一种钨合金与钼合金的连接方法与流程

文档序号:11910481阅读:817来源:国知局
一种钨合金与钼合金的连接方法与流程

本发明涉及难熔金属钨与钼的连接领域,特别是通过添加超薄铜中间层,用电场活化连接技术对钨合金与钼合金进行低温高强连接的连接方法。



背景技术:

金属钨是熔点最高的金属,其熔点高达3422℃,密度19.3g/cm3,钨及钨合金具有高的高温强度,弹性模量高,热膨胀系数小,优良的耐化学腐蚀性,以及良好的电子发射性能等优点。因此钨及其合金广泛应用于航空航天、核工业、兵器工业、电力电子等诸多领域。随着工业的发展以及科学技术的进步,人们发现钼是一种具有十分重要战略意义的稀有金属。相对于钨而言,钼的熔点低、密度小。钼及其合金同样具有一系列优异的性能,例如高弹性模量、热膨胀系数低、优越的高温蠕变性能等等,因而钼及钼合金在机械、化工、国防、电子、航空航天以及核工业等领域应用广泛。

钨与钼都属于难熔金属,两者应用领域都十分广泛并且应用领域有交叉,在某些特定的场合也涉及钨与钼的连接问题。电子真空器件在国防和重要的通信领域具有广泛的应用,被称为现代信息化武器装备的心脏。电子真空器件的热阴极是由经过处理的金属钨构成,与热阴极直接接触的套筒是由金属钼加工而成,为了达到微波管工作的稳定性和寿命等要求,热阴极与套筒之间必须达到可靠的密封连接。因此研究钨与钼异种金属连接不仅具有科研价值,在实际应用中也具有十分重要的意义。近年来有学者希望通过添加中间层来解决钨与钼扩散焊接温度高的问题。C.C.Lin等人通过添加Pd箔焊接,接头界面致密,并且界面处没有脆性金属间化合物相的形成,得到良好的焊接接头(参见文献:C.C.Lin,et al.Brazing porous tungsten and molybdenum using palladium and titanium foils[J].Int.Journal of Refractory Metal and Hard Materials,2012,31:284-287.)。Frank Ferrer Sene等人用Ni-Mo合金填料作为中间层对多孔W与Mo异种金属进行焊接,焊接界面个元素扩散充分,得到的焊接接头的平均焊接强度为87.9MPa(参见文献:Frank Ferrer Sene,Cláudio Costa Motta.Synthesis and Characterization of Ni-Mo Filler Brazing Alloy for Mo-W Joining for Microwave Tube Technology[J].Materials Research,2013,16(2):417-423.)。目前,添加超薄铜中间层对难熔金属钨与钼的低温高强焊接连接尚未报道。



技术实现要素:

本发明所要解决的技术问题是:提供了一种超薄铜中间层,并通过电场活化烧结连接技术对钨合金与钼合金进行低温高强连接的方法。

本发明解决其技术问题采用以下的技术方案:

本发明提供的钨合金与钼合金的连接方法,具体是:先在钨合金、钼合金表面沉积超薄 铜薄膜或者添加超薄铜箔,然后利用等离子活化烧结连接工艺,在轴向压力为5~30MPa,真空度≤0.1Pa,活化时间为20~100s,升温速率为80~200℃/min,和在650~850℃、保温300~1200s工艺条件下,实现超薄铜或超薄铜箔做中间层的钨合金与钼合金的低温高强连接。

所述的超薄铜薄膜,是采用磁控溅射沉积工艺在钨合金与钼合金表面沉积超薄铜薄膜,沉积温度为200~650℃。

所述的超薄铜薄膜的质量纯度为99.99%,厚度为0.2~1μm。

所述的超薄铜箔的质量纯度为99.99%,厚度为5~20μm。

所述的钨合金为93W4Ni3Fe或者97W2NiFe钨合金,或者由纯钨替代。

所述的钼合金为Mo1或者TZM钼合金,或者由纯钼替代。

本发明提供的上述钨合金与钼合金的连接方法,其在适用于其它异种金属尤其是难熔金属材料的低温、快速、高强连接中的应用。

本发明与现有技术相比具有以下主要特点:

1.在实现难熔金属钨合金与钼合金时,添加低熔点、塑性良好的铜作为中间层;其次,沉积超薄铜薄膜时对钨合金与钼合金基板进行加热,提高了铜薄膜与基板的原子接触,促进了界面原子之间的相互扩散;添加超薄铜薄膜作为中间层,将难熔金属钨合金与钼合金的直接焊接转化为铜薄膜的连接。

2.采用电场活化连接工艺可以进一步降低连接温度,电场活化连接工艺是颗粒间放电、脉冲电流加热和加压相互作用,因此具有很高的热效率,升温速率快、连接时间短,可以极大缩短连接工艺周期。

3.本方法工艺简单,周期短,适应性强,利于推广,适用于其它异种金属(尤其是难熔金属)材料的低温、快速、高强连接。

总之,本发明添加铜箔中间,或者在钨合金、钼合金表面沉积超薄铜薄膜中间层,利用电场活化连接技术,在真空条件下实现了钨合金与钼合金的低温、高强连接,极大降低了连接温度、提高了连接的可靠性。在铜薄膜厚度0.8μm,薄膜沉积温度为600℃;连接温度700℃,压力为20MPa的条件下保温900s,得到的焊接接头的剪切强度高达224.8MPa。

附图说明

图1是本发明超薄铜薄膜中间层的工艺流程图。

图2是本发明铜箔中间层的工艺流程图。

图3是利用磁控溅射技术在钼合金表面沉积0.5μm厚度的超薄铜薄膜的表面显微结构扫描电镜二次电子图。

图4是焊接温度700℃,焊接压力20MPa,保温时间900s焊接条件下,超薄铜薄膜中间层焊接接头界面显微结构扫描电镜背散射电子图。

图5是焊接温度700℃,焊接压力20MPa,保温时间900s焊接条件下,超薄铜薄膜中间层焊接接头界面元素分布的线扫描图。

图6是焊接温度700℃,焊接压力20MPa,保温时间900s焊接条件下,超薄铜薄膜中间层焊接接头钨合金侧断口显微结构扫描电镜背散射电子图。

图7是焊接温度700℃,焊接压力20MPa,保温时间900s焊接条件下,超薄铜薄膜中间层焊接接头钼合金侧断口显微结构扫描电镜背散射电子图。

具体实施方式

本发明提供的一种难熔金属钨合金与钼合金超薄低温扩散连接制备方法,其主要工艺流程如下,在钨合金、钼合金表面沉积超薄铜薄膜或者添加超薄铜箔,利用电场活化连接技术,在真空条件下实现了钨合金与钼合金的低温高强连接。

下面结合实施例及附图对本发明做进一步说明,但并不局限于下面所述的内容。

实施例1

图1是本发明超薄铜薄膜中间层的工艺流程图。钨合金待焊件是尺寸为Φ25mm×8mm的93W4Ni3Fe钨合金,钼合金待焊件是尺寸为Φ25mm×8mm的Mo1钼合金,磁控溅射沉积超薄铜薄膜,薄膜厚度为0.4μm,沉积温度为600℃。扩散焊接工艺条件是:焊接温度700℃,焊接压力20MPa,保温时间为900s。

其具体步骤如下:

1.原料钨合金与钼合金的机械加工及表面清理:

用超精密平面磨床将钨合金与钼合金加工成圆薄片,焊前用600#、1000#、1500#、2000#SiC砂纸打磨圆薄片的待焊面,然后用高精密抛光机对打磨面进行抛光,将抛光后的钨合金与钼合金放入有机溶剂中,利用超声清洗机超声清洗5min。

所述的有机溶剂,是采用摩尔浓度为99.9%的乙醇。

2.钨合金与钼合金待连接面的磁控溅射沉积超薄铜薄膜:

将待焊件,即步骤1处理后的钨合金与钼合金放入高真空磁控溅射设备样品室腔体中,待腔体真空度达到10-3~10-4Pa后,采用磁控溅射沉积技术在待焊件抛光面沉积厚度为0.4μm的铜薄膜,得到钨合金/铜薄膜、钼合金/铜薄膜。

所述高真空磁控溅射设备是沈阳世昂生产的SA07-02型号的超高真空磁控溅射镀膜仪。

图3为沉积在钼合金表面的铜薄膜的显微结构,钼合金/铜薄膜结晶度高、颗粒大小均匀均匀,表面有一定的粗糙度。

所述的磁控溅射沉积超薄铜薄膜过程工艺为:基片(待焊件)温度为600℃,升温速率为1~5℃/s,溅射功率为100w,氩气压力为2.0Pa,沉积时间为15min,靶基距为15~25cm。

3.含超薄铜薄膜中间层的钨合金与钼合金待焊件的焊接连接:

将钨合金/铜薄膜薄膜、钼合金/铜薄膜依次装进焊接模具,将焊接模具放入等离子活化烧结设备(PAS)腔体内进行电场活化连接,对焊接件施加轴向压力20MPa,当腔体真空度达到10-3~10-4Pa后,经30s的活化阶段后,开始加热,其温度制度为:首先以90~110℃/min的升温速率升温至650℃,然后以2~20℃/min的升温速率升温至700℃,在700℃条件下 保温900s,然后以15~25℃/min的降温速率降温至350~400℃,最后以30~35℃/min的降温速率降温至50℃以下,取出焊接件。

所述焊接模具是高强石墨模具。

图4是扩散焊接接头界面的显微结构,其中:编号1为钨合金基体,编号2为铜薄膜,编号3为钼合金基体。从接头界面显微结构可以看出,接头界面没有气孔、微裂纹等缺陷,中间层(铜薄膜)与基体之间的结合良好,没有脆性金属间化合物的生成。

图5是接头界面元素线扫描分布图,从图5中可以看出,铜薄膜与钨合金和铝合金有充分的扩散,形成了可靠的连接。

图6、图7分别是断口钨合金侧、钼合金侧的显微结构,断口可明显看到韧窝,是明显的韧性断裂,这也是接头强度较高的原因。得到的焊接件连接紧密、平行性好。经剪切强度测试,结果显示焊接件接头剪切强度达到125.4MPa。

实施例2

钨合金待焊件是尺寸为Φ25mm×8mm的93W4Ni3Fe钨合金,钼合金待焊件是尺寸为Φ25mm×8mm的Mo1钼合金,磁控溅射沉积超薄铜薄膜,薄膜厚度为0.8μm,沉积温度为600℃。扩散焊接工艺条件是:焊接温度700℃,焊接压力20MPa,保温时间为900s。

其具体步骤如下:

1.原料钨合金与钼合金的机械加工及表面清理:

用超精密平面磨床将钨合金与钼合金加工成圆薄片,焊前用600#、1000#、1500#、2000#SiC砂纸打磨圆薄片的待焊面,然后用高精密抛光机对打磨面进行抛光,将抛光后的钨合金与钼合金放入有机溶剂中,利用超声清洗机超声清洗5min。

所述的有机溶剂是采用乙醇,摩尔浓度为99.9%。

2.钨合金与钼合金待连接面的磁控溅射沉积超薄铜薄膜:

将待焊件,即步骤1处理后的钨合金与钼合金放入高真空磁控溅射设备样品室腔体中,待腔体真空度达到10-3~10-4Pa后,采用磁控溅射沉积技术在待焊件抛光面沉积厚度为0.8μm的铜薄膜,得到钨合金/铜薄膜、钼合金/铜薄膜。所述的磁控溅射沉积超薄铜薄膜过程工艺为:基片(待焊件)温度为600℃,升温速率为1~5℃/s,溅射功率为100w,氩气压力为2.0Pa,沉积时间为20min,靶基距为15~25cm。

3.含超薄铜薄膜中间层的钨合金与钼合金待焊件的焊接连接:

将钨合金/铜薄膜薄膜、钼合金/铜薄膜依次装进焊接模具,将焊接模具放入等离子活化烧结设备(PAS)腔体内进行电场活化连接,对焊接件施加轴向压力20MPa,当腔体真空度达到10-3~10-4Pa后,经30s的活化阶段后,开始加热,其温度制度为:首先以90~110℃/min的升温速率升温至650℃,然后以2~20℃/min的升温速率升温至700℃,在700℃条件下保温900s,然后以15~25℃/min的降温速率降温至350~400℃,最后以30~35℃/min的降温速率降温至50℃以下,取出焊接件。

得到的焊接件连接紧密、平行性好。检测结果显示焊接件接头剪切强度达224.8MPa。

实施例3

钨合金待焊件是尺寸为Φ25mm×8mm的93W4Ni3Fe钨合金,钼合金待焊件是尺寸为Φ25mm×8mm的Mo1钼合金,磁控溅射沉积超薄铜薄膜,薄膜厚度为0.4μm,沉积温度为600℃。扩散焊接工艺条件是:焊接温度750℃,焊接压力20MPa,保温时间为900s。

其具体步骤如下:

1.原料钨合金与钼合金的机械加工及表面清理:

用超精密平面磨床将钨合金与钼合金加工成圆薄片,焊前用600#、1000#、1500#、2000#SiC砂纸打磨圆薄片的待焊面,然后用高精密抛光机对打磨面进行抛光,将抛光后的钨合金与钼合金放入有机溶剂中,利用超声清洗机超声清洗5min。

所述的有机溶剂是采用乙醇,摩尔浓度为99.9%。

2.钨合金与钼合金待连接面的磁控溅射沉积超薄铜薄膜:

将待焊件,即步骤1处理后的钨合金与钼合金放入高真空磁控溅射设备样品室腔体中,待腔体真空度达到10-3~10-4Pa后,采用磁控溅射沉积技术在待焊件抛光面沉积厚度为0.4μm的铜薄膜,得到钨合金/铜薄膜、钼合金/铜薄膜。所述的磁控溅射沉积超薄铜薄膜过程工艺为:基片(待焊件)温度为600℃,升温速率为1~5℃/s,溅射功率为100w,氩气压力为2.0Pa,沉积时间为15min,靶基距为15~25cm。

3.含超薄铜薄膜中间层的钨合金与钼合金待焊件的焊接连接:

将钨合金/铜薄膜薄膜、钼合金/铜薄膜依次装进焊接模具,将焊接模具放入等离子活化烧结设备(PAS)腔体内进行电场活化连接,对焊接件施加轴向压力20MPa,当腔体真空度达到10-3~10-4Pa后,经30s的活化阶段后,开始加热,其温度制度为:首先以90~110℃/min的升温速率升温至700℃,然后以2~20℃/min的升温速率升温至750℃,在750℃条件下保温900s,然后以15~25℃/min的降温速率降温至350~400℃,最后以30~35℃/min的降温速率降温至50℃以下,取出焊接件。

得到的焊接件连接紧密、平行性好。检测结果显示焊接件接头剪切强度达75.0MPa。

实施例4

钨合金待焊件是尺寸为Φ25mm×8mm的93W4Ni3Fe钨合金,钼合金待焊件是尺寸为Φ25mm×8mm的Mo1钼合金,磁控溅射沉积超薄铜薄膜,薄膜厚度为0.4μm,沉积温度为600℃。扩散焊接工艺条件是:焊接温度800℃,焊接压力20MPa,保温时间为900s。

其具体步骤如下:

1.原料钨合金与钼合金的机械加工及表面清理:

用超精密平面磨床将钨合金与钼合金加工成圆薄片,焊前用600#、1000#、1500#、2000#SiC砂纸打磨圆薄片的待焊面,然后用高精密抛光机对打磨面进行抛光,将抛光后的钨合金与钼合金放入有机溶剂中,利用超声清洗机超声清洗5min。

所述的有机溶剂是采用乙醇,摩尔浓度为99.9%。

2.钨合金与钼合金待连接面的磁控溅射沉积超薄铜薄膜:

将待焊件,即步骤1处理后的钨合金与钼合金放入高真空磁控溅射设备样品室腔体中,待腔体真空度达到10-3~10-4Pa后,采用磁控溅射沉积技术在待焊件抛光面沉积厚度为0.4μm的铜薄膜,得到钨合金/铜薄膜、钼合金/铜薄膜。所述的磁控溅射沉积超薄铜薄膜过程工艺为:基片(待焊件)温度为600℃,升温速率为1~5℃/s,溅射功率为100w,氩气压力为2.0Pa,沉积时间为15min,靶基距为15~25cm。

3.含超薄铜薄膜中间层的钨合金与钼合金待焊件的焊接连接:

将钨合金/铜薄膜薄膜、钼合金/铜薄膜依次装进焊接模具,将焊接模具放入等离子活化烧结设备(PAS)腔体内进行电场活化连接,对焊接件施加轴向压力20MPa,当腔体真空度达到10-3~10-4Pa后,经30s的活化阶段后,开始加热,其温度制度为:首先以90~110℃/min的升温速率升温至750℃,然后以2~20℃/min的升温速率升温至800℃,在800℃条件下保温900s,然后以15~25℃/min的降温速率降温至350~400℃,最后以30~35℃/min的降温速率降温至50℃以下,取出焊接件。

得到的焊接件连接紧密、平行性好。检测结果显示焊接件接头剪切强度达81.4MPa。

实例5

钨合金待焊件是尺寸为Φ25mm×8mm的93W4Ni3Fe钨合金,钼合金待焊件是尺寸为Φ25mm×8mm的Mo1钼合金,磁控溅射沉积超薄铜薄膜,薄膜厚度为0.4μm,沉积温度为600℃。扩散焊接工艺条件是:焊接温度700℃,焊接压力20MPa,保温时间为1200s。

其具体步骤如下:

1.原料钨合金与钼合金的机械加工及表面清理:

用超精密平面磨床将钨合金与钼合金加工成圆薄片,焊前用600#、1000#、1500#、2000#SiC砂纸打磨圆薄片的待焊面,然后用高精密抛光机对打磨面进行抛光,将抛光后的钨合金与钼合金放入有机溶剂中,利用超声清洗机超声清洗5min。

所述的有机溶剂是采用乙醇,摩尔浓度为99.9%。

2.钨合金与钼合金待连接面的磁控溅射沉积超薄铜薄膜:

将待焊件,即步骤1处理后的钨合金与钼合金放入高真空磁控溅射设备样品室腔体中,待腔体真空度达到10-3~10-4Pa后,采用磁控溅射沉积技术在待焊件抛光面沉积厚度为0.4μm的铜薄膜,得到钨合金/铜薄膜、钼合金/铜薄膜。所述的磁控溅射沉积超薄铜薄膜过程工艺为:基片(待焊件)温度为600℃,升温速率为1~5℃/s,溅射功率为100w,氩气压力为2.0Pa,沉积时间为15min,靶基距为15~25cm。

3.含超薄铜薄膜中间层的钨合金与钼合金待焊件的焊接连接:

将钨合金/铜薄膜薄膜、钼合金/铜薄膜依次装进焊接模具,将焊接模具放入等离子活化烧结设备(PAS)腔体内进行电场活化连接,对焊接件施加轴向压力20MPa,当腔体真空度达 到10-3~10-4Pa后,经30s的活化阶段后,开始加热,其温度制度为:首先以90~110℃/min的升温速率升温至650℃,然后以2~20℃/min的升温速率升温至700℃,在700℃条件下保温1200s,然后以15~25℃/min的降温速率降温至350~400℃,最后以30~35℃/min的降温速率降温至50℃以下,取出焊接件。

得到的焊接件连接紧密、平行性好。检测结果显示焊接件接头剪切强度达158.0MPa。

实例6

钨合金待焊件是尺寸为Φ25mm×8mm的93W4Ni3Fe钨合金,钼合金待焊件是尺寸为Φ25mm×8mm的Mo1钼合金,磁控溅射沉积超薄铜薄膜,薄膜厚度为0.2μm,沉积温度为200℃。扩散焊接工艺条件是:焊接温度700℃,焊接压力20MPa,保温时间为900s。

其具体步骤如下:

1.原料钨合金与钼合金的机械加工及表面清理:

用超精密平面磨床将钨合金与钼合金加工成圆薄片,焊前用600#、1000#、1500#、2000#SiC砂纸打磨圆薄片的待焊面,然后用高精密抛光机对打磨面进行抛光,将抛光后的钨合金与钼合金放入有机溶剂中,利用超声清洗机超声清洗5min。

所述的有机溶剂是采用乙醇,摩尔浓度为99.9%。

2.钨合金与钼合金待连接面的磁控溅射沉积超薄铜薄膜:

将待焊件,即步骤1处理后的钨合金与钼合金放入高真空磁控溅射设备样品室腔体中,待腔体真空度达到10-3~10-4Pa后,采用磁控溅射沉积技术在待焊件抛光面沉积厚度为0.2μm的铜薄膜,得到钨合金/铜薄膜、钼合金/铜薄膜。所述的磁控溅射沉积超薄铜薄膜过程工艺为:基片(待焊件)温度为200℃,升温速率为1~5℃/s,溅射功率为100w,氩气压力为2.0Pa,沉积时间为15min,靶基距为15~25cm。

3.含超薄铜薄膜中间层的钨合金与钼合金待焊件的焊接连接:

将钨合金/铜薄膜薄膜、钼合金/铜薄膜依次装进焊接模具,将焊接模具放入等离子活化烧结设备(PAS)腔体内进行电场活化连接,对焊接件施加轴向压力20MPa,当腔体真空度达到10-3~10-4Pa后,经30s的活化阶段后,开始加热,其温度制度为:首先以90~110℃/min的升温速率升温至650℃,然后以2~20℃/min的升温速率升温至700℃,在700℃条件下保温900s,然后以15~25℃/min的降温速率降温至350~400℃,最后以30~35℃/min的降温速率降温至50℃以下,取出焊接件。

得到的焊接件连接紧密、平行性好。检测结果显示焊接件接头剪切强度达56.7MPa。

实例7

钨合金待焊件是尺寸为Φ25mm×8mm的93W4Ni3Fe钨合金,钼合金待焊件是尺寸为Φ25mm×8mm的Mo1钼合金,磁控溅射沉积超薄铜薄膜,薄膜厚度为1μm,沉积温度为400℃。扩散焊接工艺条件是:焊接温度700℃,焊接压力20MPa,保温时间为900s。

其具体步骤如下:

1.原料钨合金与钼合金的机械加工及表面清理:

用超精密平面磨床将钨合金与钼合金加工成圆薄片,焊前用600#、1000#、1500#、2000#SiC砂纸打磨圆薄片的待焊面,然后用高精密抛光机对打磨面进行抛光,将抛光后的钨合金与钼合金放入有机溶剂中,利用超声清洗机超声清洗5min。

所述的有机溶剂是采用乙醇,摩尔浓度为99.9%。

2.钨合金与钼合金待连接面的磁控溅射沉积超薄铜薄膜:

将待焊件,即步骤1处理后的钨合金与钼合金放入高真空磁控溅射设备样品室腔体中,待腔体真空度达到10-3~10-4Pa后,采用磁控溅射沉积技术在待焊件抛光面沉积厚度为0.3μm的铜薄膜,得到钨合金/铜薄膜、钼合金/铜薄膜。所述的磁控溅射沉积超薄铜薄膜过程工艺为:基片(待焊件)温度为200℃,升温速率为1~5℃/s,溅射功率为100w,氩气压力为2.0Pa,沉积时间为25min,靶基距为15~25cm。

3.含超薄铜薄膜中间层的钨合金与钼合金待焊件的焊接连接:

将钨合金/铜薄膜薄膜、钼合金/铜薄膜依次装进焊接模具,将焊接模具放入等离子活化烧结设备(PAS)腔体内进行电场活化连接,对焊接件施加轴向压力20MPa,当腔体真空度达到10-3~10-4Pa后,经30s的活化阶段后,开始加热,其温度制度为:首先以90~110℃/min的升温速率升温至650℃,然后以2~20℃/min的升温速率升温至700℃,在700℃条件下保温900s,然后以15~25℃/min的降温速率降温至350~400℃,最后以30~35℃/min的降温速率降温至50℃以下,取出焊接件。

得到的焊接件连接紧密、平行性好。检测结果显示焊接件接头剪切强度达102.8MPa。

实例8

图2是本发明铜箔中间层的工艺流程图。钨合金待焊件是尺寸为Φ25mm×8mm的93W4Ni3Fe钨合金,钼合金待焊件是尺寸为Φ25mm×8mm的Mo1钼合金,铜箔厚度为30μm。扩散焊接工艺条件是:焊接温度850℃,焊接压力20MPa,保温时间为900s。

其具体步骤如下:

1.原料钨合金、钼合金以及铜箔的机械加工及表面清理:

用超精密平面磨床将钨合金与钼合金加工成圆薄片,焊前用600#、1000#、1500#、2000#SiC砂纸打磨圆薄片的待焊面,然后用高精密抛光机对打磨面进行抛光;用2500#、4000#的SiC砂纸以及0.05μm抛光液对铜箔进行表面抛光,将抛光后的铜箔、钨合金与钼合金放入有机溶剂中,利用超声清洗机超声清洗5min。

所述的有机溶剂是采用乙醇,摩尔浓度为99.9%。

2.含铜箔中间层的钨合金与钼合金待焊件的焊接连接:

将钨合金、铜箔、钼合金依次装进焊接模具,将焊接模具放入等离子活化烧结设备(PAS)腔体内进行电场活化连接,对焊接件施加轴向压力20MPa,当腔体真空度达到10-3~10-4Pa 后,经30s的活化阶段后,开始加热,其温度制度为:首先以90~110℃/min的升温速率升温至800℃,然后以2~20℃/min的升温速率升温至850℃,在850℃条件下保温900s,然后以15~25℃/min的降温速率降温至350~400℃,最后以30~35℃/min的降温速率降温至50℃以下,取出焊接件。

得到的焊接件连接紧密、平行性好。检测结果显示焊接件接头剪切强度达148.4MPa。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1