用于测量衬底上的结构的方法和设备、用于误差校正的模型、用于实施这样的方法和设备...的制作方法

文档序号:10540803阅读:427来源:国知局
用于测量衬底上的结构的方法和设备、用于误差校正的模型、用于实施这样的方法和设备 ...的制作方法
【专利摘要】一种重构过程包括测量通过光刻工艺形成在衬底上的结构,确定用于生成模型化图案的重构模型,计算并最小化包括模型误差的多变量成本函数。由讨厌参数导致的误差基于通过概率密度函数描述的讨厌参数的行为的统计描述被建模。从统计描述计算在平均模型误差和加权矩阵方面所表示的模型误差。这些被用于修改成本函数以便减少重构中的讨厌参数的影响,而不增加重构模型的复杂性。讨厌参数可以是模型化结构的参数,和/或重构中使用的检查设备的参数。
【专利说明】用于测量衬底上的结构的方法和设备、用于误差校正的模型、 用于实施这样的方法和设备的计算机程序产品
[0001] 相关申请的交叉引用
[0002] 本申请要求2013年12月05日提交的欧洲申请13195846的权益,该申请的全部内容 通过引用合并于此。
技术领域
[0003] 本发明涉及用于测量衬底上的结构的方法和设备及用于误差校正的模型。本发明 可以例如应用在微观结构的基于模型的量测中,例如以评定光刻设备的临界尺寸(CD)或重 叠性能。
【背景技术】
[0004] 光刻设备是将期望的图案施加到衬底上、通常是到衬底的目标部分上的机器。可 以例如在集成电路(1C)的制造中使用光刻设备。在这种场合下,可替代地称作掩模或掩模 版的图案形成装置可以用于生成待形成在1C的单个层上的电路图案。该图案可以被转移到 衬底(例如,硅晶片)上的目标部分(例如,包括一个或数个管芯的部分)上。图案的转移典型 地是凭借到设置于衬底上的一层辐射敏感材料(抗蚀剂)上的成像来进行。一般情况下,单 一个衬底将包含被相继地图案化的邻接目标部分的网络。已知的光刻设备包括:所谓的步 进器,其中通过使整个图案一次曝光到目标部分上来辐照各目标部分;和所谓的扫描器,其 中通过在给定方向("扫描"方向)上凭借辐射束扫描图案同时同步地平行于或反向平行于 该方向扫描衬底来辐照各目标部分。也可以通过将图案压印到衬底上而使图案从图案形成 装置转移至衬底。
[0005] 为了监测光刻工艺,测量图案化的衬底的参数。参数可以包括例如形成在图案化 的衬底中或上的相继层之间的重叠误差和显影的光敏抗蚀剂的临界线宽(CD)。该测量可以 在产品衬底上和/或在专用量测目标上执行。存在有用于进行在光刻工艺中形成的微观结 构的测量的各种技术,包括扫描电子显微镜和各种专业工具的使用。一种快速且非侵入形 式的专业检查工具是将辐射束指向到衬底的表面上的目标上并且测量散射的或反射的束 的性质的散射仪。两种主要类型的散射仪是已知的。光谱散射仪将宽谱带辐射束指向到衬 底上并测量被散射到特定的窄角度范围内的辐射的光谱(强度作为波长的函数)。角分辨散 射仪使用单色辐射束并测量作为角度的函数的散射辐射的强度。
[0006]通过将束的在由衬底反射或散射前后的性质进行比较,可以确定衬底的性质。这 可以例如通过将从反射或散射束的测量得到的数据与从参数化模型计算的模型(模拟)衍 射信号进行比较来完成。计算的信号可以被预先计算并存储在库中,库代表分布在参数化 模型的参数空间中的多个候选衬底结构。可选地或另外地,参数可以在迭代搜索过程期间 变化,直到计算的衍射信号与测量的信号匹配为止。在US 7522293(Wu)和US 2012/ 0123748A1中,例如,这两个技术被分别描述为例如"基于库的"和"基于回归的"过程。
[0007]特别是对于复杂结构或包括特定的材料的结构来说,准确地给散射束建模所要求 的参数的数量是高的。定义"模型菜单",其中参数被定义为或者给定的("固定的")或者可 变的("浮动的")。对于浮动参数,变化的准许范围或者以绝对项或者通过参考与标称值的 偏离来定义。模型中的各浮动参数代表模型中的另一"自由度",以及因此是在找到最佳匹 配候选结构的多维参数空间中的另一尺寸。即使利用少量参数,计算任务的大小也很快地 变得非常大,例如通过使库样本的数量不可接受地提高。它还提高了与测量的衬底不对应 的错误匹配参数集合的风险。在某些情况中,将参数固定至与在实际测量的结构中不同的 值可能对重构具有很小的影响。然而,在其他时间,参数的固定值与真实值之间的差异可以 使匹配过程显著地失真,使得在感兴趣的参数的重构中出现不准确性。在这样的状况中的 固定参数可以称作"讨厌(Ml i sance)"参数。
[0008] 这样的讨厌参数使得难以找到计算的准确性与实用性之间的适当折衷。讨厌参数 可以是被测量的结构的模型的参数,但是也可以是用于得到测量的设备的参数。也就是说, 不同的设备可以从相同结构得到稍微不同的衍射信号,并且因此产生感兴趣的参数的稍微 不同的测量。

【发明内容】

[0009] 发明人已认识到关于讨厌参数的统计信息及其对观测的衍射信号的影响可以用 于改进重构的准确性,而不用使讨厌参数作为模型中的浮动参数。
[0010] 在第一方面,本发明提供了一种测量衬底上的结构的参数的方法,所述方法包括 以下步骤:
[0011] (a)定义数学模型,在数学模型中所述结构的形状和材料性质由包括至少一个感 兴趣的参数的多个参数代表;
[0012] (b)用一个或多个辐射束照射所述结构并且检测由于所述辐射与所述结构之间的 相互作用而产生的信号;
[0013] (d)通过在使感兴趣的参数变化并且使至少一个其他参数不变化的情况下模拟所 述辐射与所述数学模型之间的相互作用,计算多个模型信号;
[0014] (e)通过在使其他参数根据假定的统计行为变化的情况下模拟所述辐射与所述数 学模型之间的相互作用,计算对于所述其他参数的影响的模型;
[0015] (f)在使用影响的模型来抑制所述其他参数的在模型信号中没有被代表的变化的 影响的情况下,计算在检测到的信号与在步骤(d)中计算的模型信号中的至少一些之间的 匹配的程度;
[0016] (g)基于计算的匹配的程度报告所述感兴趣的参数的测量。
[0017] 所述影响的模型可以例如提供加权矩阵,通过加权矩阵在检测到的信号与模型信 号之间的匹配的程度与信号的一些部分相比更取决于其他部分。在其中检测到的信号是通 过角分辨散射测量得到的二维衍射图案的实施例中,所述加权矩阵可以例如针对所述衍射 图案中的一些像素定义了比其他像素低的权重,以计算匹配的程度。
[0018] 可替代地地或另外地,所述影响的模型可以提供在计算匹配的程度之前被从检测 到的信号减去的均值误差信号。在其中检测到的信号是通过角分辨散射测量得到的二维衍 射图案的实施例中,所述影响的模型可以例如提供均值误差矩阵,由此在计算匹配的程度 之前不同的误差值被从检测到的衍射图案的不同像素减去。
[0019] 其他参数可以是在步骤(a)中建模的结构的形状或材料的参数,或者是在步骤(b) 中用于获得检测到的信号的检测设备的参数。在实际实施中,可以同时定义并校正数个其 他参数。
[0020] 假定的统计行为的模型可以包括用于该或各所述其他参数的标称值和方差。当定 义多个其他参数时,它们的假定统计行为可以相互独立地或者以它们之间的协方差关系进 行建模。
[0021] 第二方面中的发明提供一种用于测量衬底上的结构的参数的检查设备,设备包 括:
[0022] -支撑,用于在其上形成有所述结构的衬底;
[0023] -光学系统,用于用一个或多个辐射束照射结构并且检测由于所述辐射与所述结 构之间的相互作用而产生的信号;
[0024] _处理器,被布置成:通过模拟所述辐射与数学模型之间的相互作用计算多个模型 信号,在数学模型中所述结构的形状和材料性质用包括至少一个感兴趣的参数的多个参数 代表;计算检测到的信号与计算的模型信号中的至少一些之间的匹配的程度;和报告基于 计算的匹配的程度的所述感兴趣的参数的测量,
[0025]其中所述处理器被布置成在使感兴趣的参数变化并且使至少一个其他参数不变 化的情况下计算所述多个模型信号,并且其中所述处理器被进一步布置成当计算所述匹配 的程度时使用影响的模型来抑制所述其他参数的可能存在于检测到的信号中但是在模型 信号中没有被代表的变化的影响。
[0026]设备可以通过将合适的数据处理功能添加至诸如散射仪等的现有检查设备来实 施。
[0027]发明进一步提供一种计算机程序产品,包括用于引起处理器执行根据如以上陈述 的发明的方法的步骤(d)和(f)的机器可读指令。
[0028]计算机程序产品可以进一步包括用于引起处理器执行方法的步骤(e)的指令。 [0029]发明又进一步提供一种计算机程序产品,包括用于引起处理器执行根据如以上陈 述的发明的方法的步骤(e)的机器可读指令,以计算以供检查设备执行方法的步骤(a)至 (d)和(f)与(g)使用的影响的模型。
[0030] 发明的这些及其他方面、特征和优点将从下面描述的示例性实施例的考虑中容易 理解。
【附图说明】
[0031] 现在将参照随附的示意图通过仅示例的方式来描述发明的实施例,图中相应的附 图标记指示相应的部分,并且其中:
[0032]图1是光刻设备的示意图;
[0033]图2是光刻单元或簇的示意图;
[0034]图3是穿过通过图5或图6的过程利用相关联的模型参数待测量的第一示例结构的 示意截面;
[0035]图4图示散射仪的操作原理;
[0036]图5描绘了根据本发明的实施例的用于利用模型误差的校正重构来自散射仪测量 的结构的示例过程;
[0037] 图6描绘了使用在图5的过程中的用于模型误差的估计和校正的发明的示例过程。
【具体实施方式】
[0038] 图1示意性地描绘了光刻设备LA。设备包括:照射系统(照射器)IL,被配置成调节 辐射束B(例如,UV辐射或DUV辐射);图案形成装置支撑或支撑结构(例如,掩模台)MT,被构 造成支撑图案形成装置(例如,掩模)MA并被连接至配置成根据某些参数将图案形成装置准 确定位的第一定位器PM;衬底台(例如,晶片台)WT,被构造成保持衬底(例如,涂有抗蚀剂的 晶片)W并被连接至配置成根据某些参数将衬底准确定位的第二定位器PW;和投影系统(例 如,折射型投影透镜系统)PS,被配置成将通过图案形成装置MA赋予辐射束B的图案投影到 衬底W的目标部分C(例如,包括一个或多个管芯)上。
[0039] 照射系统可以包括各种类型的光学部件,诸如折射型、反射型、磁型、电磁型、静电 型或其他类型的光学部件,或者它们的任何组合,用于指向、成形或控制辐射。
[0040] 图案形成装置支撑以取决于图案形成装置的定向、光刻设备的设计和诸如例如图 案形成装置是否被保持在真空环境中等的其他条件的方式保持图案形成装置。图案形成装 置支撑可以使用机械的、真空的、静电的或其他夹持技术来保持图案形成装置。图案形成装 置支撑可以是例如可根据需要固定或可动的框架或台。图案形成装置支撑可以确保图案形 成装置例如相对于投影系统处于期望的位置。这里的术语"掩模版"或"掩模"的任何使用都 可以视为与更上位的术语"图案形成装置"同义。
[0041] 这里使用的术语"图案形成装置"应该广义地解释为是指可以用于赋予辐射束在 其截面中的图案诸如以在衬底的目标部分中创建图案的任何装置。应该注意的是,赋予辐 射束的图案可以不是确切地对应于衬底的目标部分中的期望图案,例如,如果图案包括相 移特征或所谓辅助特征的话。一般地,赋予辐射束的图案将对应于诸如集成电路等的在目 标部分中创建的器件中的特定的功能层。
[0042] 图案形成装置可以是透射型的或反射型的。图案形成装置的示例包括掩模、可编 程反射镜阵列和可编程LCD面板。掩模是光刻中公知的,并且包括诸如二元、交替相移和衰 减相移等的掩模类型,以及各种混合掩模类型。可编程反射镜阵列的示例采用小反射镜的 矩阵布置,其中的每一个可以单个地倾斜以便沿不同方向反射进来的辐射束。倾斜的反射 镜赋予由反射镜阵列反射的在辐射束上的图案。
[0043] 如这里所描绘的,设备是透射类型的(例如,采用透射型掩模)。可替代地,设备可 以是反射类型的(例如,采用如上面所提及的类型的可编程反射镜阵列,或者采用反射型掩 模)。
[0044] 光刻设备可以是具有两个(双平台)或更多的衬底台(和/或两个或更多的掩模台) 的类型的。在这样的"多平台"机器中,可以平行地使用附加的台,或者可以在一个或多个其 他台正用于曝光的时候在一个或多个台上执行预备步骤。
[0045] 光刻设备也可以是如下类型的:其中,衬底的至少一部分可以由具有相对高的折 射率的液体、例如水覆盖,以便填充投影系统与衬底之间的空间。浸没液体也可以施加至光 刻设备中的其他空间,例如在掩模与投影系统之间。浸没技术是现有技术中公知的,用于增 加投影系统的数值孔径。如这里使用的术语"浸没"不意味着诸如衬底等的结构必须被沉浸 在液体中,相反仅意味着在曝光期间在投影系统与衬底之间设有液体。
[0046]参见图1,照射器IL从辐射源S0接收辐射束。源和光刻设备可以是单独的实体,例 如当源是准分子激光器时。在这样的情况中,源不视为形成光刻设备的一部分,并且在包括 了例如合适的指向反射镜和/或扩束器的光束传递系统BD的帮助下使辐射束从源S0传到照 射器IL。在其他情况中,源可以是光刻设备的一体部分,例如当源是汞灯时。源S0和照射器 IL以及如果需要的话与光束传递系统BD-起可以称作辐射系统。
[0047] 照射器IL可以包括用于调整辐射束的角强度分布的调整器AD。一般地,可以调整 照射器的光瞳面中的强度分布的至少外部和/或内部径向程度(常分别称作0外和0内)。另 外,照射器IL可以包括诸如积分器IN和聚光器C0等的各种其他部件。照射器可以用于调节 辐射束,以在其截面中具有期望的均匀性和强度分布。
[0048] 辐射束B入射在被保持在图案形成装置支撑(例如,掩模台MT)上的图案形成装置 (例如,掩模)MA上,并且通过图案形成装置而被图案化。横穿过图案形成装置(例如,掩模) MA,辐射束B通过投影系统PS,该投影系统使光束聚焦到衬底W的目标部分C上。在第二定位 器PW和位置传感器IF(例如,干涉仪装置、线性编码器、2-D编码器或电容传感器)的帮助下, 可以使衬底台WT准确地移动,例如以便将不同的目标部分C定位在辐射束B的路径上。类似 地,第一定位器PM和另一位置传感器(图1中未明确描绘)可以用于将图案形成装置(例如, 掩模)MA相对于辐射束B的路径准确地定位,例如在从掩模库进行的机械检索之后,或在扫 描期间。
[0049] 图案形成装置(例如,掩模)MA和衬底W可以利用掩模对齐标记Ml、M2和衬底对齐标 记P1、P2而对齐。虽然如图示出的衬底对齐标记占据了专用目标部分,但它们可以位于目标 部分之间的空间中(这些被称为划线对齐标记)。类似地,在超过一个的管芯设置于图案形 成装置(例如,掩模)MA上的状况中,掩模对齐标记可以位于管芯之间。小的对齐标记也可以 被包括在器件特征之中的管芯内,在该情况中期望标记尽可能小并且不要求除邻接特征以 外的任何不同的成像或处理条件。检测对齐标记的对齐系统在下面进一步进行描述。
[0050] 所描绘的设备可以以多种模式进行使用,包括例如步进模式或扫描模式。光刻设 备的构造和操作对于本领域技术人员是公知的并且不需要为了本发明的理解进一步进行 描述。
[0051] 如图2所示,光刻装置LA形成有时也称作光刻单元或簇的光刻单元LC的一部分,该 光刻单元还包括用以在衬底上执行曝光前和后工艺的设备。传统上,这些设备包括用以沉 积抗蚀剂层的旋涂器SC、用以使已曝光的抗蚀剂显影的显影器DE、激冷板CH和烘烤板BK。衬 底处理机或机器人R0从输入/输出端口 1/01、1/02拾取衬底、使它们在不同工艺设备之间移 动并接着传递至光刻设备的进料台LB。经常总称为轨道的这些装置在轨道控制单元TCU的 控制之下,该轨道控制单元TCU自身由监督控制系统SCS控制,该监督控制系统SCS还凭借光 刻控制单元LACU控制着光刻设备。因此,可以操作不同设备以使生产量和处理效率最大化。 [0052]为了使被光刻设备曝光的衬底正确且一致地曝光,期望检查已曝光的衬底以测量 诸如随后的层之间的重叠误差、线厚度、临界尺寸(CD)等的性质。如果检测到误差,则可以 对随后的衬底的曝光度进行调整,尤其是如果检查可以即刻且快速完成使得相同批次的其 他衬底仍然待曝光。还有,已经被曝光的衬底可以被剥离并重新加工一以提高产率一或丢 弃,由此避免在已知会有缺陷的衬底上执行曝光。在衬底的仅一些目标部分有缺陷的情况 中,可以仅在良好的那些目标部分上执行进一步的曝光。
[0053]检查设备用于确定衬底的性质,并且特别是确定不同衬底或相同衬底的不同层的 性质从层到层是如何变化的。检查设备可以集成到光刻设备LA或光刻单元LC内或者可以是 独立的装置。为了实现最迅速的测量,期望的是检查设备在曝光之后立即测量在已曝光的 抗蚀剂层中的性质。然而,抗蚀剂中的潜像具有非常低的对比度一在抗蚀剂的已曝光于辐 射的部分与未曝光的那些之间在折射率上仅有非常小的差异一并且不是所有检查设备都 具有足够的灵敏度来进行潜像的有用测量。因此,可以在曝光后烘烤步骤(PEB)之后进行测 量,该曝光后烘烤步骤通常是在已曝光的衬底上所执行的第一步骤并且增加抗蚀剂的已曝 光和未曝光部分之间的对比度。在该阶段,抗蚀剂中的图像可以称作半潜。也可以进行已显 影的抗蚀剂图像的测量一此时抗蚀剂的或者已曝光的或者未曝光的部分已被去除一或者 在诸如蚀刻等的图案转移步骤之后进行。后一可能性限制了有缺陷衬底的重新加工的可能 性但仍然可以提供有用信息。
[0054]图3图示目标30和定义其形状的参数中的一些作为待检查的简单形式的结构。衬 底300、例如硅晶片携带着由通过使一层抗蚀剂材料曝光并显影而形成的很多平行栅条所 形成的衍射光栅。光栅不需要包括凸起的栅条,其仅作为示例图示并提到。合适的特征包括 通过光刻或者通过光刻跟着通过蚀刻、沉积和其他工艺步骤形成的直立栅条、接触孔等。这 里选择栅条纯粹为了简单。
[0055]特征302代表被重复很多次以构成光栅的结构中的一个的截面。在抗蚀剂下方的 是层304,其在常见示例中将简单地是硅晶片上的例如具有lnm至3nm的厚度的"天然的"氧 化物层。在真实产品中,可能在特征302的下方有不同性质的很多层。在用抗蚀剂涂覆衬底 并曝光之前,抗反射(BARC)层306已经以已知的方式施加至衬底以改进印刷图案的质量。 [0056] 通过诸如图5或图6中所示等的过程待测量的特征302的参数包括特征高度H1、半 高临界尺寸(mid-CD或MCD)和侧壁角度SWA。如果需要也可以定义其他参数。如果要测量不 对称特征,则SWA可以针对左、右侧壁分别定义。像顶部圆角、基脚或者负责线边缘粗糙度 (LER)的涂层梯形的任何其他特征可以添加至模型以增加准确性。
[0057] 这些参数H1、M⑶、SWA将以不同方式贡献于当通过散射测量测量该目标30时观察 的衍射图案。将影响衍射图案的其他形状参数是底下的层306、304的高度(厚度),分别标有 H2、H3。除了几何参数之外,光学参数也可以被包括在模型中。为了给目标建模并因此准许 建模的衍射图案的计算,用于这些参数的估计值被用在步骤506的计算中。当考虑到层的数 量、特征302的形状还有潜在的底下的特征和层时,变得清楚的是,待执行用于最佳拟合参 数集合的搜索的参数空间是高度多维的。目标光栅图案自身可以是二维的。用于建模所要 求的附加参数是所有不同材料的性质,诸如它们的折射率、消光系数等。这些可以被如此地 明确定义使得它们可以被视作固定参数,或者它们自身可以经受不确定性。它们可能需要 根据进来的福射的波长和偏振被进一步细分。
[0058]图4示意性示出可以在本发明的实施例中用作检查设备的散射仪。在该设备中,由 辐射源402发射的辐射使用透镜系统412准直并透射通过干涉滤波器413和偏振器417、由部 分反射表面416反射并且经由显微镜物端透镜415被聚焦到衬底W上。透镜415具有高的数值 孔径(NA)、例如0.9或0.95或更大。浸没散射仪可以甚至具有有着超过1的数值孔径的透镜。 由目标30反射和衍射的辐射被相同的物端透镜415收集接着透射通过部分反射表面416进 入检测器418内以便使散射(衍射)光谱被检测。检测器可以位于在透镜系统415的焦距上的 背投影光瞳平面411中,然而光瞳平面可以而是利用辅助光学器件(未示出)被重新成像到 检测器上。光瞳平面是其中辐射的径向位置定义入射的角度并且角位置定义辐射的方位角 度的平面。检测器418在该示例中是二维检测器使得衬底目标30的二维角散射光谱可以被 测量。检测器418可以例如是(XD或CMOS传感器的阵列,并且可以使用例如每帧40毫秒的积 分时间。
[0059] 参考光束经常例如被用于测量入射辐射的强度。要做到这一点,当辐射束入射在 分束器416上时,它的一部分透射通过分束器作为朝向参考反射镜414的参考光束。参考光 束接着被投影到相同检测器418的不同部分上或者可替代地到不同检测器(未示出)上。来 自检测器的信号由处理单元PU以数字形式接收,处理单元PU执行用以在数学上重构目标结 构30的计算。
[0060] 一组干涉滤波器413是可用的以选出在比方说405nm至790nm或甚至更低、诸如 200nm至300nm的范围中的感兴趣的波长。干涉滤波器可以是可调谐的而不是包括一组不同 的滤波器。可以使用光栅代替干涉滤波器。在以下描述中,术语"光"应该用于是指在散射测 量技术中使用的辐射。与散射测量或任何其他量测技术中使用的辐射有关的术语"光"的使 用不旨在暗示对光谱的可见部分中的辐射的任何限制。
[0061] 检测器418可以测量在单一个波长(或窄波长范围)的散射光的强度、分别在多个 波长或在波长范围上整体的散射光的强度。此外,检测器可以单独地测量横向磁与横向电 偏振光的强度和/或横向磁与横向电偏振光之间的相位差。
[0062] 使用宽谱带光源(即,具有宽范围的光频率或波长的光源一并因此是宽范围的颜 色)是可能的,其给出了大的集光率,允许了多个波长的混合。当宽谱带混合中的成分具有 比如说A A的带宽时,在各成分之间提供至少2 A A(g卩,带宽的两倍)的间距可以是有利的。 辐射的数个"源"可以是使用纤维束被分裂开的扩展辐射源的不同部分。以该方式,可以测 量处于平行的多个波长的角分辨散射光谱。3-D光谱(波长和两个不同的角度)可以被测量, 其包含与2-D光谱相比更多的信息。这允许更多信息被测量,这增加了量测过程鲁棒性。这 在EP 1628164A中更详细地进行了描述。
[0063]衬底W上的目标30可以是1-D光栅,其被印刷成使得在显影之后,栅条由实的抗蚀 剂线形成。目标30可以是2-D光栅,其被印刷成使得在显影之后,光栅由实的抗蚀剂柱或在 抗蚀剂中的通孔(孔)形成。栅条、柱或通孔可以可替代地被蚀刻到衬底内。该图案对光刻投 影设备、特别是投影系统PL中的色差敏感,并且照射对称性和这样的像差的存在将使它们 自身显现在被印刷的光栅上的变化中。于是,被印刷的光栅的散射测量数据被用于重构光 栅。1-D光栅的诸如线宽和形状等的参数或者2-D光栅的诸如柱或通孔宽度或长度或形状等 的参数,来自印刷步骤和/或其他散射测量过程的知识,可以是由处理单元PU执行的重构过 程中的感兴趣的参数。
[0064]图4的散射仪仅是角分辨散射仪的一个示例,并且可以在不脱离本发明的原理的 情况下使用其他形式。此外,本发明同样可以利用通过光谱(能量分辨)散射测量得到的衍 射图案来应用。
[0065] 重构过程-引言
[0066]诸如"基于回归的"和"基于库的"方法等的图案重构过程的详细描述以及不同类 型的散射仪的描述可以在US 2012/0123748A1中找到。本文档描述了用于避免和/或校正 "基于回归的"重构过程中的误差的数值方法、在这里称作模型误差校正(MEC)方法的使用。 MEC方法可以被用在诸如"基于库的"过程和回归与库过程的混合等的其他重构模型中。MEC 方法可以应用在不同的重构过程中。
[0067] 图5图示用于利用参数化模型和使用诸如散射仪等的检查设备检测到的衍射图案 (衍射光谱)重构目标的"基于回归的"过程。在该类型的重构过程中,计算基于目标形状的 第一估计(第一候选结构)的衍射图案并且与测量的衍射图案进行比较。计算模拟辐射与由 模型描述的结构之间的相互作用。接着使模型的参数系统地变化并且衍射图案在一系列的 迭代中重新计算,以生成新的候选结构并因此达到最佳拟合。目标将为了该描述被假定为 在一个方向上周期性的结构,如例如参照图3描述的。在实践中它可以在两个(或更多的)方 向上是周期性的,并且处理将相应地修改。衍射图案可以例如是由图4的散射仪中的传感器 418检测的2-D光瞳图像。
[0068] 在引言和权利要求的术语中,由散射仪测量的衍射图案是检测的信号的示例。使 用参数化模型计算的衍射图案是模型信号的示例。更详细的方法的步骤如下:
[0069] 502:建立'重构模型',重构模型定义目标结构关于若干参数Pi (P1、P2、P3等等)的 参数化模型。这些参数可以例如在1-D周期性结构中代表侧壁的角度、特征的高度或深度、 特征的宽度。目标和底下的层的材料性质也用诸如折射率(在散射测量辐射束中存在的特 定的波长处)等的参数代表。重要的是,虽然目标结构可以由描述其形状和材料性质的几十 个参数定义,但重构模型会将这些参数中的很多参数定义为具有固定值,而其他参数是可 变或"浮动"参数,以用于以下过程步骤的目的。在现有公开US 2012/0123748A1中,描述了 在固定与浮动参数之间进行选择的过程。选择的集合可以称作用于重构过程的"菜单",并 且可以尝试不同的菜单。例如,现有公开引入了参数可以被准许变化而不是完全独立的浮 动参数的方式。可以在实施本发明时采用或不采用这些技术。为了描述图5的目的,仅浮动 参数被视作参数P i。将在下面详细讨论以新颖的方式进行的其他参数的处理。
[0070] 503:通过为浮动参数设定初始值Pi(0)(即,P1(0)、P2(0)、P3(0)等等)估计模型目 标形状。各浮动参数将生成在如菜单中所定义的某些预定范围内。
[0071] 504:使用散射仪测量衬底上的实际目标的衍射图案。该测量的衍射图案被转发至 诸如计算机等的计算系统。计算系统可以是上面提及的处理单元PU,或者它可以是单独的 设备。506:将代表目标的估计形状的参数与模型化目标的不同元件的材料性质一起用于计 算散射性质。这可以例如使用RCWA等的严格光学衍射方法或者麦克斯韦方程组的任何其他 求解器来完成。这给出了用于所估计的目标形状的模型衍射图案。
[0072] 508、510:接着将测量的衍射图案与模型衍射图案进行比较,并且使用它们的共性 和区别计算针对模型目标形状的"评价函数"。在这里所公开的新颖的方法中,在评价函数 的计算中使用标有MEC(用于"模型误差校正")的附加计算511,以减少所谓的讨厌参数的影 响。MEC计算基于讨厌参数的统计观测及其对观测到的衍射图案的影响。将在下面参照图6 更详细地对其进行描述。
[0073] 512:假定评价函数指示模型在准确地代表实际目标形状之前需要改进,估计新的 参数?1(1)、?2(1)、?3(1)等并将其迭代反馈到步骤506内。重复步骤506至512,以便搜索最 佳地描述测量的目标的参数值的集合。为了帮助搜索,步骤506中的计算可以进一步生成评 价函数的偏导数,指示增加或减小参数将使评价函数在参数空间中的该特定的区域中增加 或减小的灵敏度。评价函数的计算和导数的使用是本领域已知的,并且将不会在这里详细 描述。
[0074] 514:当评价函数指示该迭代过程已收敛在具有期望准确性的解上时,将当前估计 参数作为实际目标结构的测量报告。
[0075] 上面的过程的步骤为了说明起见以某顺序呈现。它们不是必须以所描述的顺序执 行。例如,步骤502和/或503可以在进行步骤504中的测量之后执行。该迭代过程的计算时间 很大程度上由所使用的正向衍射模型、即利用严格光学衍射理论从估计目标结构计算估计 模型衍射图案来确定。如果要求更多的浮动参数,那么有更多的自由度。计算时间随着自由 度的数量而增加。在506计算的估计或模型衍射图案可以以各种形式表达。例如,当模型包 括设备的从照射源402到检测器418的光学行为以及被检查的目标的散射行为时,可以容易 将模型化衍射光谱与通过图4的散射仪设备测量的衍射光谱进行比较。当要在每一个衬底 上测量很多目标时,这变成重要的考虑因素。
[0076] 从图5向前遍及本描述,术语"衍射图案"将被用作在如下假设下的检测信号的示 例,该假设即,如在图4的示例设备和上面提及的现有公开US 2012/0123748A1中所描述的 那样使用角分辨散射仪。本领域技术人员可以容易地将该教导适配不同类型的散射仪,或 者甚至其他类型的测量仪器。
[0077]总之,图5的过程使用模型拟合方案从散射测量信号推断目标结构的参数。浮动参 数可以仅与模型的内部相关,或者可以是系统用户希望通过测量和重构过程确定的真正的 感兴趣的参数(P0I)。虽然该构思在原理上简单,但是在实践中难以设计重构模型。模型应 该针对准确性被优化,这可以例如通过均方根误差(RMSE)定义,并且可以被分解成噪声灵 敏度(再现性)和偏差(系统误差)。模型优化还应该获得对感兴趣的参数的实际变化的最优 的测量响应,而对噪声的影响、校准误差、模型近似和其他参数的变化不敏感。最后,模型运 行时间应该被最小化。
[0078] 新颖的重构过程-原理
[0079]满足上面的目的的目前最先进的途径是用足够的浮动参数定义重构模型以描述 待测量的结构的所有可能的变化。如果这些参数的典型变化对测量信号具有很少或没有影 响,那么操作者将这些参数的子集固定在各自的标称值。当参数被固定时匹配过程中的自 由度减小,这通常改善了拟合过程的稳定性(条件数量)和噪声鲁棒性。当参数被固定时拟 合过程的速度会增加。在直接回归中,例如,经常使用高斯-牛顿(GN)迭代方法。用于GN步骤 的时间随着必须被计算的导数的数量而线性地增加,并因此与自由度大致成正比。
[0080]拟合过程被设计为确定在测量的和模型化的信号之间的最佳拟合,其中模型化信 号取决于参数Pi。该最佳拟合可以以方程(1)的标准形式来表达: 剛4=,,"/-剩4⑴,
[0082]其中Pflt是浮动参数Pi的优化的拟合集合、f代表测量的衍射信号、Cf是光子噪声 协方差矩阵并且G(P)代表用于候选参数集合P的正向函数(即,模型化的衍射信号)。这些信 号可以被视作矢量(或多维实/复矩阵),其分量例如是衍射光瞳图案的单个像素值。方程 (1)中的范数"I I ... I I"因此代表测量的信号与各模型化信号之间的"距离"或误差。凡例 "arg min"代表寻求该误差、也称作"成本函数"或"评价函数"被最小化时的参数集合P所进 行的拟合过程。
[0083]如已经提到的,重构模型是感兴趣的参数(Pi)和讨厌参数(Pu)的函数。典型目标中 的讨厌参数的示例包括定义底下的层(图3中的306、304)的参数或者用于进行测量的设备 的参数。这些不同类别的讨厌参数可以分别称作"应用参数"和"传感器参数"。还可以在"校 准的"参数与"非校准的"参数之间进行区分。对于各单个仪器来说,一些传感器参数对光瞳 的影响在校准过程中被测量并且作为校准常数被存储校准文件中。校准文件可以在模型化 信号G中被用作传感器性质的代表。测量的图案和模型计算两者包括设备的行为以及目标 自身的行为。虽然校准文件针对不同设备之间的差异校正模型,但它不能校正所有差异,或 者不能校正例如校准的参数的随时间的漂移。可能存在没有被校准的其他传感器参数,并 且作为应用参数的讨厌参数也(根据定义)没有被校准。因此,讨厌参数、无论它们是应用参 数还是校准的参数都具有类似的效果并且本讨论同样适用于两种情况,除非明确做出区 分。当寻求准确性与计算负担之间的适当平衡时,解决方案可能是使具有对感兴趣的参数 的高灵敏度和强相关性的任何讨厌参数(P u)浮动,而其余Pu在重构期间被保持固定。然而, 在实践中,使所有这样的参数浮动导致重构问题的病态性以及增加所要求的处理。可替代 的解决方案通过MEC步骤511提供,如现在将描述的。
[0084]图6示出在图5的方法中的步骤511处的MEC贡献的计算。虽然图5的方法必须在产 生具有测量目标30的衬底时实时执行,但MEC方法的步骤中的一些可以在准备或"离线"阶 段中执行。数值方法校正误差、例如由讨厌参数Pu导致的误差,而不将它们当作重构模型G 中的固定或浮动参数对待。通过概率密度函数(PDF)描述的各讨厌参数Pu的影响可以被统 计建模并且作为"噪声/误差项"被包括在重构模型G中。结果,在重构模型中得到给定准确 性所需要的浮动参数的数量被减少。在图3和图4的示例模型结构的背景下,Pu可以代表例 如H2、H3和一些层的材料性质。Pi可以被减少成诸如H1、M⑶和SWA等的真正的感兴趣的参 数。
[0085] MEC方法在该文档中以一般形式进行描述,但是可以以若干方式变化。图6中代表 了主要步骤:
[0086] 602:第一步骤是定义讨厌参数Pu的范围和特点。
[0087] 603:定义测量模型(叫它H)。如下面将图示出的,测量模型H-般不同于步骤502中 的用于真实目标的重构过程中所采用的重构模型G。然而,根据应用,可以在步骤503/603中 实施同一模型。
[0088] 604:通过概率密度函数PDF描述各讨厌参数Pu的统计行为。MEC方法的执行依赖于 诸如roF(Pu)的标称值和方差等的roF(Pu)的初始参数的准确估计。PDF可以通过在若干代 表性样本上进行的讨厌参数的测量来得到。
[0089] 605:可以通过使用由roF(pu)给出代表值Pu作为到模型内的输入参数对Pu对计算 的衍射图案的影响统计地建模。
[0090] 606:接着可以从605的计算的图案针对Pu计算加权矩阵。作为协方差矩阵的该加 权矩阵代表测量的衍射图案的各部分中的讨厌参数的可能的影响。讨厌参数Pu的贡献可以 建模在单一个加权矩阵中。当使用方法的线性版本时(下面说明),可以将各Pu的贡献单独 地建模并且加到一起。
[0091] 607:接着可以从605的计算的图案针对Pu推断均值图案或平均图案。这代表在平 均误差方面在测量的衍射图案的各部分中的讨厌参数的可能的影响。
[0092] 608:在图5的(在线)重构过程(步骤510)中计算评价函数之前,使用针对各Pu的平 均图案来校正测量的图案。
[0093 ] 609:在图5的在线重构过程(步骤510)中的评价函数的计算中使用加权矩阵。以该 方式,在由图5代表的搜索过程中减少讨厌参数的影响。
[0094] 新方法可以用于校正(至少部分地)重构中的各种误差源。步骤607、608不需要在 MEC方法的所有版本中实施,并且步骤606、609不需要在所有版本中实施。实施两对步骤允 许更全面的校正。
[0095]新方法在步骤603中采用模型H,其可以不同于"实时"重构过程的步骤502中所使 用的正向函数G。模型H可以特别地比模型G更加详尽或"完整"。假如仅在过程的离线阶段中 使用,则如果模型H花费很多小时的处理时间不是问题。新颖的方法将更详尽的模型的准确 性带到重构过程内而没有相应地增加处理负担。接着可以使用模型H和G得到衍射图案的两 个集合。针对感兴趣的参数的给定值使用衍射模型H和G得到的衍射图案之间的差异给出了 模型误差 Merr = H(P)-G(P)。
[0096] 在根据讨厌值的期望统计分布计算时的模型误差允许计算例如在方法的步骤607 中的平均模型误差。当测量的和模型化的衍射图案对应于例如传感器418上的像素的阵列 时,各像素可以被分配平均模型误差。通过在计算评价函数(510/608)时的平均模型误差的 减法,由在正向模型G中做出的假定生成的误差在重构过程中被校正。
[0097] 也可以从模型误差导出加权矩阵(步骤606)。这些矩阵根据衍射图案的特定部分 通过在讨厌参数的每一个中的统计期望变化而被引起变化的多少将权重分配至这些部分。 以该方式,重构/计算的图案的对特定讨厌参数的依赖性可以被减少。换言之,各讨厌参数 的"指印"或者讨厌参数的集合被识别,并且重构利用较少权重的讨厌参数的指印执行,使 得重构通过感兴趣的参数的指印被更可靠地确定。
[0098] 讨厌参数的变化对计算的衍射图案的影响被编码在雅可比矩阵(J)中。使用参数 值的期望统计分布,导出这些参数的方差和(如果已知的话)协方差并且以模型误差的协方 差矩阵的形式表达。
[0099] 如之前提到的,讨厌参数Pu可以包括校准的参数和非校准的参数。非校准的参数 被当作测量模型H中的"自由"参数对待,而它们在重构模型G中被保持固定。将这放在数学 项=扣/巧=0; =册7祀中。校准的参数在图6中的影响的模型的计算期间 被当作两个模式中的"自由"参数对待(然后^ *〇)。
[0100] 来自不同类型的参数和其他误差源的贡献可以被组合在加权矩阵中。MEC加权矩 阵可以例如是模型误差和测量噪声、例如散射仪检测器18中固有的"光子噪声"的协方差矩 阵的总和。关于特定的参数或参数的组的可用的统计信息的细节可以在实践中变化。如果 参数之间的相关性的全面测量不可用,则传感器参数C u的协方差矩阵可以被简化为代表着 不同参数的方差的对角形式。即使当没有关于某一参数的统计的实验数据可用时,该参数 的变化的影响也仍然可以通过使用假定的协方差矩阵来减少。经验可以用于估计可能的标 称值和方差,和被输入在矩阵C u中的这些。估计的方差可以通过将结果进行比较来改进。
[0101] 注意,虽然已在回归过程的背景下描述了上面的方法,但是加权矩阵和/或平均误 差矩阵可以应用于在其他匹配过程、例如基于库的过程或混合过程中计算评价误差。
[0102] 在用于校正传感器参数的应用示例(所谓的"机器到机器"匹配)的背景下,上面的 新方法的更详细的数学说明如下。下文中提到的符号和操作(关于向量或多维矩阵)是公知 的。技术读者将认识到I |M| I是M的范数(M和Q是向量或矩阵),MT表示转置的M,I |M| Iq代表加 权范数々A/并且f1表示M的逆。
[0103] 在下面的介绍中,下标"R"表示参数的真实测量/已知值并且下标"0"表示参数的 标称值。
[0104] 回想一下,MEC方法确定在步骤607中计算的平均模型误差(称作fccirr)和在步骤 606中计算的加权矩阵(称作C)。这些参数中的每一个或两者被用在评价函数的计算中以校 正模型误差。该新方法的核心方程是:
[0105] fc〇rr = Eu[H(Pi0,u)-G(Pi0,u) ] =/duU(u) (H(Pi〇,u)-G(Pi〇,u)) (2),
[0106] 其中Eu代表关于讨厌参数u的期望值,并且
[0107] C = Cf+covu[H(Pi0,u)-G(Pi0,u)]
[0108] =Cf+/duU(u)(H(PiO,u)-G(PiO,u)-fcorr)(H(PiO,u)-G(PiO,u)-fcorr) T (3),
[0109] 其中U(u)是讨厌参数u的联合概率分布、Cf是代表测量噪声(例如检测器418中的 光子散粒噪声)的协方差矩阵、du是U的差分并且 C0Vu代表衍射图案关于U的协方差矩阵。方 程(2)和(3)中的积分可以例如通过诸如黎曼和或采样等的数值方法来确定。
[0110] 现在将描述用于校正检查设备之间的差异、也就是传感器误差的新方法的使用。 在数值方法的该应用中,讨厌参数是传感器设备参数。核心方程在给定的示例中被简化为 线性化版本。技术读者将容易领会到可以如何将技术应用于应用参数的校正。
[0111] 应用示例:"机器到机器"匹配
[0112] 如已经提到的,不同的散射测量传感器的特征参数不同,相同结构图案的重构针 对不同设备给出不同结果。差异通过校准过程和校准文件被最小化,但是不能被完全消除。 重构模型可以被修改以便包括"机器到机器"匹配,例如,模型可以补偿传感器差异。该校正 的实际益处在于,可以使来自不同设备的测量结果可比而不引入误差。
[0113] 步骤603中采用的测量模型H不同于步骤502的正向(重构)模型G。因此,在该示例 中,模型误差由定义。注意,正向模型G经由校准文件取决于传感器参 数。"机器到机器"匹配方法的主要步骤被呈现在该部分中。
[0114] 包括代表"传感器误差"的项的成本函数可以以方程(4)的形式表达:
[0115] FiP^uR) = UR) - uR) - /forr||^1 (4)。
[0116] 其中u在该示例中代表传感器参数。如之前讨论的,拟合过程被设计为通过使包括 由新方法计算的模型误差的评价/成本函数最小化来确定测量的模型化的信号之间的最佳 拟合。如之前提到的,在给定的实施中,可以选择仅使用均值模型误差(省略步骤606 ) 或仅使用加权函数C(省略步骤607)。成本函数方程(4)的形式可以相应地修改。
[0117] 测量的衍射信号f对于图6的过程来说可以是合成的测量图像,是取决于定义了测 量的结构和传感器的参数的值的"测量"模型mPuU)与噪声项^的和:
[0118] f(Pi,u)=H(Pi,u)+e (5),
[0119] 参数fc^rjPC然后使用方程(2)和(3)通过MEC模型来确定。
[0120] 可以采用数个方案来确定参数匕_和(:。例如,在MEC方法的线性版本中,参数fccirr 和C可以被定义如下:
[0121] fcorr = H(Pi〇,u〇)-G(Pi〇,u〇) (6),
[0122] 和
[0123] C = (7),
[0124] 其中代表雅可比矩阵代表雅可比矩阵3G/& ,并且cu是传感器参数 的协方差矩阵。也就是说,cu代表传感器参数u的集合的期望统计分布。
[0125] 雅可比矩阵被用于计算横跨模型化衍射图案的所有部分(像素)的传感器参数变 化的影响。关于特定的参数或参数的组的可用的统计信息的细节可以在实践中变化。如上 面提到的,协方差矩阵C u可以被简化成对角形式。即使当没有关于某一参数的统计的实验 数据可用时,经验也可以被用于估计可能的标称值和方差,并且这些估计值用于形成矩阵 Cuo
[0126] 注意,迭代程序可以在该新方法的所有版本中采用以进行参数匕_和(:的更好的 近似。在该方案中,匕_和(:在主重构循环的每次迭代中被更新。
[0127] 结论
[0128] 为了针对其他模型评估包括MEC方法的重构方法,将利用新重构模型得到的误差 值与例如利用传统"固定和浮动"模型得到的结果进行比较。包括MEC方法的模型在示例产 品堆栈上显示出比例如"固定和浮动"模型更好的性能。包括MEC方法的模型的性能接近测 量裸多层上的额外数据(例如H2、H3)的"前馈"方法,而后者要求额外测量并因此具有在生 产线上的吞吐量缺点。此外,通过使用MEC,在机器之间针对感兴趣的重构参数的均值偏移 量(偏差)和方差(再现性)两者得到了很大的改善。
[0129] 总之,上面公开了用于通过识别某些讨厌参数而校正相关联的各种类型的模型误 差的多种简单的数值模型。方法没有将浮动参数添加至过程,它们也没有通过将参数固定 至错误值而增加系统偏离的风险。它们已被证明改善了用于商业使用的产品堆栈的均方误 差(方差+偏差2)并且以与已知方法相比相等或较低的计算成本改善了"机器到机器"匹配。 总体上讲,MEC方法可以被应用于校正诸如离散误差(与模型化辐射和结构细分成有限数量 的谐波和片有关)等的其他模型误差。
[0130] PDF(Pu)的表征是MEC模型中的关键参数。在半导体量测中,过程被良好控制,导致 PDF(Pu)的准确估计。商业产品堆栈和"机器到机器"匹配的详细研究已表明误差对估计的 PDF的灵敏度足够弱。
[0131] 例如,在计算负担(运行时间)方面,项f^rjPC是独立于机器的并且对于特定应用 可以离线地确定。在一个实施中,每个应用需要几个小时。然而,从测量的图案减去fc^r所 需要的在线时间是可忽略的。
[0132] 相同的处理单元PU可以包括图2的整个过程,或者不同的过程和子过程可以被分 配给不同的处理单元(未示出)。处理单元PU可以利用包含用于确定衬底上的对象的近似结 构的机器可读指令的一个或多个序列的计算机程序产品来操作,指令适于引起PU中的一个 或多个处理器执行这里所描述的方法。在这样的布置中,在处理单元PU上运行的软件模块 可以从散射仪的其他部件接收衍射信号和电磁散射性质。
[0133] 虽然上面已描述了发明的特定实施例,但应该领会的是发明可以以除所描述的以 外的其他方式实践。例如,发明可以采取包含描述了如上面所公开的方法的计算机可读指 令的一个或多个序列的计算机程序或者其上具有这样的计算机程序的数据存储介质(例 如,半导体存储器、磁或光盘)的形式。包含实施具有模型误差校正的过程的指令的计算机 程序产品可以被供给用于修改现有硬件系统的操作。计算机程序产品可以包括还用于通过 图6的方法或其他方法来计算影响(在示例中的项和C)的模型的指令。可替代地,一个 计算机程序产品可以包括仅用于使用在另一地方或时间计算的影响的模型的在线过程的 指令。用于离线过程所要求的计算资源不需要是与在制造工厂的散射仪中使用的相同的那 个。
[0134] 虽然可能在该正文中对检查方法和设备的在1C的制造中的使用进行了特定参考, 但应该理解的是,这里所描述的检查方法和设备可以具有其他应用,诸如集成光学系统的 制造、用于磁畴存储器、平板显示器、掩模版、液晶显示器(IXD)、薄膜磁头的引导和检测图 案等。本领域技术人员将领会的是,在这样的可替代应用的背景下,这里的术语"晶片"或 "管芯"的任何使用可以被视作分别与更上位的术语"衬底"或"目标部分"同义。这里提及的 衬底可以在曝光之前或之后在例如轨道(典型地将一层抗蚀剂施加至衬底并使经过曝光的 抗蚀剂显影的工具)、量测工具和/或检查工具中进行处理。在适用时,这里的公开可以应用 于这样的和其他衬底处理工具。此外,衬底可以被处理超过一次,例如以便创建多层1C,使 得这里所使用的术语衬底也可以是指已经包含多个经过处理的层的衬底。
[0135] 虽然可能已在上面对在光学光刻的背景下的发明的实施例的使用进行了特定参 考,但应该领会的是,发明可以在任何应用、例如压印光刻中使用,并且只要情况允许并不 限于光学光刻。在压印光刻中,图案形成装置中的拓扑定义了创建在衬底上的图案。可以将 图案形成装置的拓扑按压到供给至衬底的一层抗蚀剂内,随之通过施加电磁辐射、热、压力 或其组合使抗蚀剂固化。在抗蚀剂固化之后,将图案形成装置从抗蚀剂上移走,在其中留下 图案。
[0136] 这里所使用的术语"辐射"和"光束"涵盖所有类型的电磁辐射,包括紫外(UV)辐射 (例如,具有或大约365腦、355腦、24811111、19311111、15711111或126腦的波长)和极紫外江1^)辐射 (例如,具有在5nm至20nm的范围内的波长),以及诸如粒子束或电子束等的粒子束。
[0137] 术语"透镜"只要情况允许可以是指包括折射型、反射型、磁性型、电磁型和静电型 光学部件在内的各种类型的光学部件中的任一项或组合。
[0138] 术语"电磁"涵盖电的和磁的。
[0139] 术语"电磁散射性质"涵盖反射和透射系数及散射测量参数,包括光谱(诸如作为 波长的函数的强度)、衍射图案(作为位置/角度的函数的强度)和横向磁的与横向电的偏振 光的相对强度和/或在横向磁的与横向电的偏振光之间的相位差。衍射图案自身可以例如 使用反射系数进行计算。
[0140]因此,虽然关于反射散射描述了本发明的实施例,但发明也适用于透射散射。
[0141]上面的描述旨在说明性的,不是限制性的。因此,对于本领域技术人员来说显而易 见的是可以在不脱离下面所陈述的权利要求的精神和范围的情况下对如所描述的方法进 行修改。
【主权项】
1. 一种测量衬底上的结构的参数的方法,所述方法包括如下步骤: (a) 定义数学模型,在所述数学模型中所述结构的形状和材料性质由包括至少一个感 兴趣的参数的多个参数代表; (b) 用一个或多个辐射束照射所述结构并且检测由于所述辐射与所述结构之间的相互 作用而产生的信号; (d) 通过在使所述感兴趣的参数变化并且使至少一个其他参数不变化的情况下模拟所 述辐射与所述数学模型之间的相互作用,计算多个模型信号; (e) 通过在使所述其他参数根据假定的统计行为变化的情况下模拟所述辐射与所述数 学模型之间的相互作用,计算对于所述其他参数的影响的模型; (f) 在使用所述影响的模型来抑制所述其他参数的在所述模型信号中没有被代表的变 化的影响的情况下,计算在检测到的信号与在步骤(d)中计算的模型信号中的至少一些之 间的匹配的程度; (g) 基于计算的所述匹配的程度报告所述感兴趣的参数的测量。2. 根据权利要求1所述的方法,其中所述影响的模型提供加权矩阵,通过所述加权矩阵 在检测到的信号与模型信号之间的所述匹配的程度与所述信号的一些部分相比更取决于 其他部分。3. 根据权利要求2所述的方法,其中所述检测到的信号是通过角分辨散射测量得到的 二维衍射图案,并且所述加权矩阵针对所述衍射图案中的一些像素定义了比其他像素低的 权重,以计算所述匹配的程度。4. 根据任一前述权利要求所述的方法,其中所述影响的模型提供了在计算匹配的程度 之前被从所述检测到的信号减去的均值误差信号。5. 根据权利要求4所述的方法,其中所述检测到的信号是通过角分辨散射测量得到的 二维衍射图案,并且所述影响的模型提供了均值误差矩阵,由此在计算所述匹配的程度之 前不同的误差值被从所述检测到的衍射图案的不同像素减去。6. 根据任一前述权利要求所述的方法,其中所述其他参数是在步骤(a)中建模的所述 结构的所述形状或材料的参数。7. 根据任一前述权利要求所述的方法,其中所述其他参数是用于在步骤(b)中获得所 述检测到的信号的检测设备的参数。8. 根据任一前述权利要求所述的方法,其中多个感兴趣的参数在步骤(d)中被改变并 且在步骤(g)中被报告。9. 根据任一前述权利要求所述的方法,其中多个其他参数在步骤(d)中被固定并且在 步骤(e)中被改变。10. 根据任一前述权利要求所述的方法,其中所述步骤(d)和所述步骤(f)在迭代循环 中通过回归执行以找到所述感兴趣的参数的值,而不重新计算所述影响的模型。11. 根据权利要求1至9中的任一项所述的方法,其中所述步骤(d)和所述步骤(f)在迭 代循环中通过回归执行以找到所述感兴趣的参数的值,并且其中所述影响的模型在所述循 环的一个或多个迭代之后被重新计算以考虑所述感兴趣的参数中的更新。12. 根据任一前述权利要求所述的方法,其中所述影响的模型包括用于多个其他参数 的与所述假定的统计行为的模型组合的一个或多个雅可比矩阵。13. 根据任一前述权利要求所述的方法,其中所述假定的统计行为的模型包括用于该 或各所述其他参数的标称值和方差。14. 一种用于测量衬底上的结构的参数的检查设备,所述设备包括: -用于衬底的支撑,所述衬底具有在所述衬底上形成的所述结构; -光学系统,用于用一个或多个辐射束照射所述结构并且检测由于所述辐射与所述结 构之间的相互作用而产生的信号; -处理器,被布置成:通过模拟所述辐射与数学模型之间的相互作用计算多个模型信 号,在所述数学模型中所述结构的形状和材料性质由包括至少一个感兴趣的参数的多个参 数代表;计算所述检测到的信号与所述计算的模型信号中的至少一些之间的匹配的程度; 和基于所述计算的匹配的程度报告所述感兴趣的参数的测量, 其中所述处理器被布置成在使所述感兴趣的参数变化并且使至少一个其他参数不变 化的情况下计算所述多个模型信号,并且其中所述处理器被进一步布置成当计算所述匹配 的程度时使用影响的模型来抑制所述其他参数的可能存在于所述检测到的信号中但是在 所述模型信号中没有被代表的变化的影响。15. 根据权利要求14所述的检查设备,其中所述影响的模型提供加权矩阵,通过所述加 权矩阵在检测到的信号与模型信号之间的所述匹配的程度与所述信号的一些部分相比更 取决于其他部分。16. 根据权利要求15所述的检查设备,其中所述检测到的信号是通过角分辨散射测量 得到的二维衍射图案,并且所述加权矩阵针对所述衍射图案中的一些像素定义了比其他像 素低的权重,以计算所述匹配的程度。17. 根据权利要求14至16中的任一项所述的检查设备,其中所述影响的模型提供了在 计算匹配的程度之前被从所述检测到的信号减去的均值误差信号。18. 根据权利要求17所述的检查设备,其中所述检测到的信号是通过角分辨散射测量 得到的二维衍射图案,并且所述影响的模型提供了均值误差矩阵,由此在计算所述匹配的 程度之前不同的误差值被从所述检测到的衍射图案的不同像素减去。19. 根据权利要求14至18中的任一项所述的检查设备,其中所述处理器被布置成在迭 代循环中通过回归执行模型信号和匹配的程度的所述计算以找到所述感兴趣的参数的值, 而不重新计算所述影响的模型。20. 根据权利要求15至19中的任一项所述的检查设备,其中所述处理器被布置成在迭 代循环中通过回归执行模型信号和匹配的程度的所述计算以找到所述感兴趣的参数的值, 并且被进一步布置成在所述循环的一个或多个迭代之后重新计算所述影响的模型以考虑 所述感兴趣的参数中的更新。21. 根据权利要求14至20中的任一项所述的检查设备,其中所述处理器被进一步布置 成通过在使所述其他参数根据假定的统计行为变化的情况下模拟所述辐射与所述数学模 型之间的相互作用,计算对于所述其他参数的所述影响的模型。22. 根据权利要求21所述的检查设备,其中所述影响的模型包括用于多个其他参数的 与所述假定的统计行为的模型组合的一个或多个雅可比矩阵。23. 根据权利要求21或22所述的检查设备,其中所述其他参数是在所述数学模型中的 所述结构的所述形状或材料的参数。24. 根据权利要求21或22所述的检查设备,其中所述其他参数是所述检查设备自身的 校准的参数。25. 根据权利要求21至24中的任一项所述的检查设备,其中所述处理器被布置成使得 计算所述多个模型信号时被固定的多个其他参数在计算所述影响的模型时被改变。26. 根据权利要求14至25中的任一项所述的检查设备,其中所述假定的统计行为的模 型包括用于该或各所述其他参数的标称值和方差。27. -种计算机程序产品,包括用于引起处理器执行根据权利要求1至13中的任一项所 述的方法的所述步骤(d)和所述步骤(f)的机器可读指令。28. 根据权利要求27所述的计算机程序产品,进一步包括用于引起处理器执行根据权 利要求1至13中的任一项所述的方法的所述步骤(e)的指令。29. -种计算机程序产品,包括用于引起处理器执行根据权利要求1至13中的任一项所 述的方法的所述步骤(e)的机器可读指令,以计算以供检查设备执行所述方法的所述步骤 (a)至所述步骤(d)和所述步骤(f)与所述步骤(g)使用的影响的模型。
【文档编号】G01N21/47GK105900016SQ201480072918
【公开日】2016年8月24日
【申请日】2014年11月5日
【发明人】M·P·敏克, J·M·布鲁克, I·塞蒂加
【申请人】Asml荷兰有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1