机床及其控制方法

文档序号:3117259阅读:135来源:国知局
机床及其控制方法
【专利摘要】提供一种即使空转量异常变大也不需要持续长期停止、并且能够推定比以往更准确的空转量的机床及机床的控制方法。机床具备:驱动机构,使控制对象移动;马达,使驱动机构动作;第1编码器,检测控制对象的位置;第2编码器,检测马达的位置;伺服控制部,控制马达;和数值控制部,从上述伺服控制部接受或计算根据第1编码器的检测结果得到的控制对象的位置与根据第2编码器的检测结果得到的控制对象的位置的误差,基于控制对象的移动方向的反转前后的误差的变化量推定驱动机构的传递误差。
【专利说明】机床及其控制方法

【技术领域】
[0001]本发明的实施方式涉及机床及其控制方法。

【背景技术】
[0002]一般而言,在机床中,搭载工件的工作台或搭载切削工件的工具的主轴头等控制对象被使用数值控制装置及伺服部控制。数值控制装置向伺服部输出位置指令。伺服部例如经由由齿条及小齿轮、滚珠丝杠及螺母等构成的传递机构按照位置指令控制控制对象的位置。
[0003]在这样的传递机构中存在间隙或摩擦等的情况下,即使数值控制装置及伺服部准确地控制马达的旋转位置、也产生马达不能准确地控制控制对象的位置的情况。例如,在传递机构中有间隙的情况下,当伺服部要经由马达使控制对象的移动方向反转时,即使马达旋转(反转),控制对象也以间隙的量停止。即,有控制对象不对位置指令立即追随的情况。将该追随误差称作空转。
[0004]专利文献1:特开2002 - 297241号公报专利文献2:特开2012 — 168926号公报。


【发明内容】

[0005]如果空转量变大,则伴随着轴移动的振动变大,将振动样式向加工对象的加工面转印。这带来加工对象的品质的劣化。通常,使用者在注意到加工面的劣化后,向制造厂家或修理商委托机床的修理或调整。制造厂家或修理商使数值控制装置及伺服部成为半闭环控制状态,使用DBB (双球杆,Double Ball Bar)测量器进行空转量的确认,然后,在进行修理所需要的零件的获得后进行机床的修理。在此情况下,使用者在能够获得修理所需要的零件之前,持续长期间不能使用机床。
[0006]所以,本发明是为了解决上述问题而做出的,目的是提供一种即使空转量异常变大、也不需要持续长期停止、并且能够推定比以往更准确的空转量的机床及机床的控制方法。
[0007]本实施方式的机床具备:驱动机构,使控制对象移动;马达,使上述驱动机构动作;第I编码器,检测上述控制对象的位置;第2编码器,检测上述马达的位置;伺服控制部,控制上述马达;数值控制部,从上述伺服控制部接受或计算根据上述第I编码器的检测结果得到的上述控制对象的位置与根据上述第2编码器的检测结果得到的上述控制对象的位置的误差,基于上述控制对象的移动方向的反转前后的上述误差的变化量推定上述驱动机构的传递误差。
[0008]也可以是,上述数值控制部基于使上述控制对象的移动方向反转前的根据上述第I编码器的检测结果得到的上述控制对象的位置和根据上述第2编码器的检测结果得到的上述控制对象的位置,从上述伺服控制部接受或计算上述驱动机构的第I误差;基于使上述控制对象的移动方向反转后的根据上述第I编码器的检测结果得到的上述控制对象的位置和根据上述第2编码器的检测结果得到的上述控制对象的位置,从上述伺服控制部接受或计算上述驱动机构的第2误差;将上述第I误差与上述第2误差的差推定为上述驱动机构的传递误差。
[0009]也可以是,上述数值控制部基于使上述控制对象的移动方向反转前的根据上述第I编码器的检测结果得到的上述控制对象的位置和根据上述第2编码器的检测结果得到的上述控制对象的位置,从上述伺服控制部接受或计算上述驱动机构的第I误差;基于使上述控制对象的移动方向反转后的根据上述第I编码器的检测结果得到的上述控制对象的位置和根据上述第2编码器的检测结果得到的上述控制对象的位置,从上述伺服控制部接受或计算上述驱动机构的第2误差;计算多个上述第I误差与上述第2误差的差,将该多个差的平均推定为上述驱动机构的传递误差。
[0010]该机床也可以还具备保存标志的存储部,所述标志当从上述数值控制部向上述伺服控制部输出的位置指令表示上述控制对象的移动方向的反转时上升。
[0011]也可以是,为了计算上述第I误差与上述第2误差的差,上述数值控制部在上述标志下降的情况下设置上述第I误差,在上述标志上升后设置上述第2误差。
[0012]也可以是,上述标志当上述位置指令表示上述控制对象的移动方向的反转后上述控制对象的移动方向实际反转时下降。
[0013]该机床也可以还具备显示部,所述显示部显示上述驱动机构的传递误差的推定值。
[0014]该机床也可以还具备警报部,所述警报部在上述驱动机构的传递误差的推定值超过了规定值的情况下发出警报。
[0015]也可以是,上述存储部保存上述驱动机构的传递误差的多个推定值;上述显示部或上述警报部基于上述多个推定值,向使用者通知上述驱动机构的维护时期。
[0016]本实施方式的机床的控制方法,是具备使控制对象移动的驱动机构、使上述驱动机构动作的马达、检测上述控制对象的位置的第I编码器、检测上述马达的位置的第2编码器、控制上述马达的伺服控制部、和向上述伺服控制部输出位置指令的数值控制部的机床的控制方法,具备:接受或计算根据上述第I编码器的检测结果得到的上述控制对象的位置与根据上述第2编码器的检测结果得到的上述控制对象的位置的误差;计算上述控制对象的移动方向的反转前后的上述误差的变化量;和基于上述误差的变化量,推定上述驱动机构的传递误差。
[0017]也可以是,上述误差的计算包括:基于使上述控制对象的移动方向反转前的根据上述第I编码器的检测结果得到的上述控制对象的位置和根据上述第2编码器的检测结果得到的上述控制对象的位置,计算上述驱动机构的第I误差;和基于使上述控制对象的移动方向反转后的根据上述第I编码器的检测结果得到的上述控制对象的位置和根据上述第2编码器的检测结果得到的上述控制对象的位置,计算上述驱动机构的第2误差;该方法将上述第I误差与上述第2误差的差推定为上述驱动机构的传递误差。
[0018]也可以是,上述误差的接受或计算包括:基于使上述控制对象的移动方向反转前的根据上述第I编码器的检测结果得到的上述控制对象的位置和根据上述第2编码器的检测结果得到的上述控制对象的位置,接受或计算上述驱动机构的第I误差;和基于使上述控制对象的移动方向反转后的根据上述第I编码器的检测结果得到的上述控制对象的位置和根据上述第2编码器的检测结果得到的上述控制对象的位置,接受或计算上述驱动机构的第2误差;该方法反复进行上述误差的计算,计算多个上述第I误差与上述第2误差的差,将该多个差的平均推定为上述驱动机构的传递误差。
[0019]也可以是,为了计算上述第I误差与上述第2误差的差,在当从上述数值控制部向上述伺服控制部输出的位置指令表示上述控制对象的移动方向的反转时上升的标志下降的情况下,设置上述第I误差,在上述标志上升后设置上述第2误差。
[0020]也可以是,上述标志当上述位置指令表示上述控制对象的移动方向的反转后上述控制对象的移动方向实际反转时下降。
[0021]上述机床也可以在上述驱动机构的传递误差的推定值超过规定值的情况下发出警报。
[0022]上述机床也可以基于上述驱动机构的传递误差的多个推定值,向使用者通知上述驱动机构的维护时期。

【专利附图】

【附图说明】
[0023]图1是表示遵循本实施方式的机床的伺服部I及驱动机构2的结构的一例的图。
[0024]图2是表示本实施方式的伺服部1、驱动机构2及数值控制装置4的结构的一例的框图。
[0025]图3是表示本实施方式的位置指令值的一例的曲线图、表示分别从线性编码器50及旋转编码器60反馈的工作台28的位置测量值的一例的曲线图、以及表示空转量的曲线图。
[0026]图4是表示空转量的推定方法的流程图。

【具体实施方式】
[0027]以下,参照【专利附图】
附图
【附图说明】有关本发明的实施方式。本实施方式并不限定本发明。
[0028]图1是表示遵循本实施方式的机床的伺服马达14及驱动机构2的结构的一例的图。伺服马达14经由联接器3与驱动机构2连结。驱动机构2具备头20、支承托架22、螺母23、滚珠丝杠25、轴承26、线性导引部27和工作台28。
[0029]头20固定在机床的主体上,搭载驱动机构2的其他构成要素。支承托架22固定配置在头20上,构成为,经由轴承26支承滚珠丝杠25的两端。滚珠丝杠25通过联接器3与伺服马达14连结,构成为,随着伺服马达14的轴的旋转而旋转。螺母23形成有螺孔,以与滚珠丝杠25的螺纹部拧合,能够随着滚珠丝杠25的旋转而在滚珠丝杠25的轴向上移动。作为控制对象的工作台28固定在螺母23上,并且受线性导引部27支承。工作台28随着螺母23的移动,在滚珠丝杠25及线性导引部27的轴向(箭头A的方向)上移动。工作台28搭载工件,为了将工件用工具切削,使工件相对于头20相对地动作。另外,控制对象也可以是主轴头等。
[0030]这样,机床能够将伺服马达14的旋转运动变换为工作台28的线性运动。
[0031]图2是表示本实施方式的伺服部1、驱动机构2及数值控制装置4的结构的一例的框图。数值控制装置4具备输入显示部40、存储器41、程序解析部42、轨道生成部44、空转量计算部46和警报部48。
[0032]输入显示部40是操作者与数值控制装置4之间的接口,例如是触摸面板式显示器等。操作者在输入显示部40中输入或选择加工程序。
[0033]存储器41例如是ROM (只读存储器,Read Only Memory)、RAM (随机存取存储器,Random Access Memory)> HDD (硬盘驱动器,Hard Disc Drive)及 / 或 SSD (固态驱动器,Solid State Drive)。存储器41保存控制机床整体的系统程序、加工程序、机床的参数、各种数据。存储器41的RAM区域在CPU10执行系统程序等时也作为装载(load)区域或作业区域使用。
[0034]程序解析部42将从存储器41得到的加工程序解析,制作轨道生成用数据。加工程序的解析对于加工程序的各块,得到使机床的驱动部移动的目标位置的坐标及驱动部的目标移动速度等。所谓块,是加工程序的基本单位,例如表示I行的指令。I块例如表示直线移动、圆弧移动、主轴的旋转开始/停止等基本的动作的指令。由此,按照块制作轨道生成用数据。轨道生成用数据被向轨道生成部44转送,轨道生成部44制作各个采样周期的位置指令。
[0035]伺服部I的伺服控制部12按照来自数值控制装置4的位置指令控制马达14。在马达14中,设有旋转编码器60。旋转编码器60检测马达14的轴的旋转,测量其位置的变动。旋转编码器60将马达14的轴的位置变动向伺服控制部12反馈。
[0036]马达14如参照图1说明那样将驱动机构2驱动。由此,工作台28沿着线性导引部27移动。在驱动机构2中,设有连接在工作台28上的线性编码器50。线性编码器50测量工作台28的位置的变动。线性编码器50将工作台28的位置变动向伺服控制部12反馈。
[0037]伺服控制部12接受来自线性编码器50及旋转编码器60的反馈,为了将工作台28的位置或马达14的位置修正而将位置的测量值修正。伺服控制部12使用修正后的位置测量值与位置指令值的差生成速度指令。
[0038]进而,伺服控制部12将从线性编码器50及旋转编码器60反馈的工作台28的位置的测量值或马达14的位置的测量值向空转计算部46转送。
[0039]空转计算部46计算根据线性编码器50的检测结果得到的工作台28的位置的测量值(以下,也称作来自线性编码器50的位置测量值)与根据旋转编码器60的检测结果得到的工作台28的位置的测量值(以下,也称作来自旋转编码器60的位置测量值)的误差。另外,旋转编码器60由于检测马达14的轴的位置(角位置),所以旋转编码器60自身、伺服控制部12或空转计算部46根据马达14的角位置计算工作台28的位置(换算位置)。此外,伺服控制部12也可以计算来自线性编码器50的位置测量值与来自旋转编码器60的位置测量值的误差。在此情况下,空转计算部46从伺服控制部12接受来自线性编码器50的位置测量值与来自旋转编码器60的位置测量值的误差。进而,空转计算部46计算工作台28的移动方向的反转前及反转后的误差的变化量,基于该变化量推定驱动机构2的传递误差(空转量)。警报部48在空转量的推定值超过了规定值的情况下发出警报。
[0040]另外,存储器41、程序解析部42、轨道生成部44及空转计算部46既可以由I个CPU(中央处理器,Central Processing Unit)实现,也可以分别由单独的存储器或CPU实现。
[0041]在滚珠丝杠25与螺母23之间,存在间隙等机械的误差、或摩擦或弹性变形等非线性误差。这样的误差使马达14与工作台28之间产生机械的传递误差。例如,图1的马达14使滚珠丝杠25向一方向旋转,使工作台28向箭头A的一方向移动,然后,马达14使滚珠丝杠25的旋转方向反转,使工作台28向箭头A的另一方向(反方向)移动。此时,如果在滚珠丝杠25与螺母23之间有间隙等,则有尽管马达14反转但是工作台28为不移动而停止的状态的期间。这样,将尽管马达14反转但工作台28不移动的状态称作空转。
[0042]图3 (A)是表示本实施方式的位置指令值的一例的曲线图,图3 (B)是表示从线性编码器50及旋转编码器60的各自反馈的工作台28的位置测量值的一例的曲线图,图3(C)是表示空转量(长度)的曲线图。在图3 (A)?图3 (C)中,横轴是时间。
[0043]如图3 (A)所示,数值控制装置4向伺服控制部12输出位置指令值。例如,数值控制装置4在时点t0之前,输出位置指令值以使工作台28向第I方向移动。数值控制装置4在时点t0将位置指令值变更,以使工作台28的移动方向向第2方向反转。然后,数值控制装置4在时点tlO之前,输出位置指令值以使工作台28向第2方向移动。数值控制装置4在时点tlO将位置指令值变更,以使工作台28的移动方向向第I方向再次反转。即,在时点t0及tlO,数值控制装置4将位置指令值的变化率的符号(速度指令的符号)变更。由此,位置指令值在时点t0及tlO具有拐点,使工作台28的移动方向向反方向反转。
[0044]如图3 (B)所示,马达14在时点tl之前,使工作台28向第I方向移动。按照时点t0的位置指令,马达14使工作台28的移动方向从第I方向向第2方向反转。此时,数值控制装置4在从将位置指令输出的时点t0到马达14按照该位置指令实际使工作台28动作的时点tl发生了时间滞后(tl - t0)。另外,如图3 (B)所示,在时点tl之前,来自线性编码器50及旋转编码器60的各自的位置测量值不完全一致,在两者间有一些差别。关于时点tl2以后也同样,在来自线性编码器50及旋转编码器60的各自的位置测量值中有一些差别。
[0045]在螺母23与滚珠丝杠25之间有间隙的情况下,当要使工作台28的移动方向从第I方向向第2方向反转时,即使马达14动作,工作台28也以该间隙的量停止。因而,在图3(B)的时点tl?t2的期间中,虽然从旋转编码器60得到的工作台28的位置测量值L60下降,但是从线性编码器50得到的工作台28的位置测量值L50大致为一定。
[0046]因而,在时点tl?t2,由于位置指令值与从线性编码器50得到的工作台28的位置测量值L50之间的位置误差急剧地增加,所以与位置误差成比例的速度指令急剧地变化。由此,马达14的旋转变快,位置测量值L60的倾斜变得比图3 (A)所示的位置指令值的倾斜陡峭。
[0047]马达14在旋转了间隙的量后,在时点t2?tll,工作台28随着马达14的动作而向第2方向移动。此时,如图3 (B)及图3 (C)所示,相应于间隙的量,在位置测量值L60与位置测量值L50之间发生误差。
[0048]接着,马达14在时点tll之前,使工作台28向第2方向移动。在时点t2?tll,在位置测量值L60与位置测量值L50之间误差被原样维持。
[0049]按照时点tlO的位置指令,马达14使工作台28的移动方向从第2方向向第I方向再次反转。此时,数值控制装置4从将位置指令输出的时点tlO到马达14按照该位置指令实际使工作台28动作的时点tll发生了时间滞后(tll - tlO)。
[0050]如上述那样,在有间隙的情况下,当要使工作台28的移动方向从第2方向向第I方向反转时,即使马达14动作,工作台28也以其间隙的量停止。因而,在图3 (B)的时点tll?tl2的期间中,虽然从旋转编码器60得到的工作台28的位置测量值L60上升,但从线性编码器50得到的工作台28的位置测量值L50大致为一定。S卩,时点t2?tll的位置测量值L50与位置测量值L60的误差下降,朝向零返回。
[0051]另外,在时点tll?tl2,由于位置指令值与从线性编码器50得到的工作台28的位置测量值L50之间的位置误差急剧地增加,所以与位置误差成比例的速度指令急剧地变化。由此,马达14的旋转变快,位置测量值L60的倾斜变得比图3 (A)所示的位置指令值的倾斜陡峭。
[0052]马达14大致以间隙的量再次反转后,在时点tl2以后,工作台28随着马达14的动作向第I方向移动。此时,如图3 (B)及图3 (C)所示,位置测量值L50与位置测量值L60的误差虽然返回而下降,但是有不为零的情况。即,在时点tl2以后也有在位置测量值L60与位置测量值L50之间发生误差的情况。
[0053]在时点12以后,马达14同样按照位置指令动作,使驱动机构2驱动。此时,在有间隙的情况下,在来自线性编码器50及旋转编码器60的各自的测量值中发生误差。
[0054]如图3 (C)所示,基于来自线性编码器50的位置测量值L50与来自旋转编码器60的位置测量值L60的差推定空转量。
[0055]图4是表示空转量的推定方法的流程图。参照图4,更详细地说明空转量的推定方法。另外,空转量的推定只要在空转计算部46中执行就可以。
[0056]空转计算部46通过定时的中断处理反复执行工作台28的移动方向的反转前及反转后的误差的变化量的计算。例如,空转计算部46也可以按照数值控制装置4的采样周期执行工作台28的移动方向的反转前及反转后的误差的变化量的计算。
[0057]首先,假设在初始状态下,空转计算部46从伺服控制部12接受到在连续的多个采样周期中输出的多个位置指令值、与该多个位置指令对应的根据线性编码器50的检测结果得到的位置测量值、和与该多个位置指令对应的根据旋转编码器60的检测结果得到的位置测量值。另外,空转计算部46也可以从轨道生成部44直接接受位置指令值。
[0058]空转计算部46还从伺服控制部12接受在下个采样周期中输出的位置指令值、与该位置指令对应的来自线性编码器50的位置测量值、和来自旋转编码器60的位置测量值(S20)。
[0059]接着,空转计算部46基于在连续的采样周期中得到的多个位置指令值,判定位置指令值是否表示工作台28的移动方向的反转(S30)。例如,如参照图3 (A)说明那样,空转计算部46也可以根据位置指令值的变化率的符号(速度指令的符号)的变化来判定位置指令值是否使工作台28的移动方向反转。另外,在位置指令值不变化的情况下(位置指令值的变化率是零的情况下),空转计算部46将该时点的移动方向原样维持。
[0060]此外,空转计算部46基于连续的采样周期中的来自线性编码器50的多个位置测量值,判定工作台28的移动方向是否实际反转了(S30)。例如,空转计算部46也可以根据来自线性编码器50的位置测量值的变化率的符号(速度的符号)的变化来判定工作台28的移动方向。另外,在该位置测量值的变化率没有变化的情况下(位置测量值的变化率为零的情况下),空转计算部46将该时点的移动方向原样维持。此外,在此情况下,也可以设置适当的不灵敏区,以便不会因线性编码器50的计数的不稳而误检测移动方向。这样,在步骤S30中,空转计算部46判定位置指令值中的工作台28的移动方向的反转(以下,也称作位置指令值的反转)及来自线性编码器50的位置测量值中的工作台28的移动方向的反转(以下,也称作位置测量值的反转)。
[0061]接着,空转计算部46参照标志F(S40)。标志F当表示位置指令值的反转时上升。在初始状态的情况下或在没有检测到位置指令值的反转的情况下,标志F例如下降到逻辑低(O)。另一方面,在后述的步骤S60中检测到位置指令值的反转的情况下,标志F例如上升到逻辑高(I)。另外,只要能够表示位置指令的反转,标志F的逻辑状态也可以替换。标志F只要保存到存储器41或空转计算部46内的寄存器中就可以。
[0062]在标志F下降的情况下(S40的否),空转计算部46参照在步骤S30中判定出的位置指令值的反转的状态(S50 )。
[0063]进而,在没有检测到位置指令值的反转的情况下(S50的否),空转计算部46将来自线性编码器50的位置测量值与来自旋转编码器60的位置测量值的差的绝对值设置为第I误差A (S60)。即,空转计算部46计算使工作台28的移动方向反转前(例如,图3 (A)的t0以前)的来自线性编码器50的位置测量值与来自旋转编码器60的位置测量值的差作为驱动机构2的第I误差A。第I误差A只要保存(设置)到存储器41或空转计算部46内的寄存器中就可以。另外,第I误差A也可以在伺服控制部12中计算出,从伺服控制部12向空转计算部46发送。在此情况下,空转计算部46只要接受第I误差A就足够,不需要计算。
[0064]在没有检测到位置指令值的反转的期间(例如,图3 (A)的t0以前),数值控制装置4按照定期的中断处理,将上述步骤S20?S60反复执行。在此情况下,每当步骤S20?S60的执行,就将第I误差A向存储器41或空转计算部46内的寄存器存储。或者,也可以将在步骤S20?S60的每次执行中得到的第I误差A平均化。
[0065]在某个中断处理的步骤S50中检测到位置指令值的反转的情况下(S50的是),空转计算部46将标志F例如上升到逻辑高(I) (S70)。
[0066]接着,空转计算部46参照在步骤S30中判定出的位置测量值的反转的状态(S80)。在没有检测到位置测量值的反转的情况下(S80的否),数值控制装置4按照定期的中断处理,将上述步骤S20?S80反复执行。此时,是检测到位置指令值的反转、并且没有检测到位置测量值的反转的状态。这样检测到位置指令值的反转、并且没有检测到位置测量值的反转的期间例如是图3 (B)的t0?t2的期间(间隙的影响出现的时间滞后)。
[0067]在某个中断处理的步骤S80中检测到位置测量值的反转的情况下(S80的是),空转计算部46将标志F下降到逻辑低,进行复位(S90)。这样,标志F是为了检测从位置指令表示工作台28的移动方向的反转到工作台28的移动方向实际反转的期间(时间滞后)而设置的。
[0068]接着,空转计算部46将来自线性编码器50的位置测量值与来自旋转编码器60的位置测量值的差的绝对值设置为第2误差B (SlOO)0即,空转计算部46计算使工作台28的移动方向反转后(例如,图3 (A)?图3 (C)的t2?tlO)的来自线性编码器50的位置测量值与来自旋转编码器60的位置测量值的差作为驱动机构2的第2误差B。第2误差B只要保存(设置)到存储器41或空转计算部46内的寄存器中就可以。另外,第2误差B也可以在伺服控制部12中计算,从伺服控制部12向空转计算部46发送。在此情况下,空转计算部46只要接受第2误差B就足够,不需要计算。
[0069]接着,空转计算部46计算第I误差A与第2误差B的差的绝对值作为误差C(SI 10)。将误差C每当步骤S20?S60的执行时向存储器41或空转计算部46内的寄存器存储。如由图4的虚线表示那样,空转计算部46也可以将误差C推定为驱动机构2的传递误差(空转量)(S130)。或者,空转计算部46也可以计算此次计算出的误差C及过去计算出的多个误差C的平均值(S120),将该平均值推定为驱动机构2的传递误差(空转量)(S130)。
[0070]空转计算部46将空转量的推定值向输入显示部40输出(S140)。输入显示部40显示空转量的推定值。由此,使用者能够掌握空转量的变化。因而,在加工对象的品质劣化之前,进行修理所需要的零件的安排等,由此能够较早地进行机床的维护。因而,不需要为了修理而使机床持续长期停止。
[0071]在空转量的推定值超过规定值的情况下,警报部48发出警报。由此,在空转量没有变大的情况下,机床能够向使用者为了维护而提起注意。规定值只要保存到存储器41或空转计算部46的寄存器中就可以。
[0072]进而,输入显示部40或警报部48也可以基于空转量的多个推定值向使用者通知驱动机构2的维护时期。在此情况下,存储器41只要预先存储多个推定值就可以。例如,在不仅是单一的推定值、而是多个推定值超过了规定值的情况下,输入显示部40或警报部48发出警报。由此,即使错误的推定值异常地超过了规定值,输入显示部40或警报部48也不发出警报。由此,机床能够准确地向使用者通知机床的维护时期。另外,输入显示部40或警报部48也可以在连续地计算出的多个推定值超过了规定值时发出警报。也可以代替地,输入显示部40或警报部48在离散地计算出的多个推定值超过了规定值时发出警报。
[0073]进而,也可以将过去的多个推定值预先保存到机床的内部或外部的数据库中,通过作为曲线图向使用者提示,使用者预测及管理机床的维护时期。
[0074]进而,本实施方式的机床不是单单将来自线性编码器50的位置测量值与来自旋转编码器60的位置测量值的差(例如,第I误差A或第2误差B的某个)作为空转量。本实施方式的机床基于工作台28的移动方向的反转前后的误差的变化量(例如误差C)推定空转量。因而,例如如图3 (B)及图3 (C)所示,即使在工作台28的移动方向的反转前后的两方有误差,本实施方式的机床也能够推定准确的空转量。
【权利要求】
1.一种机床,其特征在于,具备: 驱动机构,使控制对象移动; 马达,使上述驱动机构动作; 第I编码器,检测上述控制对象的位置; 第2编码器,检测上述马达的位置; 伺服控制部,控制上述马达;和 数值控制部,从上述伺服控制部接受或计算根据上述第I编码器的检测结果得到的上述控制对象的位置与根据上述第2编码器的检测结果得到的上述控制对象的位置的误差,基于上述控制对象的移动方向的反转前后的上述误差的变化量推定上述驱动机构的传递误差。
2.如权利要求1所述的机床,其特征在于, 上述数值控制部 基于使上述控制对象的移动方向反转前的根据上述第I编码器的检测结果得到的上述控制对象的位置和根据上述第2编码器的检测结果得到的上述控制对象的位置,从上述伺服控制部接受或计算上述驱动机构的第I误差; 基于使上述控制对象的移动方向反转后的根据上述第I编码器的检测结果得到的上述控制对象的位置和根据上述第2编码器的检测结果得到的上述控制对象的位置,从上述伺服控制部接受或计算上述驱动机构的第2误差; 将上述第I误差与上述第2误差的差推定为上述驱动机构的传递误差。
3.如权利要求1所述的机床,其特征在于, 上述数值控制部 基于使上述控制对象的移动方向反转前的根据上述第I编码器的检测结果得到的上述控制对象的位置和根据上述第2编码器的检测结果得到的上述控制对象的位置,从上述伺服控制部接受或计算上述驱动机构的第I误差; 基于使上述控制对象的移动方向反转后的根据上述第I编码器的检测结果得到的上述控制对象的位置和根据上述第2编码器的检测结果得到的上述控制对象的位置,从上述伺服控制部接受或计算上述驱动机构的第2误差; 计算多个上述第I误差与上述第2误差的差,将该多个差的平均推定为上述驱动机构的传递误差。
4.如权利要求1?3中任一项所述的机床,其特征在于, 还具备保存标志的存储部,所述标志当从上述数值控制部向上述伺服控制部输出的位置指令表示上述控制对象的移动方向的反转时上升。
5.如权利要求4所述的机床,其特征在于, 为了计算上述第I误差与上述第2误差的差,上述数值控制部在上述标志下降的情况下设置上述第I误差,在上述标志上升后设置上述第2误差。
6.如权利要求4所述的机床,其特征在于, 上述标志当上述位置指令表示上述控制对象的移动方向的反转后上述控制对象的移动方向实际反转时下降。
7.如权利要求1所述的机床,其特征在于, 还具备显示部,所述显示部显示上述驱动机构的传递误差的推定值。
8.如权利要求1所述的机床,其特征在于, 还具备警报部,所述警报部在上述驱动机构的传递误差的推定值超过了规定值的情况下发出警报。
9.如权利要求7或8所述的机床,其特征在于, 上述存储部保存上述驱动机构的传递误差的多个推定值; 上述显示部或上述警报部基于上述多个推定值,向使用者通知上述驱动机构的维护时期。
10.一种控制方法,是机床的控制方法,所述机床具备使控制对象移动的驱动机构、使上述驱动机构动作的马达、检测上述控制对象的位置的第I编码器、检测上述马达的位置的第2编码器、控制上述马达的伺服控制部、和向上述伺服控制部输出位置指令的数值控制部,所述控制方法的特征在于,具备: 接受或计算根据上述第I编码器的检测结果得到的上述控制对象的位置与根据上述第2编码器的检测结果得到的上述控制对象的位置的误差; 计算上述控制对象的移动方向的反转前后的上述误差的变化量;和 基于上述误差的变化量,推定上述驱动机构的传递误差。
11.如权利要求10所述的控制方法,其特征在于, 上述误差的接受或计算包括: 基于使上述控制对象的移动方向反转前的根据上述第I编码器的检测结果得到的上述控制对象的位置和根据上述第2编码器的检测结果得到的上述控制对象的位置,接受或计算上述驱动机构的第I误差;和 基于使上述控制对象的移动方向反转后的根据上述第I编码器的检测结果得到的上述控制对象的位置和根据上述第2编码器的检测结果得到的上述控制对象的位置,接受或计算上述驱动机构的第2误差; 将上述第I误差与上述第2误差的差推定为上述驱动机构的传递误差。
12.如权利要求10所述的控制方法,其特征在于, 上述误差的接受或计算包括: 基于使上述控制对象的移动方向反转前的根据上述第I编码器的检测结果得到的上述控制对象的位置和根据上述第2编码器的检测结果得到的上述控制对象的位置,接受或计算上述驱动机构的第I误差;和 基于使上述控制对象的移动方向反转后的根据上述第I编码器的检测结果得到的上述控制对象的位置和根据上述第2编码器的检测结果得到的上述控制对象的位置,接受或计算上述驱动机构的第2误差; 反复进行上述误差的接受或计算,计算多个上述第I误差与上述第2误差的差,将该多个差的平均推定为上述驱动机构的传递误差。
13.如权利要求10?12中任一项所述的控制方法,其特征在于, 为了计算上述第I误差与上述第2误差的差,在当从上述数值控制部向上述伺服控制部输出的位置指令表示上述控制对象的移动方向的反转时上升的标志下降的情况下,设置上述第I误差,在上述标志上升后设置上述第2误差。
14.如权利要求13所述的控制方法,其特征在于, 上述标志当上述位置指令表示上述控制对象的移动方向的反转后上述控制对象的移动方向实际反转时下降。
15.如权利要求10所述的控制方法,其特征在于, 上述机床在上述驱动机构的传递误差的推定值超过规定值的情况下发出警报。
16.如权利要求10所述的控制方法,其特征在于, 上述机床基于上述驱动机构的传递误差的多个推定值,向使用者通知上述驱动机构的维护时期。
【文档编号】B23Q15/00GK104209808SQ201410241355
【公开日】2014年12月17日 申请日期:2014年6月3日 优先权日:2013年6月3日
【发明者】藤田纯, 佐贺千寻 申请人:东芝机械株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1