光电子装置及其阵列的制作方法

文档序号:18897698发布日期:2019-10-18 21:30阅读:157来源:国知局
光电子装置及其阵列的制作方法

本发明涉及一种具有弯曲波导的高速光电子装置,所述弯曲波导均在同一方向上弯曲。



背景技术:

在常规光电子装置中,输入波导将装置的第一边缘上的小平面耦合到光学活性区域。输出波导接着将光学活性区域耦合到装置的第二边缘上的小平面,所述第二边缘整体上与所述第一边缘对置。这是因为将曲率引入到波导中会大大增加由经由波导的传输引起的信号损失。

然而,这些装置更难以混合集成到硅中,并且在呈阵列形式时需要更长的驱动器互连长度,这是因为活性区域不能位于装置的边缘附近。



技术实现要素:

本发明提供一种利用弯曲波导的光电子装置,所述弯曲波导由带隙不同于光学活性区域的材料形成。所述光电子装置可以具有高速光电子部分,并且可以通过短迹线路连接到例如asic的电子芯片。较短的迹线能够有利地导致更快的操作。

因此,在第一方面中,本发明提供一种光电子装置,所述光电子装置包括:光学活性区域,所述光学活性区域具有用于在所述光学活性区域上施加电场的电极布置;第一弯曲波导,所述第一弯曲波导被布置成引导光进入所述光学活性区域中;和第二弯曲波导,所述第二弯曲波导被布置成引导光离开所述光学活性区域;其中所述第一弯曲波导和所述第二弯曲波导由带隙不同于所述光学活性区域的带隙的材料形成,并且其中由所述第一弯曲波导、所述光学活性区域和所述第二弯曲波导形成的总引导路径是u形的。换句话说,所述第一弯曲波导、所述第二弯曲波导和所述光学活性材料一起形成波导u形弯道。所述光学活性区域和所述电极布置一起充当高速光电子部分,所述高速光电子部分在所述光学活性区域的活性材料中制造并且位于“u”的底部。

这样,允许所述光学活性区域的所述高速光电子部分位于所述光电子装置的边缘附近,但是保持装置足够大以制造倒装芯片结合。此外,通过将所述光学活性区域从所述弯曲波导(所述弯曲波导可以是无源的)解耦,能够不需要修改所述弯曲波导而使所述光学活性区域的性能达到最优。

所述第一弯曲波导和/或所述第二弯曲波导可以形成为量子阱互混或外延再生长的波导。

对于需要阵列中的多个光电子装置的高密度集成的应用,例如与asic的共封装,所述第一弯曲波导与所述第二弯曲波导之间的最大距离可以优选地不大于250μm。在高密度集成并非必要的应用中,所述最大距离还可以介于100μm与160μm之间,或大于250μm。

所述第一弯曲波导和/或所述第二弯曲波导的曲率半径小于100μm。所述曲率半径可以介于10μm与80μm之间,最优选地介于30um与80um之间。

所述第一弯曲波导和所述第二弯曲波导各自弯曲90°的角度。

所述光电子装置还可以包括第一电极和第二电极,所述电极安置在所述光学活性区域的第一侧上并且电连接到所述光学活性区域。所述第一电极可以是信号电极,并且所述第二电极可以是接地电极。所述光电子装置还可以包括第三电极,所述第三电极是第二接地电极。

所述第一弯曲波导和所述第二弯曲波导可以是低损耗无源波导。低损耗可以表示在所述光学活性区域的工作波长下,所述第一弯曲波导和所述第二弯曲波导引起的光学信号衰减比所述光学活性区域引起的光学信号衰减少。

所述第一弯曲波导和/或所述第二弯曲波导可以是深刻蚀波导。深刻蚀可以表示所述波导是板波导(与脊形波导相比)或侧壁刻蚀台阶比所述波导的光模的中心深。所述深刻蚀波导可以由磷化铟形成。

所述光电子装置还可以包括:无源低损耗输入波导,所述无源低损耗输入波导耦合到所述第一弯曲波导或作为所述第一弯曲波导的延续部分提供;和无源低损耗输出波导,所述无源低损耗输出波导耦合到所述第二弯曲波导或作为所述第二弯曲波导的延续部分提供;其中所述输入波导和所述输出波导中的每一者具有邻近于所述光电子装置的第一边缘的末端,和与所述第一弯曲波导和所述第二弯曲波导相同的带隙。上文所描述的所述第一电极和所述第二电极可以邻近于所述光电子装置的不同于所述第一边缘的边缘而安置。

所述光电子装置还可以包括:分布反馈激光器,所述分布反馈激光器耦合到所述第一弯曲波导;和输出波导,所述输出波导耦合到所述第二弯曲波导或作为所述第二弯曲波导的延续部分提供;使得所述光电子装置是电吸收调制激光器。所述分布反馈激光器可以由带隙与所述光学活性区域的所述带隙相同或可具有不同于所述光学活性区域和所述第一和第二弯曲波导的带隙的第三带隙的材料形成。

所述光学活性区域的所述高速光电子部分可以是电吸收调制器。当也包括分布反馈激光器时,所述装置可以是电吸收调制激光器(eml)。所述高速光电子部分尤其还可以是mos-cap马赫-曾德(mach-zhender)调制器或环形谐振器调制器。

所述第一弯曲波导和所述第二弯曲波导可以由带隙在波长上低于所述光学活性区域的带隙的材料形成。

所述第一弯曲波导和所述第二弯曲波导中的每一者可以采用欧拉(euler)弯道的形式,能在us9,778,417b1中找到欧拉弯道的实例。

在第二方面中,本发明提供一种安置在芯片上的光电子装置的阵列,其中:每个光电子装置如关于所述第一方面所描述地所安排;并且邻近成对的光电子装置的光学活性区域之间的距离不大于250μm。

每个光电子装置可以具有:输入波导,所述输入波导耦合到每个第一弯曲波导或作为每个第一弯曲波导的延续部分提供;和输出波导,所述输出波导耦合到每个第二弯曲波导或作为每个第二弯曲波导的延续部分提供;其中每一输入波导和每一输出波导具有第一末端,所述第一末端远离其相应光学活性区域并且邻近于所述芯片的同一侧。

每个光电子装置可以具有:分布反馈激光器,所述分布反馈激光器耦合到每个第一弯曲波导;和输出波导,所述输出波导耦合到每个第二弯曲波导或作为每个第二弯曲波导的延续部分提供;使得所述光电子装置是电吸收调制激光器;其中每个输出波导的远离其相应光学活性区域的末端邻近于所述芯片的同一侧。

附图说明

现将参考附图以举例方式来描述本发明的实施方案,在附图中:

图1a至图1c各自示出根据本发明的一实施方案的光电子装置的变体;

图2示出一另外光电子装置,所述装置包括分布反馈激光器(dfb);

图3a和图3b各自示出根据本发明的多个实施方案的其他光电子装置,所述光电子装置包括半导体光放大器(soa);

图4a和图4b各自示出根据本发明的多个实施方案的另外其他光电子装置,其中这些装置还包括半导体光放大器。

图5示出根据本发明的一实施方案的光电子装置的阵列;并且

图6示出根据本发明的一实施方案的光电子装置的阵列。

具体实施方式

图1a示出光电子装置100。所述装置在iii-v半导体芯片或晶片101上形成,并且由例如ingaasp/inp或inalgaas/inp制成。所述装置通常包括光学活性区域102,所述光学活性区域由具有相关联带隙的第一材料结构(例如,ingaasp或inalgaas多量子阱异质结构、ingaasp或inalgaas块体材料)形成。邻近于所述光学活性区域的相反末端的是第一弯曲波导103和第二弯曲波导104。第一弯曲波导103、光学活性区域102和第二弯曲波导104一起形成u形弯道;u形引导光学路径。所述第一弯曲波导和所述第二弯曲波导由带隙不同于所述光学活性区域的带隙的材料结构形成,或经过调整而具有所述材料结构。通过调整特定层中的ingaasp或inalgaas四元材料中的元素的原子比和/或改变多个量子阱异质结构中的量子阱的厚度或材料界面剖面来实现所述不同的带隙。通常使所述波导中的带隙低于所述光学活性区域中的带隙。带隙波长的移位可以为50nm至100nm更低,并且在一些实例中可以高达200nm更低。所述第一弯曲波导和所述第二弯曲波导是无源装置,这是因为所述波导不用于主动地调制通过波导的光学信号。在这个图中示出的实例中,所述弯曲波导具有50μm或大约50μm的有效曲率半径。所述弯曲波导可以是互混或再生长的量子阱,以致相对于光学活性区域102改变所述弯曲波导的带隙。所述弯曲波导的弯曲度可以描述为急转弯或欧拉弯曲。这个实例中的弯曲度是90°。

量子阱互混是一种工艺,其中原子形成量子阱并且原子的对应壁垒相互扩散,或其中杂质材料(例如锌或铜,或其合金)由于高温退火而扩散到所述活性区域中。相互扩散能够使用以下方式来实现:经由光吸收诱发无序来完成互混的激光照射;或其他方法,例如植入引入诱发相互扩散的点缺陷的元素,或无杂质扩散方法(如例如helmy等在1998年7月/8月的ieee量子电子学专题期刊第4卷第4期第653至660页中公开的)。杂质扩散可以通过如下处理来进行:图案化装置本体的具有多个区的杂质材料的表面,所述杂质材料可以并入载体材料中;然后,升高装置本体温度持续一受控预定时间(例如退火),这可以使杂质材料扩散到光学活性区域(例如量子阱)中;然后,使现有离子或原子从光学活性区域(例如量子阱)外扩散到载体或衬底材料或间隔物层,如例如us6,719,884b2中所描述。再生长是一种工艺,其中将现有半导体光学活性材料的一部分刻蚀掉,然后,将具有不同带隙波长(例如具有元素的不同原子比,或不同量子阱厚度)的第二光学活性材料再生长到被刻蚀掉的区域中。再生长可以是外延。

输入波导105将芯片101的边缘109耦合到第一弯曲波导103的一个末端。类似地,输出波导106将第二弯曲波导104耦合到芯片101的同一个边缘109。所述输入波导和所述输出波导是不同于所述第一弯曲波导和所述第二弯曲波导的波导,或作为所述弯曲波导的延续部分提供,但是和弯曲波导103和104具有相同的带隙。所述输入波导和所述输出波导可以耦合到芯片101的边缘109附近的锥形物或模式转换器。

所述装置还包括信号电极107和接地电极108以电驱动所述光学活性区域。在这个实例中,两个电极邻近于所述芯片的第二边缘110而安置,所述第二边缘在与邻近于输入波导和输出波导的边缘109相对的侧上。由于两个电极在芯片的同一边缘上,因此这允许利用短rf迹线的倒装芯片结合,或利用到芯片外驱动器芯片的短线结合长度的线结合。所述装置中的输入波导105与输出波导106之间的距离可以用于确定所述光电子装置的总“宽度”。这个宽度可以小于250μm,并且可以介于100μm与160μm之间。

图1b示出一变体装置,所述装置与图1a的装置的区别在于,额外接地电极111安置在源或信号电极107的与第一接地电极108相对的侧上。除此之外,所述装置等同于图1a中示出的装置。类似地,图1c中示出的装置与图1a中示出的装置的区别在于,接地电极108和源或信号电极107已经调换,使得接地电极108定位成接近第一弯曲波导103,并且源/信号电极107定位成接近第二弯曲波导104。

图2示出替代性装置200,所述装置与上文所讨论的装置100共享许多特征。相似特征由相似附图标记来指示。然而,图2中的装置200含有替代输入波导105(如上文所讨论)的分布反馈激光器201。所述激光器耦合到第一弯曲波导103,以致提供激光到光学活性区域102。分布反馈激光器201优选地由带隙与所述光学活性区域相同(或基本上相同)的材料形成。可选地,所述分布反馈激光器能够由带隙不同于所述光学活性区域和所述无源波导区域两者的材料形成。尽管未示出,但是装置200中的电极107和108能具有图1a至图1c中的上文所描述的配置中的任一者。

图3a示出替代性装置300a,所述装置与上文所讨论的装置100共享许多特征。相似特征由相似附图标记来指示。光学活性区域102形成高速光电子装置,诸如电吸收调制器eam。装置300a与图1c中示出的装置100的区别在于,装置300a还包括半导体光放大器(soa),所述soa包括另一光学活性区域112、另一接地电极118和另一源电极117。eam和soa通常由相同的半导体材料形成,但是在结构和/或组成上可以不同。eam和soa均位于u形弯道的底部处,在第一弯曲波导103与第二弯曲波导104之间。

图3b示出替代性装置300b,所述装置与上文关于图3a所论述的装置300a共享许多特征。相似特征再次由相似附图标记来指示。所述装置与图3a的装置的区别在于,所述装置包括耦合到第一弯曲波导103的分布反馈激光器201。所述装置与图2的装置的区别在于,所述装置包括位于u形弯道的底部处、邻近eam的光学活性区域102的soa区域。

图4a和图4b展示替代性装置,所述装置与图3a和图3b的装置的区别分别在于,不是位于u形弯道的底部处,soa位于第二弯曲波导104的相对eam的第一光学活性区域102的另一侧。换句话说,soa沿着输出波导106位于u形弯道的腿上。

在上文关于图3a、图3b、图4a以及图4b所描述的实施方案中的每一者中,电极垫107、108、117、118可以在其他位置并且以其他配置定位。dfb垫和soa垫因此可以定位成远离裸片的边缘。然而,eam垫是rf垫,并且因此应当定位成接近裸片的边缘。

图3a和图3b示出也处在边缘并且接近eam的soa。因此,可存在单一驱动器芯片(dc和rf),但是应注意,波导的间隔相当大。为了减小所述间隔,能够使用例如图4a和图4b的布置,但是在这里,eam远离soa,因此,rf(高速)驱动器可以是与dc驱动器/源分开的芯片。

在上述的实施方案中的任一者中,dfb和soa是正向偏压的,而eam是反向偏压的。

图5示出安置在单一晶片或芯片上的高速光电子装置100a至100n的阵列500。如可见,所有输入波导和输出波导耦合到芯片的同一边缘,这会利于芯片倒装到主机pic,因为仅芯片的一侧需要精确对准到主机pic波导或纤维附接到芯片的仅一侧,并且安装在光学网络中。值得注意的是装置之间的间距501,即邻近光电子装置100a至100n中的相似特征之间的距离。举例来说,光电子装置100a中的输入波导与光电子装置100b中的相应输入波导之间的距离可以被称为间距。所述间距通常小于250μm。

图6示出安置在单一晶片或芯片上的高速光电子装置200a至200n的替代性阵列600。如可见,所有输出波导耦合到芯片的同一边缘,这会利于芯片倒装到主机pic,因为仅芯片的一侧需要精确对准到主机pic波导或纤维附接到芯片的仅一侧,并且安装在光学网络中。值得注意的是装置之间的间距601,即邻近光电子装置200a至200n中的相似特征之间的距离。举例来说,光电子装置200a中的输出波导与光电子装置200b中的相应输出波导之间的距离可以被称为间距。所述间距通常小于250μm。

尽管未示出,但是如上所述的光电子装置阵列可以包括根据图1a至图1c的至少一个光电子装置,和根据图2的至少一个光电子装置。

尽管已经结合上述的示例性实施方案描述了本发明,但是当给出本公开是,本领域技术人员将了解许多等效的修改和变化。因此,上文陈述的本发明的示例性实施方案被视为说明性而非限制性的。在不背离本发明的精神和范围的情况下,可以对所描述实施方案做出各种改变。

特此以引用的方式并入上文引用的所有参考。

元件符号

100、200光电子装置

101晶片/芯片

102光学活性区域

103第一弯曲波导

104第二弯曲波导

105输入波导

106输出波导

107、117源/信号电极

108、118接地电极

109芯片的第一边缘

110芯片的第二边缘

111额外接地电极

201分布反馈激光器(dfb)

300、400阵列

301、401间距

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1