碳基减摩耐磨涂层及工件的制作方法

文档序号:2450942阅读:173来源:国知局
碳基减摩耐磨涂层及工件的制作方法
【专利摘要】本实用新型提供了一种碳基减摩耐磨涂层及工件。该碳基减摩耐磨涂层为由粘结层与工作层交替沉积而成的多层膜结构;所述粘结层为Ti、Cr、W元素中的一种的单质或氮化物或碳化物的薄膜,或者为Si元素的薄膜;所述工作层为类石墨非晶碳薄膜,所述类石墨非晶碳薄膜中石墨结构的原子百分含量大于70%。该碳基减摩耐磨涂层,通过粘结层和工作层的交替沉积,实现了类石墨非晶碳涂层的大厚度制备,使类石墨非晶碳涂层优异的水环境摩擦学性能得以长寿命稳定发挥;且交替沉积的多界面设计,进一步提高了类石墨非晶碳涂层在各种水基流体环境中的耐腐蚀/侵蚀能力。
【专利说明】碳基减摩耐磨涂层及工件

【技术领域】
[0001] 本实用新型涉及表面工程【技术领域】,特别是涉及一种碳基减摩耐磨涂层及工件。

【背景技术】
[0002] 对于硬密封阀门、水润滑轴承以及水环境齿轮类传动件等摩擦副零部件,水介质 的低润滑特性使其在频繁开启/关闭(或启动/停止)及瞬时过载时往往处于半干摩擦状 态,摩擦接触面间的摩擦系数将急剧升高,伴随而来的磨损损伤也将急剧增大。当水基流体 中存在酸、碱、盐时,其化学或电化学腐蚀特性又将进一步加剧此类摩擦副工作面的摩擦和 磨损。因此,摩擦磨损是制约硬密封阀门、水润滑轴承以及水环境齿轮类传动件等摩擦副 零部件工作稳定性和服役寿命的关键问题,同时也是制约整个水力机械系统高效运转的瓶 颈。涂层防护技术可在不改变基体物理化学性能和加工成型性能的同时赋予零部件的工作 面更加优异的服役性能,是解决此类水环境用摩擦副零部件摩擦磨损问题最为方便快捷且 富有成效的技术途径。
[0003] 类石墨非晶碳具有优异的环境自适应摩擦学特性,在润滑缺失的干摩擦、润滑不 足的半干摩擦及润滑充分的边界润滑或流体润滑条件下均能表现出稳定的低摩擦和低磨 损特性,特别是其低摩擦、低磨损及对水分子不敏感的特性,使其适用于各种有水气氛或环 境。
[0004] 然而,传统类石墨非晶碳涂层的制备厚度多小于5 μ m,致使其优异的减摩耐磨特 性难以长寿命发挥,且承载能力有限。同时,传统类石墨非晶碳涂层的界面结构单一,其单 层(基底直接沉积类石墨非晶碳层)或双层(过渡层+类石墨非晶碳层)结构难以打断连 续生长缺陷,为水分子或腐蚀性分子的侵蚀/腐蚀提供了潜在的通道,故而也就难以在水 环境中表现出足够的耐侵蚀/腐蚀特性,导致使用寿命较短。 实用新型内容
[0005] 本实用新型提供了一种碳基减摩耐磨涂层,该碳基减摩耐磨涂层可在水基流体中 保持较低的摩擦和磨损,可使沉积有该碳基减摩耐磨涂层的水环境用摩擦副零部件实现长 寿命稳定运转。
[0006] 为达到技术目的,本实用新型采用的技术方案如下:
[0007] -种碳基减摩耐磨涂层,为由粘结层与工作层交替沉积而成的多层膜结构;
[0008] 所述粘结层为Ti、Cr、W元素中的一种的单质或氮化物或碳化物的薄膜,或者为Si 元素的薄膜;
[0009] 所述工作层为类石墨非晶碳薄膜,所述类石墨非晶碳薄膜中石墨结构的原子百分 含量大于70%。
[0010] 在其中一个实施例中,所述的碳基减摩耐磨涂层的厚度为ΙΟμπι?50μηι,硬度为 lOGPa?20GPa,划痕结合力大于50Ν,水环境中的摩擦系数小于0. 1,水环境中的磨损率小 于K^mfnT1数量级。
[0011] 在其中一个实施例中,每一层所述粘结层的厚度为lOOnm?400nm,每一层所述工 作层的厚度为l〇〇〇nm?2000nm,且所述粘结层与相邻的所述工作层的厚度比为1 : 5? 1 : 10。
[0012] 在其中一个实施例中,所述粘结层与所述工作层交替沉积的循环次数为10?30 次。
[0013] 一种工件,包括基体,所述基体表面沉积有所述的碳基减摩耐磨涂层。
[0014] 本实用新型的碳基减摩耐磨涂层,通过粘结层和工作层的交替沉积,实现了类石 墨非晶碳涂层的大厚度制备,使类石墨非晶碳涂层优异的水环境摩擦学性能得以长寿命稳 定发挥;且交替沉积的多界面设计,进一步提高了类石墨非晶碳涂层在各种水基流体环境 中的耐腐蚀/侵蚀能力。

【专利附图】

【附图说明】
[0015] 图1为沉积有本实用新型碳基减摩耐磨涂层的工件一实施例的结构示意图。

【具体实施方式】
[0016] 下面将结合实施例来详细说明本实用新型。需要说明的是,在不冲突的情况下,本 申请中的实施例及实施例中的特征可以相互组合。
[0017] 参见图1,本实用新型提供了一种碳基减摩耐磨涂层,该碳基减摩耐磨涂层为由粘 结层200与工作层300交替沉积而成的多层膜结构;粘结层200为Ti、Cr、W元素中的一 种的单质或氮化物或碳化物的薄膜,或者为Si元素的薄膜;工作层300为类石墨非晶碳薄 膜,类石墨非晶碳薄膜中石墨结构的原子百分含量大于70%。其中,类石墨非晶碳薄膜又称 GLC(Graphite-like carbon)薄膜,其主要成分为石墨结构(即sp2键)。粘结层200与工 作层300交替沉积的循环次数没有严格的限制,视具体情况而定,优选地,粘结层200与工 作层300交替沉积的循环次数为10?30次。
[0018] 需要说明的是,在本发明的碳基减摩耐磨涂层中,不同粘结层200的材质可以可 以相同,也可以不同。
[0019] 作为一种可实施方式,碳基减摩耐磨涂层的厚度为10 μπι?50 μ m,硬度为 lOGPa?20GPa,划痕结合力大于50N,水环境中的摩擦系数小于0. 1,水环境中的磨损率小 于IO^iiW1数量级。需要说明的是,此处测量摩擦系数和磨损率的水环境均为蒸馏水环 境。
[0020] 要制备出性能优异的碳基减摩耐磨涂层,每一层粘结层200和每一层工作层300 的厚度都有严格的规定,才能使涂层的粘结性、减摩耐磨特性及耐腐蚀特性得到最大的发 挥,结合所使用的粘结层200与工作层300的物理、化学性能和大量实验得出:每一层粘结 层200的厚度为100nm?400nm,每一层工作层300的厚度为lOOOnrn?2000nm,且所述粘 结层200与相邻的所述工作层300的厚度比为1 : 5?1 : 10。
[0021] 本实用新型还提供了一种工件,包括基体100,基体100的表面沉积有上述的碳基 减摩耐磨涂层。一般地,本实用新型中的基体100为水环境用摩擦副零部件,如硬密封阀 门、水润滑轴承以及水环境齿轮类传动件等。利用本实用新型的碳基减摩耐磨涂层,可显著 提高硬密封阀门、水润滑轴承以及水环境齿轮类传动件等水环境用摩擦副零部件的稳定性 和使用寿命,在核电装备、流体传输装备、石油化工装备以及海洋工程装备等水环境机械 系统中具有良好的应用前景。
[0022] 本使用新型的碳基减摩耐磨涂层,可采用如下方法制备:将基体100进行前处理; 对前处理完毕的基体100表面进行等离子体清洗;在经过等离子清洗后的基体100表面沉 积上述碳基减摩耐磨涂层。
[0023] 在上述制备方法中,前处理和等离子体清洗的目的是让基体100暴露出新鲜的表 面,使后续的沉积能够顺利进行,同时也能增加基体100与涂层间的粘结性,提高产品的品 质,增强使用寿命。
[0024] 作为一种可实施方式,基体100的前处理包括以下步骤:首先选用普通洗涤剂对 基体100进行初步处理,以除去基体100表面的油污及在加工、运输或长时间放置过程中 所吸附的杂物;然后对经过初步处理的基体100表面进行喷砂处理,以除去其表面的锈迹、 氧化层和机加工毛刺,在该处理步骤中,喷砂压力优选为0. 2MPa?0. 5MPa ;再采用工业洗 涤剂对经过喷砂处理的基体100进行超声波清洗,进一步去除其表面的物理化学吸附物, 较佳地,超声波清洗时间为5min?30min ;最后将超声波清洗过的基体100用等离子水漂 洗后置于烘箱,加热烘干其表面水渍,优选地,烘箱温度为50°C?80°C。在其中一个实施 例中,基体100的前处理可选用上述方案的部分流程,具体情况根据基体100的实际情况而 定。
[0025] 作为一种可实施方式,等离子体清洗包括以下步骤:将前处理完毕的基体100置 于磁控溅射系统真空腔内的样品架上,抽真空;待真空腔室内气压抽至5Xl(T 3Pa及以下 时,通入Ar气并调节气压至IPa?10Pa ;打开偏压电源,调节偏压电压为500V?1000V,偏 压占空比为40%?60% ;Ar气在电场作用下被激发为等离子体,对前处理完毕的基体100 表面进行刻蚀,刻蚀时间为5min?50min。等离子体清洗是利用高能粒子轰击基体100表 面,可将前处理中残留的顽固污渍或氧化皮去除,使得基体100表面有较高的洁净度,增强 后续涂层的沉积质量。
[0026] 相比于类石墨非晶碳涂层,本实用新型中的粘结层200与实际水环境用摩擦副零 部件材料(不锈钢、钛合金、工程陶瓷等)间具有更好的相容性,为了提高涂层与基体1〇〇 之间的结合力,首先在经过等离子清洗后的基体100表面沉积粘结层200,再进行工作层 300的沉积,然后逐次交替沉积粘结层200和工作层300。
[0027] 作为一种可实施方式,碳基减摩耐磨涂层采用磁控溅射技术沉积。具体操作步骤 如下:
[0028] 首先打开金属或非金属靶电源在基体100表面沉积粘结层200,然后打开石墨靶 电源在粘结层200上沉积类石墨非晶碳层,随后逐次交替沉积粘结层200与类石墨层形成 大厚度的碳基减摩耐磨涂层。
[0029] 其中,Ti、Cr、W的金属单质的薄膜采用中频或直流磁控溉射技术在Ar气氛下溉射 沉积获得;非金属Si的薄膜采用射频或直流磁控溅射技术在Ar气氛下溅射沉积获得;Ti、 Cr、W的氮化物的薄膜采用中频或直流反应磁控溅射技术在N2气氛下溅射沉积获得;Ti、 Cr、W的碳化物的薄膜采用中频或直流反应磁控溅射技术在C2H2气氛下溅射沉积获得;类石 墨非晶碳薄膜采用直流磁控溅射技术在Ar气氛下溅射沉积获得。
[0030] 作为一种可实施方式,在粘结层200和工作层300的沉积过程中,磁控溅射设备的 真空腔内气体压力为0. 5Pa?1. 5Pa ;中频磁控溅射电源的电流为1. 5A?2. 5A,直流磁控 溅射电源的电流为1. 0A?2. 0A,射频磁控溅射电源的功率为300W?500W。
[0031] 作为一种可实施方式,在粘结层200和工作层300的沉积过程中,所加偏压为 400¥?600¥的脉冲偏压,偏压占空比为40%?60%。
[0032] 本实用新型的碳基减摩耐磨涂层,通过粘结层200和工作层300的交替沉积,实现 了类石墨非晶碳涂层的大厚度制备,使类石墨非晶碳涂层优异的水环境摩擦学性能得以长 寿命稳定发挥,且交替沉积的多界面设计,进一步提高了类石墨非晶碳涂层在各种水基流 体环境中的耐腐蚀/侵蚀能力。
[0033] 本实用新型的碳基减摩耐磨涂层的制备分三步进行,第一步为基体100的前处 理,第二步为基体100的等离子清洗,第三步为粘结层200和工作层300的交替沉积。下面 结合具体的实施例详细说明。
[0034] 实施例1
[0035] 在钛合金球阀的硬密封面上制备上述碳基减摩耐磨涂层。在该实施方式中,基体 1〇〇为钛合金球阀,粘结层200为金属Ti薄膜,金属Ti薄膜与类石墨非晶碳薄膜交替沉积 成厚度为45 μ m的复合涂层,具体实施步骤如下:
[0036] 1)前处理
[0037] 选用普通洗涤剂处理基体100,除去钛合金球阀的硬密封面上的油污以及在加工、 运输或长时间放置过程中所吸附的杂物;然后对钛合金球阀的硬密封面进行喷砂处理,除 去氧化膜和机加工毛刺;再采用工业清洗剂超声波清洗钛合金球阀的硬密封面,进一步去 除表面的物理化学吸附物;最后用去离子水漂洗钛合金球阀的硬密封面,放入烘箱,加热 烘干表面水渍。在该实施例中,喷砂压力为〇. 3MPa,超声波清洗时间为20min,烘箱温度为 80。。。
[0038] 2)等离子体清洗
[0039] 将前处理完毕的钛合金球阀置于磁控溅射系统真空腔内的样品架上,抽真空;待 真空腔室内气压抽至5 X ΚΓ3时,通入Ar气并调节气压至1. OPa ;打开偏压电源,调节偏压 电压为1000V,偏压占空比为50% ;Ar气在电场作用下被激发为等离子体,对前处理完毕的 钛合金球阀的硬密封面进行刻蚀,刻蚀时间为lOmin。
[0040] 3)磁控溅射交替沉积
[0041] 将Ti靶和石墨靶分别安装在磁控溅射设备相应的靶位。其中,Ti靶连接中频磁 控溅射电源,石墨靶接直流磁控溅射电源,保持真空腔内Ar气的压力为1. OPa。
[0042] 首先打开中频电源,在经过等离子清洗的钛合金球阀的硬密封面上沉积200nm的 金属Ti薄膜,作为粘结层200。在沉积过程中,设置中频电源的电流为2. 0A,在钛合金球阀 上施加的脉冲偏压为500V,偏压占空比为50%。
[0043] 随后在金属Ti薄膜表面沉积1300nm的类石墨非晶碳薄膜。在沉积过程中,直流 电源电流为1. 2A,在钛合金球阀上施加的脉冲偏压为500V,偏压占空比为50%。
[0044] 依次交替沉积金属Ti薄膜和类石墨非晶碳薄膜,循环30个周期后获得厚度为 45 μ m的碳基减摩耐磨涂层。
[0045] 实施例2
[0046] 在氮化硅陶瓷水润滑轴承滚动体的表面制备上述碳基减摩耐磨涂层。在该实施方 式中,基体100为氮化硅陶瓷水润滑轴承滚动体,粘结层200为Si薄膜,Si薄膜与类石墨 非晶碳薄膜交替沉积成厚度为45 μ m的复合涂层,具体实施步骤如下:
[0047] 1)前处理
[0048] 采用工业清洗剂超声波清洗氮化硅陶瓷水润滑轴承滚动体,去除其表面的物理化 学吸附物;然后用去离子水漂洗氮化硅陶瓷水润滑轴承滚动体,放入烘箱,加热烘干表面水 渍。在该实施例中,超声波清洗时间为20min,烘箱温度为60°C。
[0049] 2)等离子体清洗
[0050] 将前处理完毕的氮化硅陶瓷水润滑轴承滚动体置于磁控溅射系统真空腔内的样 品架上,抽真空;待真空腔室内气压抽至5X10_ 3时,通入Ar气并调节气压至l.OPa ;打开 偏压电源,调节偏压电压为1000V,偏压占空比为50% ;Ar气在电场作用下被激发为等离子 体,对前处理完毕的氮化硅陶瓷水润滑轴承滚动体的表面进行刻蚀,刻蚀时间为lOmin。
[0051] 3)磁控溅射交替沉积
[0052] 将Si靶和石墨靶分别安装在磁控溅射设备相应的靶位。其中,Si靶连接射频磁 控溅射电源,石墨靶接直流磁控溅射电源,保持真空腔内Ar气的压力为1. OPa。
[0053] 首先打开射频电源,在经过等离子清洗的氮化硅陶瓷水润滑轴承滚动体的表面沉 积300nm的Si薄膜,作为粘结层200。在沉积过程中,设置射频功率为300W,在氮化硅陶瓷 水润滑轴承滚动体上施加的脉冲偏压为500V,偏压占空比为50%。
[0054] 随后在Si薄膜表面沉积1200nm的类石墨非晶碳薄膜。在沉积过程中,设置直流 电源电流为1. 2A,在氮化硅陶瓷水润滑轴承滚动体上施加的脉冲偏压为500V,偏压占空比 为 50%。
[0055] 依次交替沉积Si薄膜和类石墨非晶碳薄膜,循环30个周期后获得厚度为45 μ m 的碳基减摩耐磨涂层。
[0056] 实施例3
[0057] 在不锈钢齿轮的工作面上制备上述碳基减摩耐磨涂层。在该实施方式中,基体100 为不锈钢齿轮,粘结层200为CrN薄膜,CrN薄膜与类石墨非晶碳薄膜交替沉积成厚度为 40 μ m的复合涂层,具体实施步骤如下:
[0058] 1)前处理
[0059] 选用普通洗涤剂处理基体100,除去不锈钢齿轮的工作面上的油污以及在加工、 运输或长时间放置过程中所吸附的杂物;然后对不锈钢齿轮的工作面进行喷砂处理,除去 氧化膜和机加工毛刺;再采用工业清洗剂超声波清洗不锈钢齿轮的工作面,进一步去除表 面的物理化学吸附物;最后用去离子水漂洗锈钢齿轮的工作面,放入烘箱,加热烘干表面水 渍。在该实施例中,喷砂压力为0. 3MPa,超声波清洗时间为30min,烘箱温度为80°C。
[0060] 2)等离子体清洗
[0061] 将前处理完毕的不锈钢齿轮置于磁控溅射系统真空腔内的样品架上,抽真空;待 真空腔室内气压抽至5X ΚΓ3时,通入Ar气并调节气压至1. OPa ;打开偏压电源,调节偏压 电压为1000V,偏压占空比为50% ;Ar气在电场作用下被激发为等离子体,对前处理完毕的 不锈钢齿轮的工作面进行刻蚀,刻蚀时间为20min。
[0062] 3)磁控溅射交替沉积
[0063] 将Cr靶和石墨靶分别安装在磁控溅射设备相应的靶位。其中,Cr靶连接中频磁 控溅射电源,石墨靶接直流磁控溅射电源,真空腔内通入N2气并保持压力为1. 5Pa。
[0064] 首先打开中频电源,在经过等离子清洗的不锈钢齿轮的工作面上沉积400nm的 CrN薄膜,作为粘结层200。在沉积过程中,设置中频电源的电流为2. 5A,在钛合金球阀上施 加的脉冲偏压为500V,偏压占空比为50%。
[0065] 随后在CrN薄膜表面沉积1600nm的类石墨非晶碳薄膜。在沉积过程中,设置直流 电源电流为1. 2A,在钛合金球阀上施加500V的脉冲偏压,偏压占空比为50%。
[0066] 依次交替沉积CrN薄膜和类石墨非晶碳薄膜,循环30个周期后获得厚度为40 μ m 的碳基减摩耐磨涂层。
[0067] 以上实施例中粘结层200和工作层300在沉积过程中的厚度不变,作为一种可实 施方式,在沉积过程中,粘结层200厚度不变,工作层300的厚度逐层递减(如粘结层200 的厚度保持300nm不变,随着沉积的进行,工作层300由2000nm逐步减小到lOOOnm),则可 增强涂层整体的结合力,从而使得涂层具有更加稳定的机械性能和摩擦学性能。
[0068] 以上所述实施例仅表达了本实用新型的几种实施方式,其描述较为具体和详细, 但并不能因此而理解为对本实用新型专利范围的限制。应当指出的是,对于本领域的普通 技术人员来说,在不脱离本实用新型构思的前提下,还可以做出若干变形和改进,这些都属 于本实用新型的保护范围。因此,本实用新型专利的保护范围应以所附权利要求为准。
【权利要求】
1. 一种碳基减摩耐磨涂层,其特征在于,为由粘结层与工作层交替沉积而成的多层膜 结构; 所述粘结层为Ti、Cr、W元素中的一种的单质或氮化物或碳化物的薄膜,或者为Si元素 的薄膜; 所述工作层为类石墨非晶碳薄膜,所述类石墨非晶碳薄膜中石墨结构的原子百分含量 大于70% ; 所述粘结层与所述工作层交替沉积的循环次数任意。
2. 根据权利要求1所述的碳基减摩耐磨涂层,其特征在于,所述的碳基减摩耐磨涂层 的厚度为?ο μ m?50 μ m,硬度为lOGPa?20GPa,划痕结合力大于50N,水环境中的摩擦系 数小于0. 1,水环境中的磨损率小于ΚΓ16!!!3^1!^1数量级。
3. 根据权利要求1所述的碳基减摩耐磨涂层,其特征在于,每一层所述粘结层的厚度 为100nm?400nm,每一层所述工作层的厚度为lOOOnm?2000nm,且所述粘结层与相邻的 所述工作层的厚度比为1:5?1:10。
4. 根据权利要求1所述的碳基减摩耐磨涂层,其特征在于,所述粘结层与所述工作层 交替沉积的循环次数为10?30次。
5. -种工件,包括基体,其特征在于,所述基体表面沉积有权利要求1 一 4任一项所述 的碳基减摩耐磨涂层。
【文档编号】B32B15/04GK203938726SQ201320791822
【公开日】2014年11月12日 申请日期:2013年12月4日 优先权日:2013年12月4日
【发明者】王永欣, 王立平, 李金龙, 薛群基 申请人:中国科学院宁波材料技术与工程研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1