Fr,R’选自Be、Mg、Ca、Ba、Ra,所述陶瓷体包含不超过2重量%的Fe2O3。
加入玻璃提高了钛酸铝相在高温下对热分解的耐受性,减小了热循环过程中的尺寸生长。具体来说,本发明的陶瓷体对热分解具有高耐受性,其表现为在1100℃加热100小时之后,二氧化钛(TiO2)(晶面间距(d-spacing)为3.25)与钛酸铝(Al2O3-TiO2)(晶面间距4.70、3.35、2.65和1.90的平均值)的峰比例小于100%。低热循环生长表现为当所述陶瓷体在200℃-1100℃进行至少200次热循环(10分钟内从200℃升温至1100℃,然后在10分钟内从1100℃冷却至200℃)之后,线性尺寸生长小于0.5%。
其它优点可包括通过控制钛酸铝相的晶粒生长提高陶瓷体的强度,减小热膨胀系数(CTE),控制微裂纹的程度和降低烧结温度。
在形成本发明的陶瓷体的方法中,首先配制了包含以下组分的原料批料二氧化硅源、氧化铝源、二氧化钛源、碱金属源、碱土金属源以及任选的成孔剂。然后将该无机原料批料与包括润滑剂、粘合剂、增塑剂等的有机加工助剂以及作为溶剂的水混合起来,形成均一而增塑的混合物。将该增塑的混合物成形制成生料体,成形通常是通过挤出来进行的,例如施加压力使所述批料通过合适的模头,该模头通常是蜂窝体模头。将所述生料体任选地干燥,然后加热至一定温度,加热一段时间,形成陶瓷体。通常烧制温度为1350-1650℃,保持时间为6-10小时。
本发明的陶瓷体适用于其中需要高抗热冲击性、低热循环生长和组成完整性的高温应用。这些应用的例子包括催化转化器基材和柴油机微粒过滤器。
附图简述结合以下详述,参见附图,可以全面地理解本发明,图中

图1比较了钛酸铝-富铝红柱石陶瓷体的热循环生长随热循环的变化情况,一些所述陶瓷体包含加入的Fe2O3和/或玻璃,所述热循环是指在10分钟内从200℃加热至1100℃,然后在相近的时间内从1100℃冷却至200℃;图2是显示包含95重量%的钛酸铝和5重量%的玻璃(玻璃Y)的本发明陶瓷体(实施例8)的代表性微观结构的扫描电子显微(SEM)照片;图3显示样品1-6在加热至1550℃,并在该温度保持8小时之后,二氧化钛(TiO2)(晶面间距3.25)与钛酸铝(Al2O3-TiO2)(晶面间距4.70、3.35、2.65和1.90的平均值)的X射线衍射峰比值随玻璃X的重量百分比的变化;图4显示显示样品1-3在加热至1100℃,并在该温度保持100小时之后,二氧化钛(TiO2)(晶面间距3.25)与钛酸铝(Al2O3-TiO2)(晶面间距4.70、3.35、2.65和1.90的平均值)的X射线衍射峰比值随玻璃X的重量百分比的变化;图5显示了全都包含玻璃相的样品4-6以及不含玻璃相的样品7的热循环生长随热循环次数的变化情况,所述热循环是指在10分钟内从200℃加热至1100℃,然后在相同的时间内从1100℃冷却至200℃。
发明详述图1显示了加入的Fe2O3和玻璃对钛酸铝-富铝红柱石陶瓷体的热循环生长的影响。将热循环生长对热循环次数的变化关系作图,所述热循环是指在10分钟内从200℃加热至1100℃,然后在相同的时间内从1100℃冷却至200℃。所有的例子都包含70重量%的钛酸铝(AT)和30重量%的富铝红柱石(M)。对于例子B、C和D,用Fe2TiO5代替1重量%、3重量%和9重量%的钛酸铝相。例子E还包含10重量%的玻璃相。对于例子F,用Fe2TiO5代替9重量%的钛酸铝相。例子F还包含10重量%的玻璃相。以氧化物为基准计,所述玻璃相主要包含74.87重量%的SiO2,18.97重量%的Al2O3,2.00重量%的TiO2,1.16重量%的Na2O,1.99重量%的CaO和1.00重量%的K2O。
如果所加入的用于形成Fe2TiO5的Fe2O3的量较多,则热循环生长会增加。另外,在Fe2O3的存在下,玻璃会使该生长趋势进一步增大。因此,需要限制甚至消除钛酸铝基陶瓷中的Fe2O3含量以将热循环生长减至最小,当存在玻璃相的时候尤为如此。在例子D中观察到了最低的热循环生长,例子D是由70重量%的钛酸铝和30重量%的富铝红柱石组成的陶瓷体,包含90重量%的晶相和10重量%的玻璃。还观察到该例子需要较低的烧制或烧结温度。
另外,例子D在进行热循环之后的热膨胀系数(CTE)仍保持与发生热循环之前的CTE相近,这说明几乎没有发生热分解。因此,向包含少量Fe2O3的钛酸铝陶瓷体中加入玻璃相可以限制热循环生长,提供抗热分解能力。
因此,本发明提供了一种陶瓷体,该陶瓷体主要包含50-95重量%的晶相钛酸铝(Al2O3-TiO2),还包含5-50重量%的加入的玻璃相。所述陶瓷体可包含最高2重量%的Fe2O3。但是,较高的量对热循环生长和热分解具有负面影响。所述陶瓷体还可包含其它的次级晶相,例如最高40重量%的富铝红柱石(3Al2O3-2SiO2)。
所加入的玻璃是铝硅酸盐,以氧化物重量百分数为基准计,其组成主要包含50-90重量%的SiO2,1-25重量%的Al2O3,0.5-10重量%的TiO2,0.5-20重量%的R2O和0.5-20重量%的R’O,其中R选自Li,Na,K,Ru,Cs,Fr,R’选自Be,Mg,Ca,Ba和Ra。以氧化物的重量百分数为基准计,有用的玻璃主要包含70-80重量%的SiO2,15-22重量%的Al2O3,1-3重量%的TiO2,0.5-5重量%的Na2O,0.5-5重量%的CaO,0.5-5重量%的K2O。以氧化物的重量百分数为基准计,另一种有用的玻璃主要包含50-70重量%的SiO2,10-20重量%的Al2O3,5-20重量%的Na2O,5-20重量%的K2O。
除了在高温下的低热循环生长和极佳的热分解以外,本发明的陶瓷体具有高耐火性,还具有小于20×10-7℃-1(由膨胀计测定法测得)的低热膨胀系数(CTE)(室温(RT)至1000℃)。因此,本发明的材料特别适用于汽车排放物控制系统之类的高温用途。
另外,图2是本发明代表性的陶瓷体(即下述例子8)的SEM显微照片,该陶瓷体包含95重量%的钛酸铝和5重量%的玻璃,以氧化物为基准计,所述玻璃主要包含62.01重量%的SiO2,17.54重量%的Al2O3,10.94重量%的Na2O和9.51重量%的K2O(玻璃Y),图2说明所述陶瓷体具有贯通良好的孔隙率,具有均匀的孔隙分布。这种孔隙率和孔径分布的组合非常有利于需要低背压的应用。这些用途的例子包括柴油机微粒过滤器和催化的柴油机微粒过滤器。对于这种应用,对性质进行调节,使得孔隙率为40-55%(通过水银孔隙率法测定),中值孔径为5-20微米,CTE(室温-1000℃)小于15×10-7℃-1。
柴油机微粒过滤器通常是具有端部堵塞的蜂窝体的壁流过滤器。蜂窝体基材还可用于汽车催化转化器用途。从特征上来说,蜂窝体结构具有相对的进口端和出口端,以及从进口端延伸到出口端的大量孔道,这些孔道具有多孔性的壁。对于壁流过滤器,其中部分的孔道在进口端沿其一部分长度被堵塞,余下部分的孔道在进口端敞开,而在出口端沿其一部分长度被堵塞。
这种堵塞结构使得从进口端到出口端流经蜂窝体孔道的发动机废气流流入敞开的孔道,通过孔壁,然后在出口端通过开放的孔道离开该结构。柴油机微粒过滤器的孔密度宜为70孔/平方英寸(10.9孔/平方厘米)至800孔/平方英寸(124孔/平方厘米)。
蜂窝体结构是通过将陶瓷材料的增塑的批料挤压通过蜂窝体模头而形成的。在本发明的方法中,批料由某些无机原料制备,这些无机原料配制在一起,形成晶相。根据所含的相,原料可包含二氧化硅源、氧化铝源、二氧化钛源等。
如上所述,本发明的陶瓷体包含玻璃相。玻璃相可通过以下步骤形成通过众所周知的形成方法形成所需的玻璃,将其碾碎形成粉末,然后在制备批料的时候将其与无机原料干混合。或者将形成玻璃的原料与形成晶相的原料混配起来,在之后的烧结步骤中形成玻璃。
将无机原料进一步与有机加工助剂和作为溶剂的水相混合,所述有机加工助剂可包括增塑剂、润滑剂、粘合剂。形成均一而增塑的混合物,然后对其进行成形,制成生料体(例如上述蜂窝体结构),所述成形操作通常是使用挤出之类的众所周知的方法完成的。
可能需要为原料提供成孔剂,以调节用于柴油机微粒过滤器用途的孔隙率和中值孔径。石墨或聚乙烯珠粒适用于该目的。成孔剂是短效的材料,这种材料会在对生料体进行干燥或加热时通过燃烧而蒸发,从而制得更高的孔隙率和/或更粗的中值孔径。
适用于本发明的无机原料是能够形成所需的晶相的原料。对于钛酸铝相,需要氧化铝和二氧化钛。合适的氧化铝包括纯氧化铝,α-氧化铝,γ-氧化铝或ρ-氧化铝之类的过渡型氧化铝,水合氧化铝,三水铝石,勃姆石,氢氧化铝,以及它们的混合物。通常氧化铝材料的粒度最高可为25微米。二氧化钛源是金红石,但是其它的二氧化钛源也同样适用。所述二氧化钛原料的中值孔径不大于20微米,以免未反应的氧化物被结构中快速生长的晶核所包覆。
本发明的陶瓷体可包含其它的晶相。在一个实施方式中,除了包含主要的钛酸铝相以外,还包含最高40重量%的富铝红柱石次要相。富铝红柱石是具有化学式3Al2O3-2SiO2所表示的化学计量比的铝硅酸盐。因此原料批料中必须使用二氧化硅。合适的二氧化硅源包括石英,方英石,高岭土,非晶态二氧化硅(例如熔凝硅石或溶胶-凝胶二氧化硅),硅氧烷树脂,沸石和硅藻土。二氧化硅的粒度通常最高为30微米。根据最终产物结构中所需的晶相,可使用其它的无机原料。
将所述无机原料与有机加工助剂(例如甲基纤维素粘合剂)和油酸/三乙醇胺表面活性剂相混合,形成增塑且均一的混合物。通常通过任意常规的方法将这样形成的混合物成形制成生料(未烧制的)体,但是通常成形方法是施加压力使所述混合物通过挤出模头,形成蜂窝体结构。
所得的生料体任选地进行干燥,然后在1350-1650℃的温度下,在各种温度间隔进行加热,在最高温度下保持6-10小时以进行烧结。烧制之后,将用于柴油机微粒过滤应用的蜂窝体结构的端部堵塞,使得该结构的每个孔道在进口端或出口端被堵塞、而非两端都被堵塞。通常特定端部的孔道以棋盘格的图案每隔一个进行堵塞。
通过以下实施例更充分地说明本发明。
实施例表I提供了用于样品1-7的份数和比例。样品1-6包含具有表II所示组成的玻璃相(玻璃X)。该玻璃根据已知的技术在1600℃熔融,然后研磨成粉末(-325目)。
在研磨机中对包含无机原料、制成粉末的玻璃和甲基纤维素粘合剂的干组分进行干混合。然后在连续混合过程中缓慢地加入油酸和大约20重量%的水,以提供均一化和增塑。
然后将增塑的混合物挤出通过蜂窝体模头进行成形,形成孔道密度约为200孔/英寸2、壁厚约为0.016英寸的蜂窝体。将这样形成的蜂窝体切割成所需的长度,在85℃的烘箱内加热干燥。然后在电炉内,在1350-1650℃的温度下,在各种温度间隔下对这些样品进行烧制,保持时间为6-10小时,通过切断电炉的电源来进行冷却。
然后测试这些样品的热循环生长和热分解。热循环试验在空气中进行,红外加热,强制空气冷却,循环温度为200-1100℃,总循环时间为10分钟。分解试验在空气中进行,在电阻加热炉内特定温度下进行特定的时间。
图3显示样品1-6在1550℃加热8小时之后,二氧化钛(TiO2)(晶面间距3.25)与钛酸铝(Al2O3-TiO2)(晶面间距4.70、3.35、2.65和1.90的平均值)的X射线衍射峰比值。在相同的烧制温度下,随着玻璃的含量增加,未反应的二氧化钛的含量减小。因此,在具有较高玻璃含量的时候,该反应能够更完全地完成,因此可采用较短的烧制时间和/或较低的烧制温度。
图4显示样品1-3在1100℃加热100小时之后,二氧化钛(TiO2)(晶面间距3.25)与钛酸铝(Al2O3-TiO2)(晶面间距4.70、3.35、2.65和1.90的平均值)的X射线衍射峰比值。实施例1中几乎全部的钛酸铝都分解为氧化铝和二氧化钛。与之相反,分别包含5重量%和10重量%的玻璃的样品2和3在进行相同的处理之后具有较少的钛酸铝分解,玻璃含量最高的样品3中的分解最少。对于最佳的抗热分解性能,需要玻璃含量至少为5重量%。不推荐玻璃含量大于50%,以保持钛酸铝有益的性质。
图5显示样品4-6和样品7的热循环生长随热循环次数的变化,所述热循环是指在10分钟内从200℃加热至1100℃,然后在相同的时间内从1100℃冷却至200℃。样品4-6包含70重量%的钛酸铝主要晶相,以及30重量%的富铝红柱石次要晶相,玻璃相的含量分别为1重量%,5重量%和10重量%。样品7包含67重量%的钛酸铝,30重量%的富铝红柱石和3重量%的FeTiO5,但是不含玻璃相。如图所示,样品7的尺寸生长最大,样品4-6中的玻璃相抑制了热循环生长。
表III提供了样品8的份数和比例,所制备的样品8包含5重量%的玻璃Y,其组成列于表IV。使用与制备上述样品1-7相同的方法来制备样品8。样品8的烧制在1200℃下进行4小时,在1500℃进行6小时。
表III还包括在样品8上测得的性质。其包括在与孔道密度为200孔/英寸2、壁厚0.016英寸的蜂窝体孔道平行的方向上切割的多孔棒上测得的断裂模量,其单位为磅/英寸2(psi),孔隙率用水银孔隙率法测量,单位为体积%,中值孔径用水银孔隙率法测量,单位为微米,热膨胀用膨胀计测定法测量,单位为10-7/℃。
上文简短描述的图2是样品8的SEM显微照片。如图所示,该微观结构包括贯通良好的空隙率,具有均匀的孔分布,当用于汽车废气过滤时,孔隙率和孔径均匀分布的组合提供了压降方面的明显优点。在热分解测试中,样品8的组合物满足了柴油机过滤用途所需的低CTE和低热循环生长要求。在包括300个热循环的热循环测试中,样品8的热循环生长小于0.25%,所述热循环是指在10分钟内从200℃加热至1000℃,然后在相同的时间内从1000℃冷却至200℃。另外,样品8在进行热循环之后,未观察到CTE变化和显著的强度损失(3.6%)。
应当理解,尽管已经结合本发明的某些例子和具体实施方式
详细描述了本发明,但是本发明不限于此,可以在不背离本发明精神和所附权利要求书范围的前提下以其它的方式实施本发明。
表I.样品1-7的组成,批料组分和处理条件。

表II.玻璃X的组成

表III.样品8的组成,批料组分,处理条件和性质。

表IV.玻璃Y的组成

权利要求
1.一种陶瓷体,其包含50-95重量%的钛酸铝晶相和5-50重量%的玻璃相,所述玻璃是铝硅酸盐,以氧化物重量百分数为基准计,该玻璃基本上由下列组分组成50-90重量%的SiO2,1-25重量%的Al2O3,0.5-10重量%的TiO2,0.5-20重量%的R2O和0.5-20重量%的R’O,其中R选自Li,Na,K,Ru,Cs,Fr,R’选自Be,Mg,Ca,Ba,Ra,所述陶瓷体包含不大于2重量%的Fe2O3。
2.如权利要求1所述的陶瓷体,其特征在于,该陶瓷体任选包含最高40重量%的富铝红柱石第二晶相。
3.如权利要求1所述的陶瓷体,其特征在于,所述铝硅酸盐玻璃基本上由下列组分组成70-80重量%的SiO2,15-22重量%的Al2O3,1-3重量%的TiO2,0.5-5重量%的Na2O,0.5-5重量%的CaO,0.5-5重量%的K2O。
4.如权利要求1所述的陶瓷体,其特征在于,所述铝硅酸盐玻璃基本上由下列组分组成50-70重量%的SiO2,10-20重量%的Al2O3,5-20重量%的Na2O,5-20重量%的K2O。
5.如权利要求1所述的陶瓷体,其特征在于,该陶瓷体具有用在1100℃加热100小时之后二氧化钛(TiO2)(晶面间距为3.25)与钛酸铝(Al2O3-TiO2)(晶面间距4.70、3.35、2.65和1.90的平均值)的峰比例小于100%表征的高抗热分解性能。
6.如权利要求1所述的陶瓷体,其特征在于,该陶瓷体具有用陶瓷体在经历了至少200个热循环之后线性尺寸生长小于0.5%表征的低热循环生长,所述热循环是指10分钟内从200℃升温至1100℃,然后在10分钟内从1100℃冷却至200℃。
7.如权利要求1所述的陶瓷体,其特征在于,该陶瓷体在室温至1000℃的热膨胀系数小于20×10-7℃-1。
8.一种柴油机微粒过滤器,该过滤器包括如权利要求1所述的陶瓷体,并具有壁流蜂窝体过滤器主体,该主体包括多个从主体前部进口端向其出口端横贯该主体且端部堵塞的平行孔道。
9.如权利要求8所述的柴油机微粒过滤器,其特征在于,该过滤器在室温至1000℃的热膨胀系数小于15×10-7℃-1,孔隙率为40-55体积%,中值孔径为5-20微米。
10.一种制备基于钛酸铝的陶瓷体的方法,该方法包括a.配制包含以下组分的原料批料二氧化硅源、氧化铝源、二氧化钛源、碱金属源、碱土金属源和任选的成孔剂;b.将所述批料与有机加工助剂和作为溶剂的水相混合,形成均一且增塑的混合物,所述有机加工助剂包括润滑剂、粘合剂、增塑剂等;c.对所述均一且增塑的混合物进行成形,制成生料体;d.任选地干燥所述生料体,然后加热至某一温度,加热一段时间,以形成陶瓷体,该陶瓷体包含50-95重量%的钛酸铝晶相,还任选地包含最高40重量%的富铝红柱石作为第二晶相,还包含5-50重量%的玻璃相,所述玻璃是铝硅酸盐,以氧化物重量百分数为基准计,该玻璃基本上由下列组分组成50-90重量%的SiO2,1-25重量%的Al2O3,0.5-10重量%的TiO2,0.5-20重量%的R2O和0.5-20重量%的R’O,其中R选自Li,Na,K,Ru,Cs,Fr,R’选自Be,Mg,Ca,Ba,Ra,所述陶瓷体包含不超过2重量%的Fe2O3。
11.如权利要求10所述的方法,其特征在于,所述生料体是蜂窝体结构。
12.一种柴油机微粒过滤器,该过滤器包含如权利要求8所述的陶瓷体,所述陶瓷体包含最高40重量%的富铝红柱石第二晶相。
全文摘要
一种陶瓷体,其包含50-95重量%的钛酸铝晶相和5-50重量%的玻璃相。本发明的陶瓷体可包含最高40重量%的次要晶相,例如富铝红柱石。所述玻璃是铝硅酸盐,以氧化物重量百分数为基准计,其包含50-90重量%的SiO
文档编号C03C14/00GK101027256SQ200580032342
公开日2007年8月29日 申请日期2005年9月26日 优先权日2004年9月29日
发明者P·D·特珀谢, S·B·奥古米 申请人:康宁股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1