背光模组的制作方法

文档序号:10511047阅读:403来源:国知局
背光模组的制作方法
【专利摘要】本发明提供一种背光模组,采用蓝色背光激发红、绿色量子点薄膜获得红、绿色荧光,并在绿色量子点薄膜的两侧设置两金属线栅,构成法布里?珀罗腔,所述法布里?珀罗腔可以对绿色量子点薄膜发出的绿光进行特定波长的选择并增强该特定波长的绿光的发光强度,从而提高绿光的色纯度及发光强度,进而提升背光模组的色域表现,同时通过提高绿光量子点薄膜的发光效率,显著改善量子点薄膜荧光效率偏低的问题,并且金属线栅可以与背光模组的反射层构成增亮结构,节省增亮结构的设置,降低背光模组厚度。
【专利说明】
背光模组
技术领域
[0001]本发明涉及显示技术领域,尤其涉及一种背光模组。
【背景技术】
[0002]随着显示技术的发展,液晶显示器(Liquid Crystal Display,LCD)等平面显示装置因具有高画质、省电、机身薄及应用范围广等优点,而被广泛的应用于手机、电视、个人数字助理、数字相机、笔记本电脑、台式计算机等各种消费性电子产品,成为显示装置中的主流。
[0003]现有市场上的液晶显示装置大部分为背光型液晶显示器,其包括液晶显示面板及背光模组(backlight module)。液晶显示面板的工作原理是在两片平行的玻璃基板当中放置液晶分子,两片玻璃基板中间有许多垂直和水平的细小电线,通过通电与否来控制液晶分子改变方向,将背光模组的光线折射出来产生画面。
[0004]高色域面板因其可以表现出自然界更多的色彩,故可提高色饱和度和色彩再现性。目前面板企业均在迎合消费者对于色彩再现的需求而不断需求提高面板的色域值,此外有机发光二极管(OLED,Organic Light-Emitting D1de)技术固有的高色域特性对于传统的液晶显示面板构成了重大的挑战。提高色域的方式包括调整背光源峰值的位置、采用荧光粉、采用量子点(Quantum Dot,QD)背光以及调整彩色滤光片(CF)的通带位置与半峰宽等。
[0005]图1为氟化物(KSF)荧光粉与量子点的发光光谱的比较示意图。目前在小尺寸显示器上比较有应用前景的是采用蓝光发光二极管(LED,Light Emitting D1de)激发红、绿光量子点薄膜(QD f i Im),其中量子点的发光线宽为30nm左右,窄线宽保证了背光的纯色性,这一点对于提高色域至关重要。如图1所示,氟化物荧光粉在红光光谱上表现为分立的多峰信号,线宽仅有20nm左右,相对于现有的红色量子点更具优势,但是在绿光光谱上表现为宽谱分布特征。图2为三种色域标准在色坐标体系中的分布示意图,从图2中可以看出,DCIP3、Adobe RGB、及sRGB这三种色域标准在红(R)、蓝(B)色点的色坐标总体差异较小,而在绿色(G)点的色坐标差异较大,因而提高背光绿色点的色纯度是提高色域的一种简单而有效的方式。

【发明内容】

[0006]本发明的目的在于提供一种背光模组,能够提高绿光的色纯度及发光强度,从而提升背光模组的色域表现。
[0007]为实现上述目的,本发明提供一种背光模组,包括导光板、设于所述导光板一侧的蓝色光源、及设于所述导光板上方出光侧且层叠设置的红光转换层与绿光转换层,其中,所述红光转换层与绿光转换层的上下位置不限;
[0008]所述红光转换层包括红色量子点薄膜;
[0009]所述绿光转换层包括绿色量子点薄膜、以及分别设于所述绿色量子点薄膜两侧的两金属线栅;
[0010]所述金属线栅包括介质层及设于介质层上且依次排列的数个金属线栅单元,所述金属线栅单元包括一金属条及设于该金属条一侧的一条形空间;设于所述绿色量子点薄膜两侧的两金属线栅的金属线栅单元的排列方向相同;
[0011]所述绿色量子点薄膜两侧的两金属线栅之间的间隔距离为特定绿光波长的整数倍,所述特定绿光波长为所述绿色量子点薄膜发出的绿光波段内的一任意波长。
[0012]所述绿色量子点薄膜发出的绿光波段为500-600nm,所述特定绿光波长为500-6 O O nm之间的一任意波长。
[0013]所述金属线栅以设有介质层的一侧或者以设有数个金属线栅单元的一侧朝向所述绿色量子点薄膜设置。
[0014]所述金属线栅单元中,所述金属条与条形空间均为直线状且相互平行。
[0015]定义P态为垂直于金属线栅单元的排列方向的偏振方向,定义S态为平行于金属线栅单元的排列方向的偏振方向,所述金属线栅针对S态仅对所述绿色量子点薄膜发出的绿光波段具有反射特性,针对P态仅对所述绿色量子点薄膜发出的绿光波段具有透过特性。
[0016]所述金属条的材料包括铝、银、及金中的一种或多种。
[0017]所述介质层包括从下到上依次叠层设置的第一介质层、第二介质层、及第三介质层,其中,所述第二介质层的折射率高于所述第一介质层与第三介质层的折射率。
[0018]所述第一介质层与第三介质层的材料均包括二氧化硅、一氧化硅、及氧化镁中的一种或多种,所述第二介质层的材料包括氮化硅、二氧化钛、及五氧化二钽中的一种或多种。
[0019]所述金属线栅单元的宽度为200-500nm,其中所述金属条的宽度占所述金属线栅单元的宽度的比例为0.4-0.9,所述金属条的高度为20-200nm。
[0020]所述背光模组还包括:设于所述导光板下方的反射层。
[0021]本发明的有益效果:本发明提供的一种背光模组,采用蓝色背光激发红、绿色量子点薄膜获得红、绿色荧光,并在绿色量子点薄膜的两侧设置两金属线栅,构成法布里-珀罗腔,所述法布里-珀罗腔可以对绿色量子点薄膜发出的绿光进行特定波长的选择并增强该特定波长的绿光的发光强度,从而提高绿光的色纯度及发光强度,进而提升背光模组的色域表现,同时通过提高绿光量子点薄膜的发光效率,显著改善量子点薄膜荧光效率偏低的问题,并且金属线栅可以与背光模组的反射层构成增亮结构,节省增亮结构的设置,降低背光模组厚度。
[0022]为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
【附图说明】
[0023]下面结合附图,通过对本发明的【具体实施方式】详细描述,将使本发明的技术方案及其它有益效果显而易见。
[0024]附图中,
[0025]图1为氟化物荧光粉与量子点的发光光谱的比较示意图;
[0026]图2为三种色域标准在色坐标体系中的分布示意图;
[0027]图3为本发明的背光模组的结构示意图;
[0028]图4为本发明的背光模组中的金属线栅的结构示意图;
[0029]图5A为本发明的背光模组中的金属线栅对P态光的反射率和透过率的示意图;
[0030]图5B为本发明的背光模组中的金属线栅对S态光的反射率和透过率的示意图;
[0031]图6A为本发明的背光模组与传统的量子点背光模组的发光光谱的比较示意图;
[0032]图6B为本发明的背光模组与传统的量子点背光模组的色域的比较示意图。
【具体实施方式】
[0033]为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
[0034]请参阅图3,本发明提供一种背光模组,包括导光板10、设于所述导光板10—侧的蓝色光源20、及设于所述导光板10上方出光侧且层叠设置的红光转换层30与绿光转换层40,其中,所述红光转换层30与绿光转换层40的上下位置不限;
[0035]所述红光转换层30包括红色量子点薄膜31;
[0036]所述绿光转换层40包括绿色量子点薄膜41、以及分别设于所述绿色量子点薄膜41两侧的两金属线栅50;
[0037]所述金属线栅50包括介质层90及设于介质层90上且依次排列的数个金属线栅单元60,所述金属线栅单元60包括一金属条61及设于该金属条61—侧的一条形空间62;设于所述绿色量子点薄膜41两侧的两金属线栅50的金属线栅单元60的排列方向相同;
[0038]所述绿色量子点薄膜41两侧的两金属线栅50之间的间隔距离为特定绿光波长的整数倍,所述特定绿光波长为所述绿色量子点薄膜41发出的绿光波段内的一任意波长。
[0039]具体的,所述绿色量子点薄膜41发出的绿光波段为500-600nm,所述特定绿光波长为500_600nm之间的一任意波长。
[0040]具体的,所述特定绿光波长根据背光模组的色域要求进行选定。
[0041]具体的,所述蓝色光源20发出并经过所述导光板10输出的蓝光、与红光转换层30、及绿光转换层40分别发出的红、绿光混合后,形成白光输出,即本发明的背光模组发出的光为白光。
[0042]具体的,所述金属线栅50以设有介质层90的一侧或者以设有数个金属线栅单元60的一侧朝向所述绿色量子点薄膜41设置。
[0043]具体的,所述金属线栅单元60中,所述金属条61与条形空间62均为直线状且相互平行。
[0044]本发明中,位于所述绿色量子点薄膜41两侧的两金属线栅50构成法布里-珀罗(Fabry-Perot)腔,能够选定一特定波长的绿光,并显著增强该特定波长绿光的发光强度。
[0045]具体的,所述金属线栅50具有偏振选择特性、波长选择性透过特性、及波长选择性反射特性,定义P态为垂直于金属线栅单元60的排列方向的偏振方向,定义S态为平行于金属线栅单元60的排列方向的偏振方向,所述金属线栅50针对S态仅对所述绿色量子点薄膜41发出的绿光波段具有反射特性,针对P态仅对所述绿色量子点薄膜41发出的绿光波段具有透过特性。图5A为所述金属线栅50针对P态光的透过率与反射率的示意图,从图5A中可以看出,所述金属线栅50在P态仅允许绿光透过;图5B为所述金属线栅50针对S态光的透过率与反射率的示意图,从图5B中可以看出,所述金属线栅50在S态仅对绿光进行反射。
[0046]在如图3所示的具体实施例中,所述红光转换层30设置于所述绿光转换层40上方,所述绿光转换层40设置于导光板10上方,所述导光板10发出的蓝色背光具有非偏振特性,因而S态蓝光可以完全透过位于所述绿色量子点薄膜41下方的金属线栅50从而激发绿色量子点薄膜41形成绿光输出,其中S态绿光由于金属线栅50的反射特性会在所述法布里-珀罗腔中形成共振,期间S态绿光会通过共振激发的模式进一步激发绿色量子点薄膜41发光,最终通过带隙限制微腔自发辐射态密度增强(Purcell)效应增强绿色量子点薄膜41发出的绿光中属于S态且波长与所述法布里-珀罗腔匹配的特定波长的绿光信号,最终所述法布里-珀罗腔的光泄漏形成绿光输出信号。
[0047]简而言之,所述绿色量子点薄膜41两侧的两金属线栅50构成的法布里-珀罗腔通过其间隔宽度、偏振选择特性、波长选择性透过特性、及波长选择性反射特性选定一特定波长的绿光,并通过共振与Purcell效应来增强该特定波长的绿光的发光强度,达到提高绿光的色纯度及发光强度的作用。
[0048]具体的,所述金属条61的材料为具有较大折射率虚部的金属材料,如铝(Al)、银(Ag)、及金(Au)中的一种或多种。
[0049]具体的,如图4所示,所述介质层90为折射率调制的多层结构,包括从下到上依次叠层设置的第一介质层91、第二介质层92、及第三介质层93,其中,所述第二介质层92的折射率高于所述第一介质层91与第三介质层93的折射率,从而形成低折射率-高折射率-低折射率的三明治结构。具体的,所述第一介质层91与第三介质层93的材料均包括二氧化硅(S12)、一氧化硅(S1)、及氧化镁(MgO)中的一种或多种,所述第二介质层92的材料包括氮化硅(Si3N4)、二氧化钛(T12)、及五氧化二钽(Ta2O5)中的一种或多种。
[0050]具体的,所述第一介质层91、第二介质层92、及第三介质层93的厚度分别为30-200nm,所述第一介质层91、第二介质层92、及第三介质层93的厚度可以相同或不同。
[0051]具体的,所述介质层90为高透过率结构层,优选的,所述介质层90为透明结构层。
[0052]具体的,所述金属线栅单元60的宽度为200-500nm,其中所述金属条61的宽度占所述金属线栅单元60的宽度的比例为0.4-0.9,所述金属条61的高度为20-200nm。
[0053]具体的,所述金属线栅50还可以作为仅通过绿光的彩色滤光片使用,作为彩色滤光片使用时,其通带半高宽为20-50nm,中心峰值透过率大于70%。
[0054]具体的,所述红色量子点薄膜31与绿色量子点薄膜41的材料均包括CdS与CdSe中的一种或多种。
[0055]具体的,本发明中的红色量子点薄膜31的激发模式采用常规模式,此处不做赘述。
[0056]优选的,本发明的背光模组还包括:设于所述导光板10下方的反射层70,由于金属线栅50针对P态仅对所述绿色量子点薄膜41发出的绿光波段具有透过特性,因而P态蓝光会反射重新进入导光板10,并且在经过反射层70反射后形成增亮效果,即相当于,位于所述绿色量子点薄膜41下方的金属线栅50与反射层70形成增亮结构,可节省一道增亮结构的设置,从而降低背光模组厚度。
[0057]优选的,本发明的背光模组还包括:设于所述导光板10与红光转换层30或绿光转换层40之间的扩散片80,以提高导光板10的出光均匀性。
[0058]图6A为本发明的背光模组与传统的量子点背光模组的发光光谱的比较示意图,从图6A中可以看出,相比于传统的量子点背光模组,本发明的背光模组的绿光波段具有窄线宽和高色纯度的优势。图6B为本发明的背光模组与传统的量子点背光模组的色域的比较示意图,从图6B中可以看出,相比于传统的量子点背光模组,本发明的背光模组的绿光波段具有高色纯度的优势,且本发明的背光模组具有更宽广的色域范围。
[0059]综上所述,本发明提供的一种背光模组,采用蓝色背光激发红、绿色量子点薄膜获得红、绿色荧光,并在绿色量子点薄膜的两侧设置两金属线栅,构成法布里-珀罗腔,所述法布里-珀罗腔可以对绿色量子点薄膜发出的绿光进行特定波长的选择并增强该特定波长的绿光的发光强度,从而提高绿光的色纯度及发光强度,进而提升背光模组的色域表现,同时通过提高绿光量子点薄膜的发光效率,显著改善量子点薄膜荧光效率偏低的问题,并且金属线栅可以与背光模组的反射层构成增亮结构,节省增亮结构的设置,降低背光模组厚度。
[0060]以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。
【主权项】
1.一种背光模组,其特征在于,包括导光板(10)、设于所述导光板(10)—侧的蓝色光源(20)、及设于所述导光板(10)上方出光侧且层叠设置的红光转换层(30)与绿光转换层(40); 所述红光转换层(30)包括红色量子点薄膜(31); 所述绿光转换层(40)包括绿色量子点薄膜(41)、以及分别设于所述绿色量子点薄膜(41)两侧的两金属线栅(50); 所述金属线栅(50)包括介质层(90)及设于介质层(90)上且依次排列的数个金属线栅单元(60),所述金属线栅单元(60)包括一金属条(61)及设于该金属条(61) —侧的一条形空间(62);设于所述绿色量子点薄膜(41)两侧的两金属线栅(50)的金属线栅单元(60)的排列方向相同; 所述绿色量子点薄膜(41)两侧的两金属线栅(50)之间的间隔距离为特定绿光波长的整数倍,所述特定绿光波长为所述绿色量子点薄膜(41)发出的绿光波段内的一任意波长。2.如权利要求1所述的背光模组,其特征在于,所述绿色量子点薄膜(41)发出的绿光波段为500-600nm,所述特定绿光波长为500-600nm之间的一任意波长。3.如权利要求1所述的背光模组,其特征在于,所述金属线栅(50)以设有介质层(90)的一侧或者以设有数个金属线栅单元(60)的一侧朝向所述绿色量子点薄膜(41)设置。4.如权利要求1所述的背光模组,其特征在于,所述金属线栅单元(60)中,所述金属条(61)与条形空间(62)均为直线状且相互平行。5.如权利要求1所述的背光模组,其特征在于,定义P态为垂直于金属线栅单元(60)的排列方向的偏振方向,定义S态为平行于金属线栅单元(60)的排列方向的偏振方向,所述金属线栅(50)针对S态仅对所述绿色量子点薄膜(41)发出的绿光波段具有反射特性,针对P态仅对所述绿色量子点薄膜(41)发出的绿光波段具有透过特性。6.如权利要求1所述的背光模组,其特征在于,所述金属条(61)的材料包括铝、银、及金中的一种或多种。7.如权利要求1所述的背光模组,其特征在于,所述介质层(90)包括从下到上依次叠层设置的第一介质层(91)、第二介质层(92)、及第三介质层(93),其中,所述第二介质层(92)的折射率高于所述第一介质层(91)与第三介质层(93)的折射率。8.如权利要求7所述的背光模组,其特征在于,所述第一介质层(91)与第三介质层(93)的材料均包括二氧化硅、一氧化硅、及氧化镁中的一种或多种,所述第二介质层(92)的材料包括氮化硅、二氧化钛、及五氧化二钽中的一种或多种。9.如权利要求1所述的背光模组,其特征在于,所述金属线栅单元(60)的宽度为200-500nm,其中所述金属条(61)的宽度占所述金属线栅单元(60)的宽度的比例为0.4-0.9,所述金属条(61)的高度为20-200nmo10.如权利要求1所述的背光模组,其特征在于,还包括:设于所述导光板(10)下方的反射层(70)。
【文档编号】G02F1/13357GK105867025SQ201610381636
【公开日】2016年8月17日
【申请日】2016年6月1日
【发明人】查国伟
【申请人】武汉华星光电技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1