表面等离子体增强全内反射荧光显微成像方法及装置制造方法

文档序号:2702093阅读:247来源:国知局
表面等离子体增强全内反射荧光显微成像方法及装置制造方法
【专利摘要】本发明提出了一种基于高级次轴对称偏振光束的表面等离子体增强全内反射荧光显微成像方法,包括步骤:激光器发出的激光束经过针孔滤波器进行空间滤波,被准直透镜准直为平行光束;该平行光束入射到偏振转换系统中进行偏振态转换;获得的高级次轴对称偏振光束进一步通过光瞳滤波器和环形光阑进行振幅及相位调制;调制后的高级次轴对称偏振光束经过二向色分束镜反射到高数值孔径的聚焦物镜中进行聚焦,并射入“玻璃基底-金属薄膜-样品”的三层结构上;激发的荧光信号通过该三层结构反射回聚焦物镜中,并被其扩束,通过二向色分束镜透射,经过滤波片滤波后,最终被一聚光镜聚焦到针孔阵列板上,通过探测器将光信号转换为电信号,并进一步处理。
【专利说明】表面等离子体增强全内反射荧光显微成像方法及装置
【技术领域】
[0001 ] 本发明涉及表面等离子体增强全内反射荧光显微成像技术,具体涉及一种基于高级次轴对称偏振光束的表面等离子体增强全内反射荧光显微成像方法及装置。
【背景技术】
[0002]全内反射突光显微成像(TotalInternal Reflection FluorescenceMicroscopy, TIRFM)通过使入射光束超过临界角入射以在玻璃-样品界面产生倏逝场,从而有选择地激发界面附近的荧光分子,实现细胞微细结构的显微成像。全内反射荧光显微成像技术不仅可以帮助进一步理解细胞功能,同时改进了探测信号的信噪比。但是,当对生物微结构进行动态快速成像时,帧采集速率较大,通常大于100帧/秒,需要进一步增加荧光信号强度。为此,提出了基于表面等离子体增强全内反射荧光显微成像技术(SurfacePlasmon Enhanced TIRFM, SPE-TIRFM),该技术利用表面等离子体增强效应提高了荧光激发效率,同时进一步抑制了背景噪声。最近几年,关于SPE-TIRFM的研究取得了很大的进展,受到了业界的广泛关注,包括Nikon在内的多家公司也开发了相应产品。总体来说,基于表面等离子体增强全内反射荧光显微成像技术作为全内反射荧光显微成像技术的一个典型方案,具有很重要的研究价值,对于进一步提高单分子荧光成像的空间分辨率和成像速度也具有重要的应用价值。

【发明内容】

[0003]本发明将一种独特的空间偏振变化的矢量光束一高级次轴对称偏振光束,引入到基于表面等离子体增强全内反射荧光显微成像技术系统中,通过合理的系统设计,以进一步提闻系统的成像性能。
[0004]根据本发明的一个方面,提供了一种基于高级次轴对称偏振光束的表面等离子体增强全内反射荧光显微成像方法,包括如下步骤:激光器发出的激光束经过针孔滤波器进行空间滤波,然后被准直透镜准直为平行光束;该平行光束入射到偏振转换系统中进行偏振态转换,获得高级次轴对称偏振光束;获得的高级次轴对称偏振光束进一步通过光瞳滤波器和环形光阑进行振幅及相位调制,其中环形光阑的作用是阻挡光束中间区域部分入射到聚焦物镜中,从而消除由于中间区域光束透射进行荧光激发导致的背景噪声;经过调制后的高级次轴对称偏振光束经过二向色分束镜反射到高数值孔径的聚焦物镜中进行聚焦,并射入“玻璃基底-金属薄膜-样品”的三层结构上;根据表面等离子体波激发需要满足的相位匹配条件,只有满足某一谐振角度范围的光束才能透射过三层结构,在金属表面激发较强的表面等离子体波光场;在金属表面激发的表面等离子体波沿着表面以行波的形式传播,彼此干涉形成一干涉场,但是该波的强度沿着垂直金属表面的轴向以指数形式衰减,因此,该表面等离子体波场只能激发金属界面附近的荧光分子;激发的荧光信号通过“样品-金属薄膜-玻璃基底”三层结构反射回聚焦物镜中,并被其扩束,通过二向色分束镜透射,经过滤波片滤波后,最终被一聚光镜聚焦到针孔阵列板上,在针孔后面放置探测器,将光信号转换为电信号,并进一步送入计算机进行后续的分析处理。
[0005]优选地,所述方法还包括采用光束偏转系统,以调控聚焦光束的聚焦位置,从而控制在金属-样品表面激发的表面等离子体波场的区域,进而控制荧光分子的激发区域。
[0006]优选地,所述光束偏振系统采用基于棱镜的光束偏转功能,将入射的平行光束转换为不同偏转角度的平行光束,然后采用一对透镜组成的望远镜结构,将入射的平行光束转换为偏转方向和光斑大小可控的平行光束,使满足偏转方向和光斑大小的光束入射进聚焦物镜,其中光束偏转角度以及光斑大小与两透镜的焦距比值有关。
[0007]优选地,光束偏转系统使用一电控偏转器进行光束偏转。
[0008]优选地,所述高级次轴对称偏振光束的偏振级次小于5。
[0009]根据本发明的另一方面,提供了一种基于高级次轴对称偏振光束的表面等离子体增强全内反射荧光显微成像装置:激光器,所述激光器发出激光束;针孔滤波器和准直透镜,激光束经过针孔滤波器进行空间滤波,然后被准直透镜准直为平行光束;偏振转换系统,该平行光束入射到偏振转换系统中进行偏振态转换,获得高级次轴对称偏振光束;光瞳滤波器和环形光阑,获得的高级次轴对称偏振光束进一步通过光瞳滤波器和环形光阑进行振幅及相位调制,其中环形光阑的作用是阻挡光束中间区域部分入射到聚焦物镜中,从而消除由于中间区域光束透射进行荧光激发导致的背景噪声;聚焦物镜,经过调制后的轴对称偏振光束经过二向色分束镜反射到高数值孔径的聚焦物镜中进行聚焦,并射入“玻璃基底-金属薄膜-样品”的三层结构上,根据表面等离子体波激发需要满足的相位匹配条件,只有满足某一谐振角度范围的光束才能透射过三层结构,在金属表面激发较强的表面等离子体波光场,在金属表面激发的表面等离子体波沿着表面以行波的形式传播,彼此干涉形成一干涉场,但是该波的强度沿着垂直金属表面的轴向以指数形式衰减,因此,该表面等离子体波场只能激发金属界面附近的荧光分子,激发的荧光信号通过“样品-金属薄膜-玻璃基底”三层结构反射回聚焦物镜中,并被其扩束,针孔阵列板和探测器,经过扩束的光通过二向色分束镜透射,经过滤波片滤波后,最终被一聚光镜聚焦到针孔阵列板上,在针孔后面放置探测器,将光信号转换为电信号;分析处理系统,电信号被送入计算机进行后续的分析处理。
[0010]优选地,还包括光束偏转系统,用于调控聚焦光束的聚焦位置,从而控制在金属-样品表面激发的表面等离子体波场的区域,进而控制荧光分子的激发区域。
[0011]优选地,所述光束偏振系统采用基于棱镜的光束偏转功能,将入射的平行光束转换为不同偏转角度的平行光束,然后采用一对透镜组成的望远镜结构,将入射的平行光束转换为偏转方向和光斑大小可控的平行光束,使满足偏转方向和光斑大小的光束入射进油浸物镜,其中光束偏转角度以及光斑大小与两透镜的焦距比值有关。
[0012]优选地,光束偏转系统使用一电控偏转器进行光束偏转。
[0013]优选地,所述高级次轴对称偏振光束的偏振级次小于5。
【专利附图】

【附图说明】
[0014]图1 (a)是初始偏振方位角为-45°的柱矢量光束(P=I),图1 (b)是径向偏振光,图1 (C)是切向偏振光,图1 (d)是偏振级次P=2的柱矢量光束,图1 (e)是P=3的柱矢量光束,图1(f)是P=4的柱矢量光束,其中箭头表示对应位置线偏振的方位。[0015]图2(a)是基于轴对称偏振光束的基于表面等离子体增强全内反射荧光显微成像技术结构示意图,图2(b)是差动共焦检测系统图,图2(c)是基于旋转棱镜的光束偏转系统,以及图2(d)是基于电控偏转器的光束偏转系统。
[0016]图3(a)和图3(b)是生成高级次轴对称偏振光束的两种典型方法。
[0017]图4是理论计算的P偏振光在玻璃/金属薄膜/介质系统中的反射率随入射角度的变化曲线。
[0018]图5(a)-图5(b)是径向偏振光在玻璃-样品界面附近获得的表面等离子体波场强度分布,图5 (c)-图5 (d)是偏振级次为4的轴对称偏振光束在玻璃-样品界面附近获得的SPP场强度分布。
[0019]图6 (a)-图6 (b)分别是偏振级次为8和20的聚焦的轴对称偏振光束激发的SPP横截面光场强度分布,其中图6 (a)对应偏振级次8,图6 (b)对应偏振级次20。
[0020]图7是针孔阵列板的结构示意图。
【具体实施方式】
[0021]本发明将一种独特的矢量光束一高级次轴对称偏振光束引入到全内反射荧光显微成像系统中,以期进一步提升系统的成像性能。
[0022]轴对称偏振光束是一类具有轴对称偏振光束特性的矢量光束,对称轴为光束的传播轴。在光束横截面上任意一点(中心点除外)都为线偏振,沿圆周方向的偏振方位变化满足如下关系,
[0023]Φ (r, Φ) =P X Φ + Φ ο (P ≠ O) (I)
[0024]其中,P称为偏振级次,表示光束沿圆周方向变化360°时偏振方位变化的周期数;Φο是当φ=0时对应的初始偏振方位角,其值与X轴的选取有关。当偏振级次P=I时,该类型光束称为柱矢量光束,光束在横截面上的线偏振方位呈柱对称分布;特别地,当Φ0=0°时,为径向偏振光,当Φο=90°时,为切向偏振光,如图l(a)-(c)所示。当偏振级次P大于I时,称之为高级次轴对称偏振光束,如图l(d)_(f)所示。很显然,不同的偏振级次和初始偏振方位角对应不同形式的轴对称偏振光束,其光束横截面上的偏振分布形式也不同。
[0025]高级次轴对称偏振光束因为独特的偏振分布,具有一些独特的聚焦特性,例如在高数值孔径聚焦的情况下,可以获得多个超小聚焦光斑,具体可参考文献“高偏振级次轴对称偏振光束的聚焦(Focusing of high polarization order axially-symmetricpolarized beams).Chin Opt Lett, 2009, 7 (10):938-940.”。当米用高级次轴对称偏振光束激发表面等离子体波(Surface Plasmon Polaritons, SPPs)时,在金属表面的等离子体波相互干涉产生多个聚焦光斑,具体参考周哲海等人的文献“通过高度聚焦高偏振级次轴对称偏振光束形成的表面等离子体干涉(Surface plasmon interference formed by highlyfocused higher polarization order axially-symmetric polarizd beams).Chin OptLett, 2010, 8(12): 1178-1181”。
[0026]本发明基于高级次轴对称偏振光束所具有的这种独特的表面等离子体波激发特性,建立了如图2所示的基于表面等离子体增强全内反射荧光显微成像技术(SPE-TIRFM)系统。该系统基于克雷奇曼结构,利用聚焦的高级次轴对称偏振光束激发表面等离子体波,从而激发金属表面附近的荧光分子,因为表面等离子波形成的焦斑处于亚波长量级,因为可以实现生物样品微纳米结构的显微成像。
[0027]如图2所示,系统的工作原理为:(I)激光器I发出的激光束首先经过一针孔滤波器2进行空间滤波,然后被准直透镜3准直为平行光束;该平行光束入射进一偏振转换系统4中进行偏振态转换,获得轴对称偏振光束;获得的轴对称偏振光束进一步通过光瞳滤波器5和环形光阑6进行振幅及相位调控,其中环形光阑6的作用是阻挡光束中间区域部分入射到油浸物镜8中,从而消除由于中间区域光束透射进行荧光激发导致的背景噪声。经过调制后的轴对称偏振光束经过二向色分束镜11反射进一高数值孔径的油浸物镜8中进行聚焦,照射到“玻璃基底9'-金属薄膜9-样品10”的三层结构上。
[0028](2)系统采用了一种克雷奇曼的表面等离子体波激发机制,即通过高数值孔径的油浸物镜8得到一聚焦激光束,然后该聚焦光束入射到一“玻璃基底9'-金属薄膜9-样品10”的三层结构上,根据表面等离子体波激发需要满足的相位匹配条件,只有满足某一谐振角度范围的光束才能透射过三层结构,在金属表面激发较强的表面等离子体波光场。因为聚焦光束中包含很多不同角度的光束,如果聚焦透镜的数值孔径足够大,则就有满足谐振条件的光束入射到三层结构上,从而实现金属表面等离子体波的激发。
[0029](3)在金属表面激发的表面等离子体波沿着表面以行波的形式传播,彼此干涉形成一干涉场,但是该波的强度沿着垂直金属表面的轴向以指数形式衰减,深度通常只有几百纳米。因此,该表面等离子体波场只能激发金属界面附近的荧光分子,如果能进一步控制表面等离子体波场的横向尺寸,则可以实现更小区域荧光分子的激发,从而实现更高空间分辨率的显微探测。激发的荧光信号通过“样品10-金属薄膜9-玻璃基底9' ”三层结构反射回油浸物镜8中,并被其扩束,通过二向色分束镜11透射,经过滤波片12滤波后,最终被一聚光镜13聚焦到针孔阵列板14上,在针孔后面放置探测器15,将光信号转换为电信号,并进一步送入计算机进行后续的分析处理,
[0030]该倏逝场沿着玻璃界面传播发生干涉,沿着垂直方向强度以指数形式衰减,穿透深度在百纳米量级,因此倏逝场只对界面附近的样品进行荧光激发,探测的厚度很薄,背景噪声被极大抑制。倏逝场激发的突光信号经过二向色分束镜11和滤波片12后被一聚光镜13聚焦到一针孔阵列板14上,针孔阵列板后放置一光电探测器15,探测的信号进一步输送到计算机中进行后续分析处理。基于该探测针孔可实现一种共焦成像关系,即激发样品的聚焦光束的聚焦点与聚光镜聚焦荧光信号的聚焦点形成共轭成像关系,可进一步提高TIRFM成像的轴向分辨率和灵敏度。
[0031]在图2(a)中,可利用多种方法将准直光束转换为高级次轴对称偏振光束,这里列举2种典型的方法:(a)基于4f系统和空间光调制器的自相干分解与合成生成方法,具体可参考文献“用空间光调制器和共光路干涉测量布置生成任意矢量光束(Generationof arbitrary vector beams with a spatial light modulator and a common pathinterferometric arrangement).0pt.Lett.,32:3549,2007,,。(2)基于空间偏振转换器的生成方法。设计一种由多个半波片组成的分块光学器件,使每个半波片沿着圆周方向的快轴呈一定规律变化,可将入射的线偏振光转换为振动方向空间变化的线偏振光,具体可参考周哲海等人的中国发明专利申请CN201210562648.9——“偏振转换器、矢量光束生成系统及方法”。[0032]图3(a)和图3(b)是生成高级次轴对称偏振光束的两种典型方法,其中SLM为空间光调制器,Pl为偏振片1,L1为傅里叶变换透镜1,L2为傅里叶变换透镜2,F为空间滤波器,G为Ronchi光栅。
[0033]采用如图2(b)所示的差动共焦检测系统,则可以进一步提高系统轴向分辨率和灵敏度。关于差动共焦检测技术,可参考J B Tan等人的文献“基于差动共焦显微技术的光学聚焦检测的理论分析和性质研究(Theoretical analysis and property study ofoptical focus detection based on differential confocal microscopy).MeasurementScience and Technology, 13(88):1289-1293,2002”。
[0034]同时,为了实现样品的三维扫描,系统引入了如图2(c)和图2(d)所示的光束偏转系统,以调控聚焦光束的聚焦位置,从而控制在金属-样品表面激发的SPP场的区域,进而控制荧光分子的激发区域。其中,图2(c)基于棱镜33的光束偏转功能,将入射的平行光束转换为不同偏转角度的平行光束,然后采用一双透镜31和32组成的望远镜结构,将入射的平行光束转换为偏转方向和光斑大小可控的平行光束,其中光束偏转角度以及光斑大小与两透镜的焦距比值有关。最终,使满足偏转方向和光斑大小的光束入射进油浸物镜。与图2(c)不同,图2(d)所不的光束偏转系统使用一电控偏转器36进行光束偏转,如基于声光效应或磁光效应的光束偏转器。
[0035]通常情况下,高级次轴对称偏振光束具有如下的光场复振幅分布,
[0036]Επι(ι.,φ,ζ) = ΑΡ(τ){οο$[(Ρ-?)φ + φ?]βr+5?η[(Ρ-?)φ + φ?]βφ]
[0037]其中,A是一常数,代表光场的平均振幅大小;P(r)为光束的光瞳函数,表征了光束的相对振幅及相位分布;P为光束的偏振级次;^、 分别为沿着径向和切向的单位矢量。
[0038]基于矢量衍射理论,可推导出高级次轴对称偏振光束在金属-样品界面产生的SPP场分布,
【权利要求】
1.一种基于高级次轴对称偏振光束的表面等离子体增强全内反射荧光显微成像方法,包括如下步骤: 激光器发出的激光束经过针孔滤波器进行空间滤波,然后被准直透镜准直为平行光束; 该平行光束入射到偏振转换系统中进行偏振态转换,获得高级次轴对称偏振光束;获得的高级次轴对称偏振光束进一步通过光瞳滤波器和环形光阑进行振幅及相位调制,其中环形光阑的作用是阻挡光束中间区域部分入射到聚焦物镜中,从而消除由于中间区域光束透射进行荧光激发导致的背景噪声; 经过调制后的高级次轴对称偏振光束经过二向色分束镜反射到高数值孔径的聚焦物镜中进行聚焦,并射入“玻璃基底-金属薄膜-样品”的三层结构上; 根据表面等离子体波激发需要满足的相位匹配条件,只有满足某一谐振角度范围的光束才能透射过三层结构,在金属表面激发较强的表面等离子体波光场; 在金属表面激发的表面等离子体波沿着表面以行波的形式传播,彼此干涉形成一干涉场,但是该波的强度沿着垂直金属表面的轴向以指数形式衰减,因此,该表面等离子体波场只能激发金属界面附近的荧光分子; 激发的荧光信号通过“样品-金属薄膜-玻璃基底”三层结构反射回聚焦物镜中,并被其扩束,通过二向色分束镜透射,经过滤波片滤波后,最终被一聚光镜聚焦到针孔阵列板上,在针孔后面放置探测器,将光信号转换为电信号,并进一步送入计算机进行后续的分析处理。
2.如权利要求1所述的表面等离子体增强全内反射荧光显微成像方法,其中,还包括采用光束偏转系统,以调控聚焦光束的聚焦位置,从而控制在金属-样品表面激发的表面等离子体波场的区域,进而控制荧光分子的激发区域。
3.如权利要求2所述的表面等离子体增强全内反射荧光显微成像方法,其中,所述光束偏振系统采用基于棱镜的光束偏转功能,将入射的平行光束转换为不同偏转角度的平行光束,然后采用一对透镜组成的望远镜结构,将入射的平行光束转换为偏转方向和光斑大小可控的平行光束,使满足偏转方向和光斑大小的光束入射进聚焦物镜,其中光束偏转角度以及光斑大小与两透镜的焦距比值有关。
4.如权利要求2所述的表面等离子体增强全内反射荧光显微成像方法,其中,光束偏转系统使用一电控偏转器进行光束偏转。
5.如权利要求1所述的表面等离子体增强全内反射荧光显微成像方法,所述高级次轴对称偏振光束的偏振级次小于5。
6.—种基于高级次轴对称偏振光束的表面等离子体增强全内反射荧光显微成像装置: 激光器,所述激光器发出激光束; 针孔滤波器和准直透镜,激光束经过针孔滤波器进行空间滤波,然后被准直透镜准直为平行光束; 偏振转换系统,该平行光束入射到偏振转换系统中进行偏振态转换,获得高级次轴对称偏振光束; 光瞳滤波器和环形光阑,获得的高级次轴对称偏振光束进一步通过光瞳滤波器和环形光阑进行振幅及相位调制,其中环形光阑的作用是阻挡光束中间区域部分入射到聚焦物镜中,从而消除由于中间区域光束透射进行荧光激发导致的背景噪声; 聚焦物镜,经过调制后的轴对称偏振光束经过二向色分束镜反射到高数值孔径的聚焦物镜中进行聚焦,并射入“玻璃基底-金属薄膜-样品”的三层结构上,根据表面等离子体波激发需要满足的相位匹配条件,只有满足某一谐振角度范围的光束才能透射过三层结构,在金属表面激发较强的表面等离子体波光场,在金属表面激发的表面等离子体波沿着表面以行波的形式传播,彼此干涉形成一干涉场,但是该波的强度沿着垂直金属表面的轴向以指数形式衰减,因此,该表面等离子体波场只能激发金属界面附近的荧光分子,激发的荧光信号通过“样品-金属薄膜-玻璃基底”三层结构反射回聚焦物镜中,并被其扩束, 针孔阵列板和探测器,经过扩束的光通过二向色分束镜透射,经过滤波片滤波后,最终被一聚光镜聚焦到针孔阵列板上,在针孔后面放置探测器,将光信号转换为电信号; 分析处理系统,电信号被送入计算机进行后续的分析处理。
7.如权利要求6所述的表面等离子体增强全内反射荧光显微成像装置,其中,还包括光束偏转系统,用于调控聚焦光束的聚焦位置,从而控制在金属-样品表面激发的表面等离子体波场的区域,进而控制荧光分子的激发区域。
8.如权利要求7所述的表面等离子体增强全内反射荧光显微成像装置,其中,所述光束偏振系统采用基于棱镜的光束偏转功能,将入射的平行光束转换为不同偏转角度的平行光束,然后采用一对透镜组成的望远镜结构,将入射的平行光束转换为偏转方向和光斑大小可控的平行光束,使满足偏转方向和光斑大小的光束入射进油浸物镜,其中光束偏转角度以及光斑大小与两透镜的焦距比值有关。
9.如权利要求7所述的表面等离子体增强全内反射荧光显微成像装置,其中,光束偏转系统使用一电控偏转器进行光束偏转。
10.如权利要求6所述的表面等离子体增强全内反射荧光显微成像装置,所述高级次轴对称偏振光束的偏振级次小于5。
【文档编号】G02B21/00GK103472576SQ201310415225
【公开日】2013年12月25日 申请日期:2013年9月12日 优先权日:2013年9月12日
【发明者】祝连庆, 周哲海, 郭阳宽, 娄小平, 张荫民, 孟晓辰 申请人:北京信息科技大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1