光电转换装置和照相机的制作方法

文档序号:2791897阅读:205来源:国知局
专利名称:光电转换装置和照相机的制作方法
技术领域
本发明涉及光电转换装置和包括该光电转换装置的照相机。
背景技术
已经在许多数字静物照相机和数字便携式摄像机(camcorder)中使用了 CXD型或 CMOS型的光电转换装置。特别是,CMOS型光电转换装置在功率消耗和多功能性方面优于 CXD型光电转换装置,并且近来它的应用范围已经变宽。光电转换装置使用通过形成具有在用于将光转换成电信号的光电转换器与其上布置的绝缘膜的折射率之间的中间折射率的绝缘膜作为抗反射膜来提高灵敏度的方法。随着像素的数量增加,像素的尺寸更小。这产生了减小光电转换区中的光电转换器的尺寸以及光电转换区或外围电路区中的MOS晶体管的尺寸的需求。在元件变得更小时,布局设计的裕度(margin)也变得更小。因此,如果用于扩散区或栅极电极的接触孔的对准(alignment)精度低,则在用于形成接触孔的刻蚀期间可能出现元件隔离区的穿透。 在该情况下,在光电转换装置的操作中,电流可能在与接触塞(Plug)接触的扩散区和与扩散区接触的阱之间流动。为了解决上述问题,公知一种所谓的自对准的接触技术。该技术通过形成具有能够在通过刻蚀形成用于形成接触塞的接触孔时获得选择比的刻蚀停止体功能的绝缘膜来防止在打开接触孔后元件隔离区的穿透。该技术被应用于要求细的接触孔的具有小的像素尺寸的CMOS型光电转换装置。在日本专利公开No. 2004-228425中公开的光电转换装置中,在光电转换器上除了抗反射膜之外还形成刻蚀停止体膜。在该布置中,抗反射膜和刻蚀停止体膜被堆叠在用于控制光电转换器中蓄积的电荷的传送的栅极电极上。这增大了光电转换器上的层结构的厚度,由此降低了灵敏度和F数比例性。

发明内容
本发明提供了有利于减少光电转换装置的层结构的高度的技术。本发明的第一方面提供了一种包括像素区的光电转换装置,所述像素区具有光电转换器和用于将由所述光电转换器产生的电荷传送到浮置扩散的传送MOS晶体管,所述装置包括第一绝缘膜,所述第一绝缘膜被连续地布置为覆盖所述光电转换器、所述传送MOS 晶体管的栅极电极的第一侧表面、以及所述栅极电极的上表面的第一区域,而没有被布置在所述栅极电极的上表面的第二区域上,所述第一绝缘膜被配置为用作抗反射膜;与所述浮置扩散连接的接触塞;以及第二绝缘膜,所述第二绝缘膜被连续地布置为覆盖所述浮置扩散上的接触塞的周边、以及所述栅极电极的第二侧表面和第二区域,而没有被布置在第一区域上,所述第二绝缘膜被配置为在形成所述接触塞中用作刻蚀停止体。本发明的第二方面提供了一种包括像素区和外围电路区的光电转换装置,所述像素区具有光电转换器和用于将由所述光电转换器产生的电荷传送到浮置扩散的传送MOS晶体管,所述外围电路区具有多个MOS晶体管并且从所述像素区读出信号,所述装置包括 与所述浮置扩散连接的第一接触塞;第一绝缘膜,所述第一绝缘膜覆盖所述浮置扩散上的第一接触塞的周边、所述光电转换器、以及所述传送MOS晶体管的栅极电极;第二接触塞, 所述第二接触塞与所述多个MOS晶体管中的至少一个MOS晶体管的杂质扩散区连接;以及第二绝缘膜,所述第二绝缘膜覆盖所述杂质扩散区上的第二接触塞的周边、以及所述至少一个MOS晶体管的栅极电极,其中所述第二绝缘膜没有被布置在所述传送MOS晶体管的栅极电极上。本发明的第三方面提供了一种照相机,其包括如在本发明的第一方面或第二方面中限定的光电转换装置;以及处理单元,所述处理单元被配置为处理从所述光电转换装置输出的信号。从以下参考附图的示例性实施例的描述中本发明更多的特征将变得清晰。


图IA和图IB是示出光电转换装置的布置的图;图2A和图2B是示出根据第一实施例的光电转换装置的布置的截面图;图3A和图;3B是示出根据第二实施例的光电转换装置的布置的截面图;图4A和图4B是示出根据第三实施例的光电转换装置的布置的截面图;以及图5A和图5B是示出根据第四实施例的光电转换装置的布置的截面图。
具体实施例方式根据本发明实施例的光电转换装置包括像素区,该像素区包括光电转换器和用于将由光电转换器产生的电荷传送到浮置扩散的传送MOS晶体管。像素区典型地可以包括一维或二维地布置的多个像素。每个像素可以至少包括光电转换器和传送MOS晶体管。每个像素还可以包括用于读出与被传送到浮置扩散的电荷对应的信号的放大器MOS晶体管。放大器MOS晶体管可以由多个像素共享。此外,每个像素可以包括用于使浮置扩散的电势复位的复位MOS晶体管。复位MOS晶体管也可以由多个像素共享。将参考图IA例示性地说明光电转换装置的像素PIX的布置。像素101至少包括光电转换器1和传送MOS晶体管2。在图IA所示出的示例中,像素101还包括复位MOS晶体管4和放大器MOS晶体管6。光电转换器1作为例如光电二极管来起作用,其将入射光转换成电荷。传送MOS晶体管2将由光电转换器1产生的电荷传送到浮置扩散3。将电荷传送到浮置扩散3改变了浮置扩散3的电势。放大器MOS晶体管6的栅极电极与浮置扩散3 电连接。放大器MOS晶体管6向信号线7输出与浮置扩散3的电势的变化对应的信号。作为放大器电路的源极跟随器电路可以由电源(电源线)Vdd、放大器MOS晶体管 6、信号线7和恒流源8形成。选择MOS晶体管5被布置在电源线Vdd和放大器MOS晶体管 6之间或者在放大器MOS晶体管6和信号线7之间,并且被导通以便选择选择MOS晶体管5 所属的像素101。可以省略选择MOS晶体管5,并且可以通过由复位MOS晶体管4控制浮置扩散的复位电势来选择像素。将参考图IB例示性地描述光电转换装置的布置。光电转换装置包括具有至少一个像素101的像素区601以及外围电路区602。典型地,可以将多个像素101布置在像素区601中。外围电路区602是除像素区601以外的区域。外围电路区602可以包括用于选择像素区601中的要传送信号的像素101的扫描电路603以及用于处理从所选择的像素101 输出的信号的处理电路(读出电路)604。图2A和图2B是示出根据第一实施例的光电转换装置的布置的截面图。图2A是示出像素区601的像素101的一部分的截面图。图2B是示出外围电路区602的一部分的截面图。附图标记31表示传送MOS晶体管2的栅极电极;32表示复位MOS晶体管4的栅极电极;30表示用于MOS晶体管的栅极绝缘膜;并且33表示形成光电转换器1的一个半导体区的第一导电类型的半导体区。注意,第一导电类型具有用作信号的电荷作为多数载流子,并且如果用作信号的电荷是电子则第一导电类型是η型。相反,如果用作信号的电荷是空穴,则第一导电类型是P型。在假设第一导电类型是η型的情况下来说明本实施例。附图标记39表示作为与第一导电类型相反的第二导电类型的半导体区的阱;38 表示半导体衬底;并且35表示如下的第二导电类型的半导体区,即该第二导电类型的半导体区用于使形成光电转换器1的一个半导体区的第一导电类型的半导体区33具有埋入的结构。浮置扩散3被形成在阱39中。附图标记34表示施加有复位电势的第一导电类型的半导体区,其用作复位MOS晶体管4的漏极(杂质扩散区)。附图标记45表示元件隔离膜(硅氧化物)。元件隔离方法包括LOCOS、STI和台面(mesa)型方法,并且可以使用它们中的任何一种方法。扩散隔离可以被用作元件隔离方法。附图标记36a表示硅氮化物;并且37a表示覆盖硅氮化物36a的硅氧化物。硅氮化物 36a和硅氧化物37a的组合具有减少光电转换器1的表面上的反射的效果。在栅极电极31 的第二侧表面SS2上,硅氮化物36a和硅氧化物37a形成与栅极电极31的第二侧表面SS2 接触的侧间隔件。例如,可以将硅氮化物36a的膜厚设定为15 85nm,并且将硅氧化物37a 的膜厚设定为250nm或更小。由硅氮化物36a和硅氧化物37a形成的第一绝缘膜10被连续地布置为覆盖光电转换器1、传送MOS晶体管2的栅极电极31的第一侧表面SS1、以及在传送MOS晶体管2的栅极电极31的上表面上的第一区域USl。注意,第一绝缘膜10不限于硅氮化物36a和硅氧化物37a的组合,并且可以由例如单层硅氮化物形成。栅极绝缘膜30 延伸的栅极绝缘膜30b被设置在第一绝缘膜10下方。传送MOS晶体管2的源极与形成光电转换器1的一个半导体区的半导体区33共通。浮置扩散3还用作传送MOS晶体管2的漏极或复位MOS晶体管4的源极。浮置扩散3 经由接触塞41al与放大器MOS晶体管6的栅极电极连接。此外,半导体区34经由接触塞 41a2与复位电压线VRES(未示出)连接。图2B示出外围电路区602的多个MOS晶体管中的至少一个MOS晶体管的布置。附图标记42表示外围电路区602的MOS晶体管的栅极电极;43表示具有高杂质浓度的第一导电类型的半导体区(杂质扩散区),其分别用作源极和漏极;并且44表示具有比半导体区43的杂质浓度低的低杂质浓度的第一导电类型的半导体区,用于提供LDD结构。硅氮化物36b和硅氧化物37b形成与栅极电极42的侧表面接触的侧间隔件。在同样的淀积步骤中利用同样的材料来淀积硅氮化物36a和36b。在同样的淀积步骤中利用同样的材料来淀积硅氧化物37a和37b。在该情况下,可以确定硅氮化物36a和 36b以及硅氧化物37a和37b的材料和厚度,使得获得与MOS晶体管的栅极电极接触的侧间隔件的适当的尺寸以及对光电转换器1的抗反射效果两者。在该示例中,使用硅氮化物36a和36b以及硅氧化物37a和37b。然而,可以由单层硅氮化物形成第一绝缘膜10。图2A中例示的像素区601的复位MOS晶体管4具有与外围电路区602的MOS晶体管类似的LDD结构。S卩,浮置扩散3包括用于提供LDD结构的具有低杂质浓度的半导体区(η-)。虽然在图2Α中未示出,但是除像素101的复位MOS晶体管4以外的MOS晶体管 (例如,放大器MOS晶体管和选择MOS晶体管)也可以具有LDD结构。在第一实施例中,可以同时形成硅氮化物36a和36b。还可以同时形成硅氧化物37a和37b。这提供了减少制造成本的优点。在用于形成侧间隔件的干法刻蚀中在光电转换器1上存在第一绝缘膜10。这具有保护光电转换器1免受由刻蚀所引起的损伤的效果。为了保护光电转换器1,期望将第一绝缘膜10设计为即使在形成图形中出现未对准时也被形成在光电转换器1上。为此,第一绝缘膜10覆盖第一侧表面SSl和第一区域USl以便压在传送MOS晶体管2的栅极电极31的上表面的一部分(第一区域)之上。第一绝缘膜10可以部分地压在元件隔离膜之上。可以使用光电转换器1上的第一绝缘膜10(36a和37a)作为用于通过离子注入形成外围电路区602的MOS晶体管的杂质扩散区(高杂质浓度区)43、像素101的复位MOS晶体管4的杂质扩散区34和浮置扩散3的掩模。附图标记11表示在用于在层间绝缘膜40中形成用于形成接触塞41al和41a2以及接触塞41b的接触孔的各向异性干法刻蚀中用作刻蚀停止体的第二绝缘膜。第二绝缘膜11可以是例如硅氮化物。用于形成接触塞的接触孔的抗蚀剂图形可能由于未对准而进入元件隔离膜45的区域。由于存在相对于层间绝缘膜40具有高刻蚀选择比的第二绝缘膜 11,因此在刻蚀层间绝缘膜40时接触孔(接触塞)的底部不与元件隔离膜45的底部和侧表面上的阱39接触。因此,可以抑制在操作中的MOS晶体管的杂质扩散区(源极或漏极) 和阱39之间的电流的流动。该效果如在日本专利公开No. 2004-228425中所描述的。类似地,可以抑制由于用于形成被设计成与栅极电极连接的接触塞的接触孔的未对准而引起的穿透。如上所述,可以使用第二绝缘膜11来实现其中在接触塞和扩散层之间或在接触塞和栅极电极之间的覆盖裕度小的布局,由此实现精细的像素结构。第一绝缘膜10没有被布置在传送MOS晶体管2的栅极电极31的上表面的第二区域US2上。第二绝缘膜11被连续地布置为覆盖浮置扩散3上的接触塞41al的周边、以及栅极电极31的第二区域US2和第二侧表面SS2,但没有被布置在第一区域USl上。S卩,第一绝缘膜10和第二绝缘膜11在传送MOS晶体管2的栅极电极31上彼此不交迭。换句话说, 在传送MOS晶体管2的栅极电极31上的第一绝缘膜10的上表面与其中形成有接触塞的层间绝缘膜40接触。换言之,第一绝缘膜仅仅被布置在栅极电极的上表面的第一区域上,而第二绝缘膜仅仅被布置在栅极电极的上表面的与第一区域不同的第二区域上。利用这种结构,与其中第一绝缘膜10和第二绝缘膜11在栅极电极31上彼此交迭的布置相比,可以减少光电转换装置的段差(st印),由此提高灵敏度和F数比例性。传送MOS晶体管的栅极电极31的第一侧表面SSl作为传送MOS晶体管的栅极电极的光电转换器1侧的侧表面。传送MOS晶体管的栅极电极31的第二侧表面SS2作为传送MOS晶体管的栅极电极的浮置扩散3侧的侧表面。栅极电极31的上表面的第一区域USl是与第二区域US2相比的在栅极电极31的上表面上的光电转换器1侧的区域。层间绝缘膜40被形成在第二绝缘膜11上。层间绝缘膜40可以是例如NSG膜、BPSG膜或HDP-SiO膜,但是可以是其它膜。使用诸如CMP工艺的平坦化方法来使层间绝缘膜40 的表面平坦化。CMP工艺中的抛光量(由CMP工艺引起的膜厚的减少)取决于在CMP工艺之前的层间绝缘膜40的表面的段差。随着段差的增大,抛光量变得更大。如果抛光量变得更大,则抛光量的面内的变化相应地增大。考虑到抛光量的面内的变化,在CMP工艺之后的层间绝缘膜40的厚度被设定为对于稳定管理足够的厚度。因此,随着紧挨着在CMP工艺之前的段差越小,可以在CMP工艺之后获得越薄的层间绝缘膜40。在像素101中,其中布置有诸如传送MOS晶体管2之类的MOS晶体管的栅极电极的区域的距离阱39或半导体衬底的高度比其中布置有光电转换器1的区域的高度高出了栅极电极的厚度。因此,通过使用其中第一绝缘膜10和第二绝缘膜11在MOS晶体管、特别是传送MOS晶体管2的栅极电极31 上彼此不交迭的结构,可以形成薄的层间绝缘膜40。这可以提高灵敏度和F数比例性。如上所述,期望的是,用作抗反射膜的第一绝缘膜10压在作为不可避免地与光电转换器1邻近的MOS晶体管的传送MOS晶体管2的栅极电极31的一部分(第一区域USl)之上。传送 MOS晶体管2具有与接触塞41al连接的作为一个主电极(杂质扩散区)的浮置扩散3。用作刻蚀停止体的第二绝缘膜11被连续地布置为覆盖浮置扩散3上的接触塞41al的周边、 以及栅极电极31的第二区域US2和第二侧表面SS2。这是因为,用于形成接触塞的接触孔的抗蚀剂图形可能由于未对准而被布置在除浮置扩散3之外的部分上。即,第一绝缘膜10 和第二绝缘膜11两者都压在栅极电极31之上但是它们在栅极电极31上彼此不交迭。这提供了减少层间绝缘膜40的厚度、即光电转换器1上的结构的厚度的优点。在本实施例中,例示CMP作为平坦化方法。然而,即使采用其它平坦化方法也可以获得同样的效果。虽然未示出,但是如果存在其中栅极电极31压在元件隔离膜45之上的部分,并且第一绝缘膜10存在于其上,则预望更大的效果。然而,本发明不限于这种布置。在图2A和图2B中,省略了诸如布线层、滤色器和微透镜之类的结构。然而,光电转换装置自然具有布线层,并且可以包括滤色器和/或微透镜。图3A和图;3B是示出根据第二实施例的光电转换装置的布置的截面图。图3A是示出像素区601的像素101的一部分的截面图。图:3B是示出外围电路区602的一部分的截面图。这里没有具体提到的细节遵照第一实施例。在第二实施例中,除了第一绝缘膜10 和第二绝缘膜11在传送MOS晶体管2的栅极电极31上彼此不交迭的布置之外,第一绝缘膜10和第二绝缘膜11在光电转换器1上也彼此不交迭。例如,第一绝缘膜10可以具有包括硅氮化物36a和硅氧化物37a的堆叠的结构,并且第二绝缘膜11可以由单层硅氮化物形成。在光电转换器1的抗反射效果方面,如果第二绝缘膜11具有与硅氧化物37a的折射率不同的折射率,则在第二绝缘膜11和硅氧化物37a之间的界面上的反射率可以上升,由此降低了抗反射效果。在第二实施例中,可以利用其中不形成光电转换器1的第二绝缘膜11 的布置来抑制抗反射效果的降低。图4A和图4B是示出根据第三实施例的光电转换装置的布置的截面图。图4A是示出像素区601的像素101的一部分的截面图。图4B是示出外围电路区602的一部分的截面图。这里没有具体提到的细节遵照第一或第二实施例。在第三实施例中,在包括像素 101的像素区601中布置的MOS晶体管的杂质扩散区(更具体地说,浮置扩散3、复位MOS 晶体管4的杂质扩散区(半导体区34)、以及其它MOS晶体管的杂质扩散区)具有比在外围电路区602中布置的具有LDD结构的MOS晶体管的杂质扩散区43的杂质浓度低的杂质浓度。即,布置在像素区601中的MOS晶体管的杂质扩散区可以仅仅由具有低杂质浓度的半导体区(η-)和用于与接触塞连接的杂质区构成。利用该结构,可以抑制由于布置在包括像素101的像素区601中的MOS晶体管2、4、5和6中的热载流子而引起的特性恶化,并且提高布置在外围电路区602中的MOS晶体管的驱动能力。在第三实施例中,在包括像素101的像素区601中,硅氮化物36a覆盖除诸如接触塞(第一接触塞)41al和41a2之类的接触塞之外的区域。在像素区601中,硅氮化物36a 用作用于自对准接触的刻蚀停止体。在像素区601中,第二绝缘膜11被布置在第一绝缘膜 10上,并且可以被用来防止诸如接触塞41a2之类的接触塞形成在元件隔离膜45的区域上。布置在外围电路区602中的多个MOS晶体管中的至少一个MOS晶体管具有LDD结构。在外围电路区602中,硅氮化物36b仍然作为与MOS晶体管的栅极电极42的侧表面接触的侧间隔件的一部分,但是与接触塞(第二接触塞)41b分隔。接触塞41b可以由自对准接触技术来形成。即,在刻蚀用于形成接触塞41b的接触孔时可以使用覆盖由硅氮化物36b 和硅氧化物37b形成的侧间隔件的第二绝缘膜11作为刻蚀停止体。在其中布置有光电转换器1的区域中,在抗反射效果增大时,将第二绝缘膜11布置在第一绝缘膜10上。同样在第三实施例中,第一绝缘膜10和第二绝缘膜11被布置为使得它们在传送 MOS晶体管2的栅极电极31上彼此不交迭,由此设法提高灵敏度和F数比例性。图5A和图5B是示出根据第四实施例的光电转换装置的布置的截面图。图5A是示出像素区601的像素101的一部分的截面图。图5B是示出外围电路区602的一部分的截面图。这里没有具体提到的细节遵照第一到第三实施例。在第四实施例中,外围电路区 602的多个MOS晶体管中的至少一个MOS晶体管(要求更快的MOS晶体管)的栅极电极42 和杂质扩散区43分别具有包括金属硅化物层4 和43a的自对准硅化物(salicide)结构。 金属硅化物层4 或43a由高熔点金属的硅化合物形成。在像素区601中使用自对准硅化物结构可以增大光电转换器1的漏电流,由此导致白缺陷(white flaw)和暗电流。因此, 像素区601不采用自对准硅化物结构。 金属硅化物层4 或43a可以包含例如钛硅化物、镍硅化物、钴硅化物、钨硅化物、 钼硅化物、钽硅化物、铬硅化物、钯硅化物或钼硅化物。用于防止硅化的保护膜12被形成在其中不要形成硅化物层的区域中。在其中形成有第一绝缘膜10的区域中,由于抑制了金属硅化物层的形成,因此不必要形成保护膜12。因此可以形成保护膜12以便覆盖杂质扩散区 (例如,浮置扩散3和半导体区34)中的接触塞的周边、以及传送MOS晶体管2的栅极电极 31的上表面的第二区域US2和第二侧表面SS2。由于如果像素101包括其中不存在第一绝缘膜10和保护膜12中的任何一个的区域则可以形成硅化物层,因此第一绝缘膜10和保护膜12优选地彼此交迭。注意,通过在形成第二绝缘膜11之前形成用作保护膜12的绝缘膜并且去除其中形成接触孔的那部分来形成保护膜12。同样在第四实施例中,第一绝缘膜10和第二绝缘膜11被布置为使得它们在传送 MOS晶体管2的栅极电极31上彼此不交迭,由此提高灵敏度和F数比例性。在第四实施例中,具有抗反射效果的第一绝缘膜10具有包括硅氮化物36a和硅氧化物37a的堆叠的结构,但是第一绝缘膜10可以由例如单层硅氮化物形成。如果例如单层硅氮化物36a形成第一绝缘膜10并且被用作用于硅化的保护膜,则在形成金属硅化物层时硅氮化物36a的厚度可以通过刻蚀等而减小。通过控制硅氮化物36a的厚度的减小,硅氮化物可以被用来形成第二绝缘膜11,并且包括硅氮化物36a和第二绝缘膜(在该情况下为硅氮化物)11的堆叠的结构可以形成抗反射膜。作为根据上述实施例中的每个实施例的光电转换装置的应用示例,下面将例示性地说明并入光电转换装置的照相机。照相机概念上不仅包括其主要目的是拍照的装置,而且包括附加地设置有拍照功能的装置(例如,个人计算机或便携式终端)。照相机包括已经在上述实施例中例示的根据本发明的光电转换装置、以及用于处理从光电转换装置输出的信号的处理单元。处理单元可以包括例如A/D转换器、以及用于处理从A/D转换器输出的数字数据的处理器。虽然已经参考示例性实施例描述了本发明,但是应当理解,本发明不限于所公开的示例性实施例。以下权利要求的范围将被给予最宽的解释从而包括所有这样的修改、等同的结构与功能。
权利要求
1.一种包括像素区的光电转换装置,所述像素区具有光电转换器和用于将由所述光电转换器产生的电荷传送到浮置扩散的传送MOS晶体管,所述装置包括第一绝缘膜,所述第一绝缘膜被连续地布置为覆盖所述光电转换器、所述传送MOS晶体管的栅极电极的第一侧表面、以及所述栅极电极的上表面的第一区域,而没有被布置在所述栅极电极的上表面的第二区域上,所述第一绝缘膜被配置为用作抗反射膜;与所述浮置扩散连接的接触塞;以及第二绝缘膜,所述第二绝缘膜被连续地布置为覆盖所述浮置扩散上的接触塞的周边、 以及所述栅极电极的第二侧表面和第二区域,而没有被布置在所述第一区域上,所述第二绝缘膜被配置为在形成所述接触塞时用作刻蚀停止体。
2.根据权利要求1所述的装置,还包括与所述栅极电极的第二侧表面接触的侧间隔件,其中所述第一绝缘膜由与所述侧间隔件相同的材料形成。
3.根据权利要求1所述的装置,还包括用于从所述像素区读出信号的外围电路区,其中所述外围电路区包括多个MOS晶体管,并且与所述多个MOS晶体管中的至少一个 MOS晶体管的栅极电极的侧表面接触的侧间隔件由与所述第一绝缘膜相同的材料形成。
4.根据权利要求1所述的装置,其中所述第一绝缘膜具有包括硅氮化物和硅氧化物的堆叠的结构,并且所述第二绝缘膜由硅氮化物形成。
5.根据权利要求1所述的装置,其中所述第一绝缘膜由硅氮化物形成,并且所述第二绝缘膜由硅氮化物形成。
6.根据权利要求1所述的装置,其中在其中布置有光电转换器的区域中所述第二绝缘膜还被布置在所述第一绝缘膜上。
7.根据权利要求1所述的装置,其中在其中布置有光电转换器的区域中所述第二绝缘膜没有被布置在所述第一绝缘膜上。
8.根据权利要求3所述的装置,其中所述外围电路区中的所述多个MOS晶体管中的至少一个MOS晶体管的栅极电极和杂质扩散区分别包括金属硅化物层。
9.根据权利要求8所述的装置,还包括保护膜,所述保护膜覆盖所述传送MOS晶体管的栅极电极的第二区域和第二侧表面、 以及所述浮置扩散上的接触塞的周边,其中所述保护膜防止在形成所述金属硅化物层的步骤中所述浮置扩散的表面和所述第二区域经历硅化。
10.根据权利要求9所述的装置,其中所述保护膜延伸为除了所述传送MOS晶体管的栅极电极的第一区域之外还覆盖所述传送MOS晶体管的栅极电极的第二区域和第二侧表面。
11.根据权利要求1所述的装置,其中所述第一绝缘膜和所述第二绝缘膜在所述栅极电极上彼此不交迭。
12.一种包括像素区和外围电路区的光电转换装置,所述像素区具有光电转换器和用于将由所述光电转换器产生的电荷传送到浮置扩散的传送MOS晶体管,所述外围电路区具有多个MOS晶体管并且从所述像素区读出信号,所述装置包括与所述浮置扩散连接的第一接触塞;第一绝缘膜,所述第一绝缘膜覆盖所述浮置扩散上的第一接触塞的周边、所述光电转换器、以及所述传送MOS晶体管的栅极电极;第二接触塞,所述第二接触塞与所述多个MOS晶体管中的至少一个MOS晶体管的杂质扩散区连接;以及第二绝缘膜,所述第二绝缘膜覆盖所述杂质扩散区上的第二接触塞的周边、以及所述至少一个MOS晶体管的栅极电极,其中所述第二绝缘膜没有被布置在所述传送MOS晶体管的栅极电极上。
13.根据权利要求12所述的装置,还包括侧间隔件,所述侧间隔件与所述外围电路区中的所述至少一个MOS晶体管的栅极电极的侧表面接触,其中所述侧间隔件由与所述第一绝缘膜相同的材料形成。
14.根据权利要求12所述的装置,其中所述第一绝缘膜具有包括硅氮化物和硅氧化物的堆叠的结构,并且所述第二绝缘膜由硅氮化物形成。
15.一种照相机,包括根据权利要求1到14中任何一个所述的光电转换装置;以及处理单元,所述处理单元被配置为处理从所述光电转换装置输出的信号。
全文摘要
本发明涉及光电转换装置和照相机。该光电转换装置包括像素区,该像素区具有光电转换器和用于将在该光电转换器中的电荷传送到浮置扩散的传送MOS晶体管,该光电转换装置包括第一绝缘膜,该第一绝缘膜被连续地布置为覆盖该光电转换器、以及该传送MOS晶体管的栅极电极的第一侧表面和上表面的第一区域,而没有被布置在该上表面的第二区域上,该第一绝缘膜被配置为用作抗反射膜;与该浮置扩散连接的接触塞;以及第二绝缘膜,该第二绝缘膜被连续地布置为覆盖该浮置扩散上的接触塞的周边、以及第二侧表面和第二区域,而没有被布置在第一区域上,该第二绝缘膜被配置为在形成该接触塞中用作刻蚀停止体。
文档编号G03B19/02GK102254921SQ20111012353
公开日2011年11月23日 申请日期2011年5月13日 优先权日2010年5月18日
发明者板桥政次 申请人:佳能株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1