制造由热结构复合材料制成的部件的方法

文档序号:2006895阅读:366来源:国知局
专利名称:制造由热结构复合材料制成的部件的方法
技术领域
本发明涉及制造热结构复合材料部件,特别是用于航空领域或太空领域的部件。该部件的例子为燃气涡轮航空发动机的尾部元件,如多程发动机或中央机身或“栓塞 (plugs),,的混合器或次级喷嘴。
背景技术
热结构复合材料因其机械性能(这使它们适合组成结构部件)及其在高温下保存这些性能的能力而值得注意。公知的热结构复合材料为碳/碳(C/C)复合材料(包括用碳基体增强的碳纤维)和陶瓷基体复合材料(CMC)(包括耐火纤维增强件(碳纤维或陶瓷纤维)和陶瓷基体)。CMC不仅呈现出在高温下非常好的机械强度,而且呈现出良好的耐腐蚀性环境(存在氧化剂和湿气)的能力。因此已提出将CMC用于航空发动机的尾部元件,所述元件在操作中经受通常为400°C至750°C的温度。一种已知的制造热结构复合材料部件的方法包括以下步骤·由用包含碳-或陶瓷-前体(通常为任选地在溶剂中稀释的树脂)的固结组合物浸渍的碳或陶瓷的纱(或丝束)制备纤维预成型体;·通过热解转变碳-或陶瓷-前体;和然后·通过化学气相渗透(CVI)致密化预成型体。为制备浸渍的纤维预成型体,使用一层或多层的纤维结构,例如用固结组合物浸渍的三维(3D)机织物,并将纤维结构成形,例如通过在成型模具上悬垂(draped)以得到具有符合待制造部件形状的预成型体。将固结组合物的树脂固化并随后热解以留下用于固结预成型体的固体碳或陶瓷残渣。用通过CVI得到的碳或陶瓷基体致密化固结的预成型体。 以公知方式,通过将固结后的预成型体置于反应室中并将反应气体引入室内而进行CVI致密化,反应气体包含一种或多种碳-或陶瓷-前体,选择反应室中的条件(特别是压力和温度条件)以使反应气体能在预成型体的孔内扩散,并通过反应气体中一种或多种组分的分解或者通过其多个组分之间的反应而在其中形成碳或陶瓷的固体沉积物。用固结组合物的浸渍需要进行至足以得到符合要求的固结所需的热解后固体残渣的量。术语“符合要求的固结”在本文中用于指纤维预成型体的达到或略微超过阈值的部分致密化,超过该阈值的预成型体凭自身保存其形状并可被操作(如果需要)而不需要支持它的模具。申请人已观察到,通常获得足够的固结,其中热解后固体残渣具有12%至 14%的体积百分比(即被固体残渣占据的预成型体的表观体积百分比)。在通过该方法(使用具有陶瓷前体树脂的液体技术固结以及通过CVI致密化)得到的CMC部件上进行的机械试验已给出从热机械观点看令人满意的结果,但也许需要为其取得关于材料杨氏模量的改进。申请人已观察到,因为所需的固结组合物的量,大部分的纱内部空间被热解的固体残渣占据,因而赋予不如由通过CVI获得的陶瓷基体所提供的那些一样好的机械性能。

发明内容
本发明的一个目的是提出制造具有大幅升高的机械潜能的热结构复合材料部件, 并结合通过液体技术固结与通过CVI致密化的方法。该目的通过制造热结构复合材料部件的方法而实现,该方法包括制备由纱或丝束形成的纤维预成型体,将纤维预成型体以其形状固结,然后通过化学气相渗透致密化固结的纤维预成型体,固结通过用包含碳-或陶瓷-前体的固结组合物浸渍纤维预成型体的纱或丝束并通过热解转变碳-或陶瓷-前体而进行,在该方法中使用的固结组合物进一步包含以平均粒度小于200纳米的粉末形式的耐火固体填料且其热解后留下固结固相,其中源自前体的碳或陶瓷占据预成型体表观体积的3%至10%的体积,而固体填料占据预成型体表观体积的0. 5 %至5 %的体积。在固结液体组合物中亚微米填料的存在提供以下优点·固结组合物具有较小的渗透进低孔隙率的纱内部或丝束内部空间的倾向,因而为CVI致密化让出大部分的这些空间,并由此使得有可能在每根纱或丝束内达到具有高等级机械性能的“微型-复合”;和·热解的固体残渣通过填料的存在而增强,因而提高其机械性能及其固结能力。因此,与上文描述的现有技术相比,固结组合物中更少量的碳-或陶瓷前体足以达到符合要求的固结,其有可能降低预成型体中热解固结相的固体残渣的体积百分比,使其为3%至10%,优选地为3%至6%。固结组合物中固体填料的量必须不过量以避免增加其粘度或使用可引起环境和工作问题的大量溶剂。因此预成型体中固结相的固体填料的体积百分比为0.5%至5%,且优选地为0. 5%至3%。选择足够小的固体填料的粒度以避免加入固结组合物时发生过滤现象,其中固体填料附聚在纱或丝束周围,而液体的碳-或陶瓷-前体单独渗透进纱或丝束内。因此,此粒度平均为小于200纳米,或者甚至小于100纳米。根据本方法的特征,纤维预成型体通过成型由纱或丝束形成的并用固结组合物浸渍的纤维结构而制备。当固结组合物中的碳-或陶瓷-前体为树脂时,纤维结构有利地在树脂已被预-固化之后成型。根据本方法的另一特征,在用固结组合物浸渍之前,通过在纱或丝束的纤维上的化学气相渗透形成界面层。根据本方法的又一特征,在用固结组合物浸渍之前,通过在纱或丝束的纤维上的化学气相渗透形成第一界面层;而在纤维预成型体固结之后且在固结的纤维预成型体致密化之前形成第二界面层。


本发明的其它特征和优点通过参照附图阅读以非限制性方式给出的以下描述而显现,其中·图1显示在本发明的一个实施例中制造由热结构复合材料制成的部件的方法的连续步骤;·图2为高度图示的轴向半截面,其显示为制造航空发动机喷嘴元件的纤维预成型体的成型;·图3显示在本发明的另一实施例中制造由热结构复合材料制成的部件的方法的连续步骤;·图4显示通过本发明的方法得到的CMC材料样品的边缘和中心的光学图像;和·图5显示通过现有技术的方法得到的CMC材料样品的中心的光学图像。
具体实施例方式参照与制造由CMC型热结构复合材料制成的部件相关的图1,本发明方法的一个实施例描述如下。该方法的步骤10为由碳或陶瓷纤维制备纤维结构,由此可为待制造的部件制备预成型体。纤维结构由碳或陶瓷纤维或碳-或陶瓷-前体纤维的纱或丝束(以下称为“纱”) 形成,其中碳-或陶瓷-前体在纤维结构已经形成后通过热处理进行转变。纤维结构可为机织物形式,特别地为通过三维(3D)织造得到的织物,由此使得有可能得到具有连接在一起的多层纱的相对大厚度的纤维结构。其它纺织方法可用于形成纤维结构,例如编织、针织或通过在不同方向上叠加并将单向纤维片材结合在一起而形成多向片材,其中所述结合例如通过缝合而进行。该方法的另一步骤20为制备以液体形式的固结组合物,其包含与以陶瓷粉末形式的固体填料一起的陶瓷前体(通常为树脂)。固结的组合物还可包含固体填料的分散剂、 树脂的溶剂和分散剂的溶剂(如果普通溶剂不可用),溶剂的量调节至赋予组合物适合浸渍纤维结构的粘度。陶瓷前体,特别是以树脂形式的前体是公知的。因而碳化硅(SiC)前体树脂可选自聚硅氧烷树脂、聚硅氮烷树脂或聚碳硅烷(polycarbosilane)树脂。固体填料由一种或多种陶瓷粉末(例如选自碳化硅SiC、碳化钛TiC、碳化硼B4C或氮化硼BN的粉末)组成。根据该方法的特征,选择相对小的粒度,平均小于200纳米或甚至优选小于100纳米,这取决于所选陶瓷粉末可用的粒度。本文所用的术语粒度指粉末颗粒的平均尺度或直径。在步骤30中,用固结组合物浸渍纤维结构。选择固结组合物中陶瓷前体和陶瓷粉末各自的量以及引入结构的固结组合物的量,以使得在前体转变为固体陶瓷残渣后,纤维预成型体具有·预成型体中的陶瓷残渣体积百分比为3%至10%,优选地为3%至6% ;和·预成型体中的陶瓷粉末体积百分比为0. 5%至5%,优选地为0. 5%至3%。本文所用的术语“体积百分比”指占据的分数,以预成型体总表观体积的百分比表
7J\ ο纤维结构可通过用刷或通过涂抹或通过在浴中浸渍(可能在真空下)或实际上通过在施加真空时注射固结组合物而浸渍。知道待得到的固结的预成型体的表观体积和所用陶瓷前体的热解固体残渣的体积分数,容易确定为得到合意的预成型体中陶瓷残渣体积百分比而需要使用的前体的量。 知道待得到的固结的预成型体的表观体积,也容易确定为得到合意的预成型体中陶瓷粉末
5体积百分比而需要使用的陶瓷粉末的量。知道所用的陶瓷前体和陶瓷粉末的量,为保证粉末适当地分散,并为固结组合物赋予适合浸渍纤维结构的粘度,可容易地确定任何分散剂和溶剂的量。在浸渍后,可进行干燥步骤40 (去除任何溶剂),接着进行预-固化步骤50,其中将陶瓷-前体树脂进行预-固化。术语树脂的“预-固化”用于指使树脂处于非-固化树脂和完全-固化树脂间的中间体的状态。想法是赋予纤维结构较大的刚度,并保存为能将其成型从而为待制造的部件制备预成型体所要求的可变形性。因而有可能赋予纤维结构改进的在其成型时保存其变形后的形状的能力,并使其容易引入任何不连续的连接(缝合、 植入结合元件),应该理解该预-固化可能不是在所有情况下有用。为待制造的部件制备纤维预成型体(步骤60)可包括从经浸渍的纤维结构切出层或板条,并在具有的形状符合待制造部件形状的模具元件上使其成形。应观察到纤维结构可在将该层或板条切出之后浸渍。取决于待赋予纤维预成型体的形状的复杂性、纤维结构的变形而不引起显著的表面不规则性的能力以及纤维预成型体的厚度,其制备可包括一个或多个如下操作·在模具元件上悬垂(成形)纤维结构层;·悬垂多个重叠的层,当纤维预成型体具有变化的厚度时不需要具有相同的尺度; 和 切出纤维结构板条,并将板条以其边缘相邻地(可能其边缘互相重叠地)置于模具元件上。重叠的层或纤维结构板条的相邻边缘可通过缝合或植入结合元件如纱而结合在一起。纤维预成型体可依靠膜片(diaphragm)(例如形成衬模并用于预成型体外表面的弹性体膜片)而在成型模具元件上保持合意的形状。图2显示纤维预成型体100,例如为包含旁路燃气涡轮的航空发动机由CMC制造下游元件次级喷嘴。预成型体100通过在心轴102上悬垂一层或多层纤维结构而制备,其借助弹性体膜片104保持合意的形状。可制备形状更复杂的需要悬垂并结合切出的板条和层的操作的纤维预成型体,例如专利申请PCT/FR2008/050207中对旁路燃气涡轮航空发动机的叶状混合器的描述。制备纤维结构后,完成陶瓷前体树脂的固化(步骤70)。为了经受热处理以热解树脂(步骤80),纤维预成型体随后可从成型模具移去。该热处理通常在700°C至1000°C如约900°C的温度下进行一至数小时。随后得到通过固结组合物中所含前体热解的陶瓷残渣而固结的纤维预成型体,陶瓷残渣本身通过陶瓷粉末而增强。经本方法固结的纤维预成型体随后用陶瓷基体通过CVI致密化(步骤90)。用陶瓷基体致密化多孔基材的CVI方法是公知的。有利地,致密化通过至少部分自-复原的陶瓷基体进行,即通过在使用温度下具有糊状状态而能够堵塞基体中的任何裂缝。形成陶瓷基体的方法(特别是自-复原基体)在例如文件US 5 965 266,US 6 068 930和US6 291 058中描述。应观察到,如果B4C粉末存在于固结组合物的固体填料中,该粉末可通过在氧的存在下形成玻璃而提供自-复原功能。既然CVI致密化在高于固结组合物中陶瓷前体热解的温度下进行,步骤80和90 可在相同的烘箱中相继进行,热解随后在开始CVI致密化之前的温度上升过程中进行。如上文所提到的,本发明的方法与已知的使用液体技术的固结过程相比是值得注意的,可得到有效的固结,其中·固结组合物中陶瓷前体量较少;和·通过CVI得到的陶瓷基体的纱内部可用体积较大。这是由于固结组合物中存在以相对小的粒度的陶瓷粉末形式的固体填料,该填料·提供增强固结组合物中所包含的陶瓷前体残渣从而改进固结能力的作用;和·保证固结组合物特别是其包含的陶瓷前体更难渗透进纱内部空隙(纱的内部体积);如上文提到的,为此目标仍然需要固体填料的粒度相对小,以避免纱过滤固结组合物的效应。本发明方法的另一实施例如图3所示,该另一实施例与图1实施例的不同之处在于在制备预成型体之后浸渍纤维结构。存在类似于图1方法的步骤10和20的制备纤维结构和制备固结组合物的步骤 110 和 120。在步骤130中,纤维预成型体以与上文关于图1方法的步骤60所述相似的方式由干的纤维结构的层和/或板条制备。在步骤140中,纤维预成型体用固结组合物浸渍。浸渍可通过用刷或通过涂抹或通过在浴中浸渍(可能地在真空下)或实际上通过在施加真空时注射固结组合物而进行。 在最后一种情况下,如图2所示,由预成型体100、心轴102和膜片104组成的组件可置入套管106。注射固结组合物,并将套管106内部的体积连接至真空源。取决于膜片104的可变形性的程度,纤维预成型体可同时被压缩以增加预成型体中纤维的体积百分比。在任选的干燥(步骤150)并固化包含在固结组合物中的陶瓷前体树脂(步骤 160)之后,在与图1方法的步骤80和90相似的热解和CVI致密化步骤170和180之前,可从成型模具移去纤维预成型体。在以上描述中,考虑了 CMC部件的制造。然而,本发明的方法可同样良好地用于制造C/C复合材料制成的部件。在此情况下,纤维结构由碳纤维制备,而固结组合物包含以液体形式的碳前体(通常为树脂,可能地在溶剂中稀释)和优选地以碳粉末形式的固体填料如金刚石填料或碳黑,应该理解可任选地使用以陶瓷粉末形式的固体填料。固结组合物还可包含碳粉末的分散剂和任选地分散剂的溶剂。碳前体树脂是公知的。举例而言,可能使用选自环氧、呋喃或酚醛树脂的树脂。浙青也可用作碳前体。如上文,固体填料具有小于200纳米的平均粒度,优选地小于100纳米。另外,还选择固结组合物中碳前体和固体填料的量以使得在碳前体已热解之后,固结的纤维预成型体中所述前体热解的固体残渣的体积百分比为3%至10%,优选地为3%至6%,预成型体中固体填料的体积百分比为0. 5%至5%,优选地为0. 5%至3%。
可在纤维结构的纤维和CMC或C/C材料的基体之间提供界面。如已知的,在CMC 材料中,该界面可通过能够使得穿过基体到达界面的裂缝的底部应力松弛的材料而具有降低脆性的功能,因而阻止或延迟裂缝经纤维扩散(其具有使纤维断裂的作用)。举例而言, 构成界面的材料为热解碳(PyC)、氮化硼(BN)或硼-掺杂碳(BC,例如具有5%至20%原子的硼,余量为C)。在C/C复合材料中,界面可对改进耐氧化的能力有用,特别是界面包含硼如BN或BC时。有利地,界面通过厚度小的第一层(例如厚度为10纳米(nm)至100纳米,或实际上为10纳米至50纳米,其在用固结组合物浸渍之前通过CVI在纤维结构的纤维上沉积) 和第二层(例如具有厚度不小于100纳米,其在固结组合物中的陶瓷前体或碳前体热解后且在致密化之前沉积)形成。第一界面层的小厚度用于保存纤维结构中足够的变形能力以得到具有合意形状的纤维预成型体。第二界面层覆盖纤维预成型体的纤维以及热解后固结组合物的残渣颗粒。两层界面层不必以同样的材料制备。热解步骤(其形成第二界面层) 和CVI致密化可在相同的烘箱中相继进行。以两层方式制备界面在申请人在2008年7月21日以08 54937号提交的法国专利申请中描述,该申请的内容以引用的方式并入本文。本发明的方法的实施例如下描述。实施例1 (固结水平的评价)通过碳纤维纱(由日本供应商Tenax以“NM5 Roving HTS Fibers”的商品名提供)的多层3D织造而制备碳纤维的纤维结构。所得C织物具有约4毫米(mm)的厚度。在真空下,在约1600°C温度下对其热处理约30分钟(min)。使用包含甲烷的反应气体,通过CVI在纤维结构的纤维上沉积具有约30纳米厚度的第一 PyC界面层。通过进行以下步骤制备固结组合物,所述固结组合物包含以聚硅氧烷树脂形式的 SiC前体(由德国供应商Wacker Chemie以编号“MK”提供)和具有约150纳米平均粒度的 B4C粉末或具有约50纳米平均粒度的SiC粉末·在由聚乙烯亚胺和分散剂的溶剂(乙醇)组成的分散剂混合物中分散B4C粉末或SiC粉末;·加入聚硅氧烷树脂的溶剂,特别地为甲基乙基酮(MEK);和·加入聚硅氧烷树脂。制备各种固结组合物的聚硅氧烷树脂和B4C或SiC粉末的用量使得纤维预成型体形成并热解后,在固结的预成型体中来自前体树脂的SiC的体积百分比以及B4C或SiC粉末的体积百分比如下表I中所列。还给出了聚硅氧烷树脂的稀释比1,其中1等于
W7 ι"、 (wr+Ws)其中Wt为树脂的重量而Ws为溶剂的总重量。在用固结组合物浸渍碳织物并干燥后,通过升温至约140°C保持约2小时(h)而将 SiC前体树脂预-固化。在预成型体已成形后,通过升温至200°C保持约20小时而结束树脂固化,在烘箱中通过升温至约900°C保持约3小时而将固化树脂热解。
然后检查通过填充以B4C或SiC粉末的热解SiC残渣而固结的纤维预成型体。对所用的各种固结组合物,表I给出稀释比、陶瓷固体残渣的体积百分比、陶瓷粉末的种类和粒度、粉末的体积百分比、热解的重量收率(与热解前且固化后相比的热解后的重量百分比)和所得到的固结水平。固结水平如下评价-1:固结刚刚符合要求0:良好的固结+1 非常好的固结+2 预成型体非常刚性,有效但可认为是过度的固结。作为比较,使用现有液体技术的热解重量收率和通过固结得到的固结水平在表格第一行中给出,对于使用相同的碳织物得到的相似预成型体,所用固结组合物与其它组合物的区别在于,其不包含任何固体填料,且包含的SiC前体树脂的量使得固结的预成型体中热解SiC残渣的体积百分比为12%。
权利要求
1.一种制造热结构复合材料部件的方法,所述方法包括制备由纱或丝束形成的纤维预成型体,将纤维预成型体以其形状固结,然后通过化学气相渗透致密化固结的纤维预成型体,所述固结通过用包含碳-或陶瓷-前体的固结组合物浸渍纤维预成型体的纱或丝束并通过热解转变碳-或陶瓷-前体而进行,所述方法的特征在于,所用的固结组合物进一步包含以平均粒度小于200纳米的粉末形式的耐火固体填料,且在热解后留下固结固相,其中源自前体的碳或陶瓷占据预成型体表观体积的3%至10%的体积,而固体填料占据预成型体表观体积的0. 5 %至5 %的体积。
2.根据权利要求1所述的方法,其特征在于,在所述预成型体中源自前体的固结相的碳或陶瓷的体积百分比为3%至6%。
3.根据权利要求1或2所述的方法,其特征在于,在所述预成型体中固结相的固体填料的体积百分比为0.5%至3%。
4.根据权利要求1至3中任一项所述的方法,其特征在于,所用的固体填料具有小于 200纳米的平均粒度。
5.根据权利要求1至4中任一项所述的方法,其特征在于,所述纤维预成型体通过成型由纱或丝束形成的纤维结构制得并用固结组合物进行浸渍。
6.根据权利要求5所述的方法,其特征在于,固结组合物中的碳-或陶瓷-前体为树脂,且在预-固化树脂之后成型纤维预成型体。
7.根据权利要求1至6中任一项所述的方法,用于制造由陶瓷基体复合材料制成的部件,所述方法的特征在于所述固体填料包含至少一种选自SiC、TiC、B4C或BN的化合物的粉末。
8.根据权利要求1至7中任一项所述的方法,其特征在于,在用固结组合物浸渍之前, 通过在纱或丝束的纤维上的化学气相渗透形成界面层。
9.根据权利要求1至7中任一项所述的方法,其特征在于,在用固结组合物浸渍之前, 通过在纱或丝束的纤维上的化学气相渗透形成第一界面层,以及在纤维预成型体固结之后且在固结的纤维预成型体致密化之前形成第二界面层。
全文摘要
本发明涉及制造由热结构复合材料制成的部件的方法,所述方法包括制备由线或缆制成并用包含碳或陶瓷前体的固结组合物浸渍的纤维预成型体,通过热解将前体转化为碳或陶瓷,并通过气相化学渗透致密化前体。固结组合物进一步包含耐火固体填料粉末形式,其具有小于200纳米的平均粒度,并在热解后留下固结固相,其中源自前体的碳或陶瓷占预成型体表观体积的3%至10%的体积,而固体填料占预成型体表观体积的0.5%至5%的体积。
文档编号C04B35/80GK102164875SQ200980137478
公开日2011年8月24日 申请日期2009年9月23日 优先权日2008年9月29日
发明者E·布永, E·菲利普, H·塔维勒, N·埃贝林-富克斯 申请人:斯奈克玛动力部件公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1