具有改善的性能组合的铝合金产品及其制造方法

文档序号:3425057阅读:432来源:国知局

专利名称::具有改善的性能组合的铝合金产品及其制造方法具有改善的性能组合的铝合金产品及其制造方法相关申请的交叉引用本申请要求2007年5月14日提交的题为"ALUMINUMALLOYPRODUCTSHAVINGIMPROVEDPROPERTYCOMBINATIONSANDMETHODFORARTIFICIALLYAGINGSAME"的美国专利申请No.11/748,021的优先权并且是其部分继续,通过引用将该美国专利申请以其全文并入本文。
背景技术
:发明领域本发明涉及铝合金,特别是铝业协会(AluminumAssociation)命名的7000系列(或者7XXX)铝("Al")合金。更特别地涉及用于制造至多4英寸厚的商用飞机结构构件的铝合金产品。相关现有技术的描述对于航空工业制造的各个新飞机系列,对铝合金的工业要求变得越来越严格。随着新型喷气飞机尺寸变得更大,或者随着目前喷气机型变得容纳更重的有效负载和/或更长的飞行范围以改善性能和经济性,对结构部件例如机翼部件的重量减轻的要求不断提高。常规飞机机翼结构如图1所示,包括通常用数字2表示的翼箱(wingbox)。翼箱2作为机翼的主要强度部件由机身向外延伸,并且走向一般与图1的平面垂直。在翼箱2中,上机翼蒙皮4和下机翼蒙皮6被在二者之间延伸或者将上机翼蒙皮与下机翼蒙皮连接起来的垂直结构构件或翼梁(spar)12与20所隔开。翼箱2还包括通常在翼梁间延伸的翼肋(rib)。这些翼肋与图1的平面平行,而机翼蒙皮和翼梁的走向与所述图1的平面垂直。上机翼盖典型地由蒙皮4和加劲元件或纵梁8构成。可将这些加劲元件分别通过紧固加以连接或者将其与蒙皮构成整体来除去对单独的纵梁和铆钉的需要。在飞行期间,商用飞机机翼的上机翼结构受到压缩载荷,从而要求具有高压缩强度的合金。这种要求导致具有逐渐更高的压缩强度且同时仍维持断裂韧性的标称水平的合金开发。现今大型飞机的上机翼结构构件典型地由高强度7XXX系列铝合金例如7150(美国再颁发专利No.34,008)、7449(美国专利No.5,560,789)或者7055铝(美国专利No.5,221,377)制成。最近,美国专利No.7,097,719披露了改进的7055铝合金。然而,超高容量飞机的发展导致了新的设计要求。由于较大和较重的机翼和高的飞机起飞总重量,这些飞机在着陆期间经受高的向下弯曲栽荷,从而在上机翼结构构件中生产了高拉伸栽荷。而在目前的上机翼合金中的拉伸强度足以承受这些向下弯曲载荷,它们的断裂韧性在上盖的机内部分上成为限制性设计标准。这导致对用于超大飞机上结构构件的合金的需要,所述合金具有更为类似于下机翼蒙皮合金例如2324(美国专利No.4,294,625)的非常高的断裂韧性,即使必须一定程度地牺牲高强度。换言之,存在超大飞机的上机翼结构构件中使重量减轻最大化所需的强度和韧性的最佳组合到显著较高的断裂韧性和较低强度的转变。新焊接技术例如摩擦搅拌焊就重量减轻和/或成本节省还为用于机翼翼梁和翼肋部件的设计和合金产品开辟了许多新的可能性。为了翼梁的最大性能,接合到上机翼蒙皮的翼梁部分将具有与上蒙皮类似的性能,并且连接到下机翼蒙皮的翼梁部分将具有与下机翼蒙皮类似的性能。这导致了"组合(built-up)"翼梁的使用,该翼梁包舍通过紧固件(未示出)连接的上翼梁帽14或22、腹板18或20、以及下翼梁帽16或24。这种"组合"设计允许对于各个部件使用最佳的合金产品。然而,所需的许多紧固件的安装提高了装配成本。紧固件和紧固件孔还可能是结构的薄弱环节并且局部必须加厚,这有些降低使用多种合金的性能益处。用于克服与組合翼梁有关的装配花费的一种方法是由一种合金的厚板材、挤压件或锻件来机加工整个翼梁。有时,这种机加工操作被称作将部件"弯拱"。采用这种设计,消除了制造腹板与上翼梁和腹板与下翼梁的连接件的需要。以这种方式制造的一体式翼梁有时称作"整体翼梁"。用于制造整体翼梁的理想合金应当具有上机翼合金的强度特性,且兼具有下机翼合金的断裂韧性和其它损伤容限特性。典型地,同时获得两种性能是困难的并且需要在上蒙皮和下蒙皮的性能需求之间折衷。整体翼梁必须克服的一个缺点是用作初始原料的厚产品的强度和韧性典型地小于通常用于"组合"翼梁的较薄产品的强度和韧性,即使该整体翼梁是由相同的合金和状态(temper)制造的。因此,用于整体翼梁的厚产品的性能和应用的折衷可导致重量的不利结果(penalty)。一种厚产品合金是美国专利No.6,972,110中描述的合金7085,该合金由于它的低淬冷敏感度,即使在厚产品中也合理地满足上翼梁帽和下翼梁帽两者的性能需求并且维持良好的性能。整体翼梁的另一个缺点(与合金无关)是购买重量(即购买的材料)与飞行重量(即在飞机上飞行的材料的重量)的高比例,该比例被称作"BTF(buy-to-fly)"。这与通过减少的装配成本获得的组合翼梁相比至少部分地损失了整体翼梁的成本优势。然而,新技术例如摩擦搅拌焊使重量和成本的进一步改善均成为可能。通过摩擦搅拌焊或其它先进的焊接或接合方法接合的多部件翼梁结合了组合翼梁和整体翼梁的优点。这些方法的使用允许使用较小厚度的产品,以及使用就各个翼梁部件进行了最优化的多种合金、产品的形式和/或状态。这扩展了合金产品/状态选择并且改善了材料的BTF(如同在组合翼梁中那样),并同时保持了整体翼梁的大部分装配成本优势。美国专利No.5,865,911记载了用作超高容量飞机的下机翼蒙皮结构构件和用于机翼翼梁部件而构思的7000系列合金。该合金与现用下机翼合金例如2024或2324(美国专利No.4,294,625)相比,在薄板材形式中显示出强度、韧性和抗疲劳性的改善。如表l所示,在薄板材形式的合金7085(美国专利No.6,972,110)中获得了在强度7和韧性方面类似的性能。这些薄产品形式合金的任一种对于下机翼盖的结构构件和对于通过机械紧固或焊接接合的多部件翼梁的下翼梁帽和腹板,均是有益的。这些合金还适合于组合或整体设计中的翼肋应用。然而,这些合金可获得的强度水平对用于大型商用飞机的上机翼结构构件典型地不足。只要维持足够的韧性,较高强度对于上翼梁帽、翼梁腹板和对于翼肋也是有益的。表1:薄板材形式的Miyasato合金(美国专利5,865,911)和7085(美国专利6,972,IIO)的性能。<table>tableseeoriginaldocumentpage8</column></row><table>(1)美国专利5,865,911:1.2英寸厚、86英寸宽的轧制板材(2)7085,美国专利6,972,110;1.5英寸厚、102英寸宽的轧制板材因此,对于超高容量飞机,存在对下迷合金的需要,该合金比目前用于上机翼结构构件的合金具有显著更高的韧性并同时仍维持可接受的强度水平。这样的合金对用通过机械紧固或焊接接合的多部件翼梁的上翼梁帽和翼梁腹板以及对组合或整体设计的机翼翼肋也将是有价值的。虽然具体讨论了超高容量飞机和机翼的需求,但这样的合金对于以组合和整体结构用于机身应用和用在较小飞机上也可证明是有益的。另外,非航空零件例如军用车辆的装甲也可由本发明的合金制成。发明概述提供了特别良好地适合于航空结构部件的新铝合金产品。一方面,该新铝合金(在本文中有时称作"本发明的合金,,)包括约6.80-约8.5wt.°/。Zn,约1.5或1.55-约2.00wt.%Mg,约1.75-约2.30wt.%Cu,约0.05-约0.3wt.°/。Zr,小于约0.1wt.%Mn,小于约0.05wt.%Cr,余量基本上是A1、附带元素和杂质。所述合金产品为约4英寸厚或更小,有时约2.5或2,0英寸厚或更少,比用于这些应用的现有技术合金具有显著更高的断裂韧性并同时维持可接受水平的强度,反之亦然。在一种方法中,提供了铝合金产品。该铝合金产品基本由如下构成约6.80-约8.5wt.°/。Zn,约1.5或1.55-约2.00wt.%Mg,约1.75-约2.30wt.%Cu,约0.05-约0.3wt.%Zr,小于约0.1wt.%Mn,小于约0.05wt.%Cr,余量是A1、附带元素和杂质。在经固溶热处理、淬冷和人工时效并且为由所述产品制成的零件时,该铝合金可表现出改善的强度和断裂韧性組合。在一个实施方案中,该合金包含少量铁和硅杂质。在一个实施方案中,该合金包括不大于约0.15wt/。Fe和不大于约0.12wt.。/。Si杂质。在一个实施方案中,该合金包括不大于约0.08wt.。/。Fe和不大于约0.06wt.°/。Si杂质。在一个实施方案中,该合金包括不大于约0.04wt/。Fe和不大于约0.03wt.。/。Si杂质。铝可以为轧制片材、轧制板材、挤压件或锻件形式。在一些实施方案中,该合金产品在其最厚位置的厚度小于2.5或2.0英寸。在一些实施方案中,该合金产品在其最厚位置的厚度为约2.5英寸-4英寸。在一种方法中,铝合金为具有小于2.5英寸厚度例如不大于2.OO英寸厚度的轧制板材形式。在一个实施方案中,所述板材的铝合金包含6.8-8.5wt.y。Zn,1.5-2.0wt.%Mg,1.7-2.3wt.%Cu,及至多0.25wt.%的Zr、Hf、Sc、Mn和V中的至少一种,以及至多约89.95wt.。/。铝。在一个实施方案中,该铝合金包含7.5-8.5wt.%Zn,1.9-2.3wt.%Cu,1.5-2.0wt.%Mg,至多0.25wt.a/。的Zr、Hf、Sc、Mn和V的至少一种,以及至多约89.1wtJ铝。在一个实施方案中,该铝合金包含7.8-8.5wt.。/。Zn,1.95-2.25wt.%Cu,1.7-2.0wt.%Mg,至多0.25wt.。/。的Zr、Hf、Sc、Mn和V中的至少一种,以及至多约88.55wt.%铝。在一个实施方案中,该铝合金包含7.9-8.2wt.。/。Zn,2.05-2.15wt.%Cu,1.75-1.85wt,g,至多0.25wt/o的Zr、Hf、Sc、Mn和V中的至少一种,以及至多约88.3wt.。/。铝。在一个实施方案中,该铝合金包含7.4-8.Qwt.。/。Zn,1.95-2.25wt.%Cu,1.7-2.Qwt.%Mg,至多0.25wt.。/。的Zr、Hf、Sc、Mn和V中的至少一种,以及至多约88.95wt.°/。铝。在一个实施方案中,该铝合金包含7.5-7.9wt.°/。Zn、2.05-2.20wt.。/。Cu、1.8-1.9wt.%Mg、至多0.25wt.。/。的Zr、Hf、Sc、Mn和V中的至少一种,以及至多约88.65wt.。/。铝。在多种这些实施方案中,铝合金可以包含0.05-约0.3wt.。/。Zr、小于约0.1wt.。/。Mn和小于约0.05wt.°/。Cr。在任何这些实施方案中,铝合金可基本上由规定成分(除铝外)、余量的铝和附带元素及杂质构成。在任何这些实施方案中,铝合金产品在其最厚位置的厚度可小于约2.5或2.O英寸。在一种方法中,使用由具有2.5或3.0英寸或2.51英寸至约3,5英寸、3,75英寸或甚至4英寸的板材形式的铝合金。在一个实施方案中,该板材的铝合金包含6.8-8.5wt.%Zn,1,5-2.0wt.%Mg,1.75-2.3wt.°/。Cu,及至多0.25wt.%的Zr、Hf、Sc、Mn和V中的至少一种,以及至多约89.95wt.。/。铝。在一个实施方案中,该铝合金包含7.4-8,0wt.%Zn、1.9-2.3wt.%Cu、1.55-2.0wt.°/。Mg、至多O.25wt.。/。的Zr、Hf、Sc、Mn和V中的至少一种,以及至多约89.15wt.%铝。在一个实施方案中,该铝合金包含7.5-7.9wt.%Zn,2.05-2.20wt.%Cu,1.6—1.75wt.°/。Mg,至多0.25wt.。/。的Zr、Hf、Sc、Mn和V中的至少一种,以及至多约88.55wt.。/。铝。在多种这些实施方案中,铝合金可以包含0.05-约0.3wt.%Zr、小于约0.1wt.。/。Mn和小于约0.05wt.%Cr。在任何这些实施方案中,铝合金可基本上由规定成分(除铝外)、余量的铝和附带元素及杂质构成。该合金产品可实现改善的强度和韧性性能。在一个实施方案中,该合金产品包括厚度不大于约2.5英寸或2.00英寸的截面,并且具有图3A或图3B中A-A线上或上方及右方(例如阴影区域)的沿纵向的最小拉伸屈服强度和沿L-T方向的平面应变断裂韧性。在一个实施方案中,该合金包括厚度不大于约2.5英寸或2.OO英寸的截面,并且在以具有约4英寸初始裂紋长度(2ao)和约0.25英寸厚度的16英寸宽的中心开裂片进行试验时,具有图4中B-B线上或上方及右方(例如阴影区域)的拉伸屈服强度和沿L-T方向的表观平面应力断裂韦刃性。在一个实施方案中,该合金产品包括厚度约2.00或2.5英寸至3.0或3.125或3.25英寸的截面,并且具有图7中C-C线上或上方及右方(例如阴影区域)的沿LT(长横向)方向的拉伸屈服强度和沿T-L方向的平面应变断裂韧性。在一个实施方案中,该合金产品包括厚度约2.00或2.5英寸至3.0或3.125或3.25英寸的截面(例如其最厚位置),并且具有图9中E-E线上或上方及右方(例如阴影区域)的沿ST(短横向)方向的拉伸屈服强度和沿S-L方向的平面应变断裂韧性。在一个实施方案中,该合金产品包括厚度约2.75、3.0、3.125或3.25英寸至约3.5、3.75或4英寸的截面(例如在其最厚位置),并且具有图8中D-D线上或上方及右方(例如阴影区域)的沿LT方向的最小拉伸屈服强度和沿T-L方向的平面应变断裂韧性。在一个实施方案中,该合金产品包括厚度约2.75、3.0、3.125或3.25英寸至约3.5、3.75或4英寸的截面,并且具有图10中F-F线上或上方及右方(例如阴影区域)的沿ST方向的最小拉伸屈服强度和沿S-L方向的平面应变断裂軔性。该合金产品还可以实现优异的抗腐蚀性。在一个实施方案中,该合金产品具有"EB,,或更好等级的EXCO抗腐蚀性。在一个实施方案中,该合金产品一致地通过如下交替浸泡抗应力腐蚀开裂试验对于T74状态应力水平为35ksi、对于T76状态应力水平为25ksi、和对于T79状态应力水平为15ksi。在一个实施方案中,该合金产品一致地通过经过如下海边环境抗应力腐蚀开裂试验对于T74状态应力水平为35ksi、对于T76状态应力水平为25ksi、和对于T79状态应力水平为15ksi。在一个实施方案中,该合金产品一致地获得"EB"或更好的EXCO抗腐蚀性等级,并且一致地通过如下交替浸泡抗应力腐蚀开裂和海边环境抗应力腐蚀开裂试验对于T74状态应力水平为35ksi、对于T76状态应力水平为25ksi、和对于T79状态应力水平为15ksi。在一个实施方案中,该合金产品一致地获得"EB"或更好的EXC0抗腐蚀性等级,并且一致地通过如下交替浸泡抗应力腐蚀开裂和海边环境抗应力腐蚀开裂试验对于T74状态为35ksi应力水平、对于T76状态为25ksi应力水平、和对于T79状态为15ksi应力水平,并且获得上述拉伸屈服强度和断裂韧性性能。该合金产品还可以通过其它抗应力腐蚀开裂试验。该合金产品可用于各种应用。在一个实施方案中,该合金产品是航空结构部件。飞机结构部件可以是下列中的任何部件上机翼片(蒙皮)、上机翼纵梁、具有整体纵梁的上机翼盖、翼梁帽、翼梁腹板、翼肋、翼肋脚(ribfeet)或翼肋腹板、加劲元件及它们的组合。在一个实施方案中,该合金产品是机身部件(例如机身蒙皮)。在一个实施方案中,该合金产品是(例如机动车辆的)装甲部件。在一个实施方案中,该合金产品可用于油气工业(例如作为管道、结构部件)。该合金产品可通过各种方法进行生产。例如,该部件可由合金产品制成,所述合金产品通过熔合或固态方法焊接到基本上由相同或不同状态的相同合金制成的一种或多种铝合金产品从而制造部件。在一个实施方案中,该合金产品接合到不同合金组成的一种或多种铝合金产品来制造多合金部件。在一个实施方案中,该产品通过机械紧固接合。在一个实施方案中,该合金产品通过熔合或固态焊接方法接合。在一个实施方案中,在制造部件过程中将该合金产品单独地时效成形或在接合到其它合金产品后进行时效成形。在一个实施方案中,通过纤维金属层合物或其它增强材料来增强该合金产品。还提供了生产铝合金和铝合金产品的方法。在一种方法中,该方法包括将铝合金成形或成型为飞机结构部件的步骤。该方法可包括生产或提供铝合金,例如具有任何上述组成的铝合金,通过选自轧制、挤压和锻造的一种或多种方法将合金均匀化和热加工,将合金固溶热处理,将合金淬冷并对合金进行应力消除。人工时效条件下的结构部件可表现出强度和断裂韧性的改善的组合。在一个实施方案中,合金在淬冷时厚度小于约4英寸。在一个实施方案中,该方法包括将部件单独地时效成形或者在接合到其它部件后时效成形。在一个实施方案中,结构部件的成形或成型步骤包括机加工。在一个实施方案中,在人工时效后或者在与一个时效阶段之间进行机加工。在一个实施方案中,在固溶热处理前进^f亍机加工。在一个实施方案中,结构部件的成形或成型步骤包括在接合到其它部件之前或之后的时效成形。在一个实施方案中,在至少一些人工时效之前或期间进行结构部件的至少一些成形或成型步骤。在一个实施方案中,通过包括如下阶段的方法将合金进行人工时效(i)约150-约275。F内的第一时效阶段,和(ii)约290-约335。F内的第二时效阶段。在一个实施方案中,第一时效阶段(i)在约200-约260°F内进行。在一个实施方案中,第一时效阶段(i)进行约2-约18小时。在一个实施方案中,笫二时效阶段在约290-约325。F内进行约4-约30小时。在一个实施方案中,第二时效阶段(ii)在约290-约315°F内进行约6-约30小时。在一个实施方案中,第二时效阶段(ii)在约300-约325°F内进行约7-约26小时。在一个实施方案中,所述时效阶段之一或其二者包括多个温度时效效果的综合。在一个实施方案中,中断所述时效阶段之一或其二者以便将零件焊接到相同或不同合金或状态的另一个部件上。在一个实施方案中,通过包括如下阶段的方法将合金进行人工时效(i)在约290-约335。F内的第一时效阶段,和(ii)在约200-13约275°F内的第二时效阶段。在一个实施方案中,第一时效阶段(i)在约290-约325°F内进行约4-约30小时。在一个实施方案中,第一时效阶段(i)在约290-约315°F内进行约6-约30小时。在一个实施方案中,笫一时效阶段(i)在约300-约325°F内进行约7-约26小时。在一个实施方案中,所述时效阶段之一或其二者包括多个温度时效效果的综合。在一个实施方案中,中断所述时效阶段之一或其二者以便将零件焊接到相同或不同合金或状态的另一个部件上。在另一个实施方案中,通过包括如下阶段的方法将合金进行人工时效(i)在约150-约275°F内的第一时效阶段,(ii)在约290-约335°F内的第二时效阶段,和(Hi)在约200-约275°F内的第三时效阶段。在一个实施方案中,第一时效阶段(i)在约200-约260叩内进行。在一个实施方案中,第一时效阶段(i)进行约2-约18小时。在一个实施方案中,第二时效阶段(ii)在约290-约325°F内进行约4-约30小时。在一个实施方案中,第二时效阶段(ii)在约290-约315。F内进行约6-约30小时。在一个实施方案中,第二时效阶段(ii)在约300-约325°F内进行约7-约26小时。在一个实施方案中,第三时效阶段(iii)在约230-约260°F内进行至少约2小时。在一个实施方案中,第三时效阶段(iii)在约240-约255。F内进行约18小时或更长。在一个实施方案中,所述时效阶段中的一个、两个或全部包括多个温度时效效果的综合。在一个实施方案中,中断所述时效阶段中的一个、上。^"、'"'""、'-'、、、-所述(一种或多种)方法可包括将合金部件接合。在一个实施方案中,通过机械紧固将一个或多个部件接合。在一个实施方案中,通过焊接将一个或多个组件接合。在一个实施方案中,通过电子束焊接将部件进行焊接。在一个实施方案中,通过摩擦搅拌焊接将部件进行焊接。在一个实施方案中,将部件紧固或焊接到另一个铝产品来制造多合金和/或多状态的部件。可以理解,可以将上文指出的多种方面、方法和/或实施方案进行组合来生产各种有用的铝合金产品和部件。本发明的这些及其它方面、优点和新特征在下面描述中部分给出,并且本领域技术人员通过研究下面描述和附图将清楚,或者可通过实践本发明得以了解。附图简要描述为了更充分地理解本发明,与附图结合来参考下面描述,其中图l是飞机机翼的典型翼箱结构的横截面视图;图2A和2B分别就主要合金化元素Cu和Zn以及Mg和Zn的实施方案;图2C-1、2C-2、2D-1和2D-2图解了本发明的合金组成的多种实施方案,例如用于生产具有大于2或2.5英寸厚度的铝合金板材的组成;图2E和2F图解了本发明的合金组成的多种实施方案,例如用于生产具有至少约2或2.5英寸厚度的铝合金板材的组成;图3A是图解(i)板材形式和T79状态的实施例合金A-D以及(ii)薄板材形式的若干其它常规合金的典型L-T平面应变断裂韧性Kn:相对于最小纵向拉伸屈服强度的坐标图;图3B是图解(i)板材形式和T79状态的实施例合金A-D以及(ii)板材形式的若干其它常规合金的典型L-T平面应变断裂韧性lU相对于最小纵向拉伸屈服强度的坐标图;图4是图解(i)板材形式和T79状态的实施例合金A-D以及(ii)板材形式的若干其它常规合金的典型L-T平面应力断裂韧性Kapp相对于实际拉伸屈服强度或测得拉伸屈服强度的坐标图;图5是就3个第三步骤时效时间为0、6和12小时来对比实施例合金组成中的两个在腐蚀暴露后沿LT方向的强度保持百分数的坐标图;图6是就12小时第二步骤时效时间来对比实施例合金和现有技术7055合金在腐蚀暴露后沿LT方向的强度保持百分数的坐标图;图7是图解(i)实施例合金E的和T74状态的板材(具有3.125英寸的厚度)以及(ii)若干其它常规合金的板材(具有约3英寸的厚度)的典型T-L平面应变断裂韧性Le相对于典型LT拉伸屈服强度的坐标图;图8是图解(i)实施例合金F和T74状态的板材(具有4.0英寸的厚度)以及(ii)若干其它常规合金的板材(具有约4英寸的厚度)的典型T-L平面应变断裂韧性IU相对于典型LT拉伸屈服强度的坐标图;图9是图解(i)实施例合金E和T74状态的板材(具有3.125英寸的厚度)以及(ii)若干其它常规合金的板材(具有约3英寸的厚度)的典型S-L平面应变断裂韧性L相对于典型ST拉伸屈服强度的坐标图;和图IO是图解(U实施例合金F和T74状态的板材(具有4.0英寸的厚度)以及(H)若干其它常规合金的板材(具有约4英寸的厚度)的典型S-L平面应变断裂韧性Le相对于典型ST拉伸屈服强度的坐标图。在所有附图中相同的参考标记表示相同的要件。详述图1是图解包含被翼梁12和20隔开的上机翼蒙皮4和纵梁8、下机翼蒙皮6和纵梁10的典型翼箱2的横截面的示意图。纵梁4和10可通过紧固单独加以连接或者与蒙皮制成整体来消除对单独的纵梁和铆钉的需要。典型地,取决于飞机大小和机翼设计,需要2、3或4个翼片4或6来覆盖机翼上表面和下表面的每一个。对于整体蒙皮和纵梁设计,可需要甚至更多的片。构成上蒙皮和下蒙皮的多个片典型地通过机械紧固进行接合。这些接合部增加了飞机的重量。翼梁可以是由上翼梁帽14或22、下翼梁帽16或24以及腹板18或26通过机械紧固构成的"组合"设计或者它们可以是整体的一体式设计,各个设计类型具有其自身的优点和缺点。组合翼梁允许将最佳合金产品用于各个翼梁部件并且与整体翼梁相比具有改善的"BTP,。典型地,上翼梁帽需要高的压缩强度而下翼梁帽需要较小的强度但需要较高的损伤容限性能例如断裂韧性和抗疲劳裂紋扩展性。整体翼梁具有低很多的装配成本,但其性能相对于组合设计可能较小,这是因为其性能必须是对上蒙皮和下蒙皮的要求之间的折衷。此外,用作整体翼梁起始原材料的厚产品的强度和韧性典型地小于组合翼梁所用的较薄产品的强度和韧性。翼箱还包括通常从一个翼梁向另一个翼梁延伸的翼肋(未示出)。这些翼肋平行于图1的平面,而机翼蒙皮和翼梁的走向垂直于所述图l的平面。如同翼梁,翼肋也可是组合或整体设计,各种类型具有与翼梁中类似的优点或缺点。然而,翼肋的最佳性能有些不同,高强度对于连接到上机翼蒙皮和下机翼蒙皮及纵梁的翼肋脚是有利的,并且较高刚度对于翼肋的腹板是有利的。更典型地,机翼翼肋属于具有对翼肋脚和翼肋腹板的要求之间的性能折衷的整体设计。新焊接技术例如摩擦搅拌焊和电子束焊允许新的结构概念,这些概念保持目前的组合和整体设计的优点并同时使它们的缺点最小化。例如,用于制造上蒙皮的不同翼片4可通过摩擦搅拌焊而不是机械紧固连接进行接合,从而降低上蒙皮的重量。翼梁和翼肋可由就每个翼梁或翼肋部件进行最优化的多种合金、状态和/或产品通过摩擦搅拌焊接合来制成,从而保持如在组合翼梁中较薄产品的性能优点和较好的BTF,且同时如同整体翼梁或翼肋来降低装配成本。例如,上翼梁帽14和22可由高强度合金或状态的挤压件制成,下翼梁帽16和24由较低强度损伤容限合金或状态的挤压件制成,翼梁腹板18和26由中等强度合金或状态的板材制成,这三种部件通过摩擦搅拌焊或电子束焊进行接合。可利用包含整体和组合设计的混合的设计来改善部件的失效安全性和损伤容限,并同时降低装配成本。例如,上翼梁帽14和22可通过摩擦搅拌焊接合到翼梁腹板12和20以降低装配成本,并同时可将下翼梁帽16和24机械紧固以改善损伤容限。通过用纤维金属层合物和美国专利No.6,595,467中描述的其它增强材料进行增强可在组合、整体焊接和包含二者之混合的结构的损伤容限方面获得进一步改善。美国专利No.6,972,110中描述的合金(其具有商业名称7085)主要是针对较厚规格,通常为4-8英寸或者在低淬冷敏感性重要时更大。通过提供仔细控制的组成获得低淬冷敏感性,相比先前的厚产品合金例如7050、7010和7040,所述组成允许将较厚规格进行淬冷并同时仍获得高的强度和韧性及抗腐蚀性的优越组合。注册为AA7085的该仔细组成包含低的Cu水平(约1.3-约1.9wt.%)和低的Mg水平(约1.3-约1.68wt.%),这些水平属于用于商业航空合金的最低水平。性能得到最优化时的Zn水平(约7-约9.5wt.%)对应于与就7050、7010和7040所规定的那些相比高很多的水平。这违背过去的教导,即较高的Zn含量提高淬冷敏感性。相反,7085中较高的锌水平实际证明对于抵抗厚横截面工件的緩慢淬冷条件是有益的。美国专利No.6,972,110教导了就其发明合金的厚截面而改善的强度和韧性是归因于合金化成分的特殊组合。美国专利No.5,221,377涉及7055合金,该合金典型地用于2英寸厚或更薄的板材和挤压件,并且教导了降低Mg水平产生改善的断裂韧性。现有技术中还普遍认为,通过增加的溶质含量提高强度典型地导致韧性降低。本发明的合金主要针对用于大型商业飞机上机翼结构构件的约4英寸厚或更薄、有时为约2.0或2.5英寸厚或更薄的较薄合金产品,所述结构构件包括机翼蒙皮、机翼纵梁和上翼梁帽。这些应用将受益于并且在许多情形中会需要比通过7085組成可获得的更高的强度。同样,较高强度在其它应用例如翼梁腹板、翼肋和其它航空部件中会是有益的。为提高强度,本发明公开的合金的Mg范围提高到约1.5或1.55-约2.0wt.。/。并且Cu为约1.75-约2.30wt.%。Zn范围稍微降低到约6.8-约8.5wt.%。图2A和2B就主要合金化元素Cu和Zn以及Mg和Zn并且对比7085(美国专利No.6,972,110)和7055(美国专利No.5,221,377)及7449的组成图解了本发明的合金组成的实施方案。本发明公开的合金的合适组成由具有实线的矩形框表示。下述实施例合金A-F的组成也包括在图2A和2B中。在一种方法中,本发明公开的合金为厚度小于2.5英寸例如厚度不大于2.OO英寸的板材形式。在一个实施方案中,该板材的铝合金包含6.8-8.5wt.。/。Zn,1.5-2.0wt.°/。Mg,1.75-2.3wt.°/。Cu,和至多0.25wt.。/。的Zr、Hf、Sc、Mn和V中的至少一种,以及至多约89.95wt.。/。铝(例如,如图2A和2B中所示)。在其它实施方案中,参考图2C-1、2C-2、2D-l和2D-2,该铝合金包含7.5-8.5wt.%Zn,1.9-2.3wt.%Cu,1.5-2.0wt.%Mg,至多0.25wt.。/。的Zr、Hf、Sc、Mn和V中的至少一种,以及至多约89.1wt.。/。铝(如图2C-1和2C-2的实施方案1所提供)。在另一个实施方案中,该铝合金包含7.8-8.5wt.。/。Zn,1.95-2.25wt.。/。Cu,1.7—2.0wt.。/。Mg,至多0.25wt.。/。的Zr、Hf、Sc、Mn和V中的至少一种,以及至多约88.55wt.%铝(如图2C-1和2C-2的实施方案2所提供)。在一个实施方案中,该铝合金包含7.9-8.2wt.%Zn,2.05-2.15wt.°/。Cu,1.75-1.85wt.%Mg,至多0.25wt.%的Zr、Hf、Sc、Mn和V中的至少一种,以及至多约88.3wt.%铝(如图2C-1和2C-2的实施方案3所提供)。在一个实施方案中,该铝合金包含7=4-8,0wt,%Zn,1,95-2.25wt.%Cu,1.7-2.0wt.窗g,至多0.25wt.。/。的Zr、Hf、Sc、Mn和V中的至少一种,以及至多约88.95wt.%铝(如图2D-1和2D-2的实施方案4所提供)。在一个实施方案中,该铝合金包含7.5-7.9wt,%Zn,2.05-2.20wt.%Cu,1.8-1.9wt.%Mg,至多0.25wt.°/。的Zr、Hf、Sc、Mn和V中的至少一种,以及至多约88.65wt.。/。铝(如图2D-1和2D-2的实施方案5所提供)。在多种这些实施方案中,铝合金可以包含0.05-约0.3wt.。/。Zr,小于约0.1wt.°/。Mn,小于约0.05wt.%Cr。在任何这些实施方案中,铝合金可基本上由规定成分(除铝外)、余量的铝和附带元素及杂质构成。在另一种方法中,该铝合金以厚度为约2.01英寸或2.51英寸至约3.5英寸、3.75英寸或甚至4英寸的板材使用。在一个实施方案中,该铝合金板材包含6.8-8.5wt.%Zn,1.5-2.0wt.%Mg,1.75-2.3wt.%Cu,和至多0.25wt,%的Zr、Hf、Sc、Mn及V中的至少一种,以及至多约89.95wt.。/。铝(例如,如图2A和2B中所示)。在其它实施方案中,参考图2E和2F,该铝合金包含7.4-8.Owt.%Zn,1.9-2.3wt.%Cu,1.55-2.0wt.°/。Mg,至多0.25wt.。/。的Zr、Hf、Sc、Mn和V中的至少一种,以及至多约89.15wt.。/。铝(如图2E和2F的实施方案1所提供)。在一个实施方案中,该铝合金包含7.5-7.9wt.y。Zn,2.05-2.20wt.。/。Cu,1.6-1.75wt.。/。Mg,至多0.25wt.。/。的Zr、Hf、Sc、Mn和V中的至少一种,以及至多约88.55wt.。/。铝(如图2E和2F的实施方案2所提供)。在多种这些实施方案中,铝合金可以包含0.05-约0.3wt.。/。Zr、小于约0.1wt.飾、小于约0.05wUCr。在任何这些实施方案中,铝合金可基本上由规定成分(除铝外)、余量的铝和附带元素及杂质构成。由美国专利No.6,972,110的教导,与合金7085相比,本发明公开的合金的组成改变可稍微提高合金的淬冷敏感性,并且完全可能如此。然而,本发明公开的合金可能保留7085组成的一些益处,并且在任何情形中,淬冷敏感性是本发明公开的合金所针对的较薄合金产品的较小顾虑。组成的改变还预期对断裂韧性具有有害影响,这是因为所产生的强度提高和较高的Mg含量。对于在7085和已有的上机翼合金7055及7449之间的Mg范围,认为本发明公开的合金的强度和韧性落入这些合金之间。对于强度也确为如此。然而,本发明公开的合金的强度和断裂韧性组合不仅如所预料改善到高于7055和7449,而且十分出人意料地改善到高于7085合金。因此,本发明公开的合金确定了出乎意料的"称意(sweet)"组成范围,该组成范围提供了比现用合金所表现出的更高的强度和断裂韧性组合。本发明的合金产品大致可通过包括熔化和直冷(DC)铸造成坯锭形式在内的常规作业来制备,并且表现出坯锭由来的内部结构要件特性。如本领域所公知的,还可以使用常规晶粒细化剂例如含有钛和硼、或者钬和石友的那些。一旦从该组成铸成坯锭,则通过加热到约20800。F-约900。F之间、或者约850oF-约900。F之间的一种或多种温度将其去皮(如果需要)和均匀化。在均匀化后,通过例如轧制成板材或片材、或者挤压或锻造成特殊形状型材来加工这些坯锭。对于大多数航空应用,从本发明公开的组成制得的合金产品的横截面厚度为约4、3.75或3.5英寸厚或更薄、有时为约2.5或2.0英寸厚或更薄。如果需要,然后应通过加热至约850。F-约900。F之间的一种或多种温度将该产品固溶热处理,以将大部分、有时全部或基本上全部可溶性锌、镁和铜吸收到溶体中,应理解,对于不一定理想的物理过程,每种所述主要合金化成分的最后痕量(vestige)可能在固溶热处理期间不会溶解。如所述,在加热至提高的温度后,应将产品迅速冷却或淬冷从而完成固溶热处理工序。这样的冷却典型地通过浸泡在适当尺寸的冷水箱中或者通过喷水来完成。还可以使用空气急冷作为补充或替代冷却手段。淬冷后,某些产品可能需要例如通过伸展和/或压缩至多约8%例如约1%-约3%来机械消除应力。固溶热处理并淬冷的产品,具有或不具有冷加工,均可以认为其处于可析出硬化状态,或者为人工时效做好了准备。该作业可以为两步骤或三步骤作业并且对于一些应用甚至单步骤作业可足够。然而,在各个步骤或阶段之间可不存在清晰的界限。通常已知的是,从给定(或目标)处理温度升温和/或降温本身可产生析出(时效)效应,该效应能够并且经常需要通过将这这样升温条件及它们的析出硬化效应与总的时效处理程序综合在一起来考虑。在美国专利No.3,645,804种更详细地记载了这样的综合,通过引用将其公开内容全部并入本文。美国专利No.6,972,110(通过引用而将其公开内容全部并入本文)描述了7085合金的三(3)步骤时效作业。对于本发明公开的合金,还可以使用具有与'110专利中公开的相同或类似温度范围的三步骤时效作业,但对于所设想的一些主要应用,两步骤作业也是合适的。两步骤作业可为低温步骤并接着是高温步骤,或者反之亦然。例如,对于上机翼蒙皮和纵梁通常采用两步骤作业。这些部件通常由飞机制造商进行时效成形以获得机翼轮廓。在时效成形期间,在通常为250-约400。F的提高的温度下,将零件限制在模具中几个至几十个小时,并且通过蠕变和应力松弛处理完成所需轮廓。特别在蠕变发生得最迅速所处的高温步骤期间,时效成形通过结合人工时效处理来完成。时效成形典型地在压热炉(autoclavefurnace)中进行。将大型商业飞机的飞机翼片时效成形所需的压热炉和模具很大且成本高,结果在制造过程中很少使用。因此,理想的是,时效成形周期尽量可行地短并同时仍获得所需合金产品轮廓和性能,使得生产产量最大化。第三步骤的缩短或其完全消除对于实现该目标是有益的。在低-高的两步骤作业中,可由合金生产商施用第一步骤,从而进一步使时效成形过程花费的时间最小化。对实施例合金的SCC研究结果表明,在满足对上机翼蒙皮和纵梁的SCC要求时,确实可缩短或甚至消除第三步骤。出于若干原因,用于厚产品应用中的7085合金的3步骤作业对于上机翼和其它高强度应用中的本发明公开的合金通常并不是必需的。例如,对上机翼部件的SCC要求不比对厚产品应用例如翼肋或翼梁的那些要求更严格。上机翼部件主要经受压应力,而翼梁、特别是下部经受拉伸应力。仅拉伸应力对SCC有贡献。此外,由厚产品机加工出的整体翼梁或翼肋可具有沿ST方向的显著设计应力。例如,由板材制造的整体翼梁的翼梁帽为母板(parentplate)的L-ST平面。相比之下,上蒙皮和纵梁中的主设计应力主要在L-LT平面中,这较不倾向于SCC。这些差异的结果是,沿ST方向对现用上机翼合金7055和7449的最小SCC要求为15或16ksi,从而允许这些合金以高强度-T79状态使用,而用于翼梁、翼肋和其它应用的厚产品通常以分别典型地具有25ksi和35ksi的SCC最小值的较低强度-T76和-T74状态使用。合的多部件、多合金翼梁或翼肋。如上所述,这些应用相对用于上机翼蒙皮和纵梁将可能具有较高的SCC要求。然而,在由较薄产品制成的多部件翼梁中,晶粒结构对于抗SCC性比对于由厚板材机加工出的整体翼梁可更有利地进行取向。例如,可由母板或挤压件的更为抗see的L-LT表面而非L-ST表面机加工出翼梁帽。相比于就较低强度、较高抗SCC状态的沿ST方向的25ksi或35ksi,甚至在较不抗SCC的高强度状态中,沿L和LT方向的最小SCC性能典型地大于40ksi。因而可能的情形是,对于本发明公开的合金,甚至对于具有更高SCC要求的翼梁、翼肋和其它应用,还可缩短或消除对于7085合金所通常采用的第三步骤时效作业。第三步骤的缩短或消除确实导致小的强度降低、典型地为约l-约2ksi。然而,可能的情形是,这种强度降低可通过使用在厚产品中不可行的较高强度状态得以补偿。虽然如此,对于本发明的一些组合、整体或多部件应用,为了提供另外的抗腐蚀性或者为了断裂韧性的另外改善,较低强度状态例如-T74或-T73可能是希望的。对于通过焊接接合的多合金翼梁或翼肋,本发明公开的合金所表现出的时效作业灵活性是希望的特性。焊接(通过熔化焊接法或固态法例如摩擦搅拌焊)可按中间状态而不是最终合金状态来进行,因为典型地希望焊接后时效来改善焊缝的强度和腐蚀性能。例如,本发明公开的合金与具有更适合于下翼梁帽的强度和损伤容限性能的其它合金的焊接,可在本发明公开的合金的两步骤或三步骤作业的第一时效步骤施用后进行。其它合金可为另一7XXX合金或者组成完全不同例如根据美国专利No.4,961,792的铝-锂合金,并将具有其自身的典型时效作业,所述时效作业可由l个、2个或3个步骤构成。因为两个接合的合金产品的焊接后时效必须一起进行,用于本发明公开的合金的时效作业取决于与其接合的合金的时效要求可能需要为两步骤或三步骤。因此,可成功利用的本发明公开的合金关于时效步骤和时间的灵活性对于焊接的多合金部件是有益的。虽然如此,取决于所涉及的特定合金,可能需要对用于每种合金的典型时效作业进行一些折衷。的制造和时效,可通过使用与本发明公开的合金具有类似组成的7XXX合金得到稍微简化,但其较为贫乏或富含合金化元素,加入所述合金化元素以便获得每个部件的所需强度和韧性平衡。用于这些合金的典型焊接前和焊接后时效作业比用于不同合金的典型焊接前和焊接后时效作业将可能更为兼容,从而需要较少地调节它们的典型作业。作为替代方案,对于通过利用不同的状态单独使用本发明公开的合金,可能会获得强度和韧性的所需差异。例如,单独由本发明公开的合金制成的多状态翼梁可在上帽中使用高强度-T79状态,在翼梁腹板使用中等强度、较高韧性-T76状态,并在下翼梁帽使用较低强度、最高韧性-T73状态。典型地,用于-T76和-T73状态的时效时间比用于T79状态的时效时间将会更长。在焊接的多状态翼梁中,焊接前时效为对于-T79上翼梁可例如仅由第一步骤构成,对于-T76翼梁腹板可由第一步骤和部分第二步骤构成,以及对于-T73下翼梁帽可由第一步骤和较大部分的第二步骤构成。这可对各个部件单独地进行或者通过将它们从相同的炉中交错地取出来进行。一旦被焊接,可对接合的部件使用相同的焊接后时效作业。随着合适地选择焊接前和焊接后时效作业,可将典型的时效作业施用到每个部件而基本上没有折衷。实施例1描述实施方案的组成类似的坯锭A-D。另外,铸造铝合金7085的一个坯锭作为对照品。将所述坯锭去皮并以约870。F-约900。F的最终均热温度均匀化。将每种合金A和B的一个坯锭热轧至厚度为1.07英寸和宽度为135英寸的板材。将每种合金A和B的另一个坯锭热轧至厚度为1.10英寸和宽度为111英寸的板材。前者在下文将被称作板材1而后者称作板材2。将每种合金C和D的一个坯锭热轧至与板材2相同的厚度和宽度。板材1和板材2尺寸代表了超大容量飞机的上翼片。将7085对照合金热轧到与板材1相同的厚度和宽度。在约880。F-约895。F之间将所述板材固溶热处理约70-100分钟,喷水淬冷至环境温度,并且冷伸展约1.5-约3%。使用常规三步骤时效作业(例如,如美国专利No.6,972,110所提供的)将来自合金A-D和7085对照品板材的样品时效至适合于上机翼部件的高强度T79型状态。该三步骤作业由如下构成在约250。F下约6小时的第一步骤,在约308。F下约7小时的第二步骤,和在约250°F下约24小时的第三步骤。另外,从许多不同生产批次的相同或相似宽度和厚度的板材上切割出铝合金7055(美国专利No.7,097,719)改进形式的样品,并赋予高强度T7951状态和若干过时效回火处理以降低强度水平和提高断裂韧性。在表2中说明了坯锭A-D的组成和各种常规合金的组成。用于改进形式7055的-T7951状态的时效作业是由在302。F下10小时的第一步骤和6小时的第二步骤构成的两步骤作业。通过将第一步骤从约10小时提高到约19-约24小时获得所述过时效状态。表2<table>tableseeoriginaldocumentpage25</column></row><table>测量了实施例合金A-D和7085及改进的7055对照品的拉伸和压缩强度、平面应变(W以及表观平面应力(Lpp)断裂韧性和抗剥落性。根据试验标准ASTME8和ASTMB557进行拉伸试验,根据ASTME9进行压缩试验。根据ASTME399进行平面应变(Kie)断裂韧性试验。平面应变断裂韧性样品具有全板材厚度并且具有3英寸的宽度W。根据ASTME561和B646进行平面应力(Kapp)断裂韧性试验。本领域技术人员应理解,Lpp的数值通常随着试验试样宽度增加而增加。Kapp还受试样厚度、初始裂紋长度和试验试样几何形状的影响。因此,Lpp值仅可由相当几何尺寸、宽度、厚度和初始裂紋长度的试验样品进行可靠地对比。因此,使用具有相同标称尺寸、16英寸宽度、0.25英寸厚度和4英寸初始疲劳预裂长度(2ao)的中心开裂M(T)样品,对实施例合金和7085及7055对照品进行试验。使所述样品集中在板材的中间厚度(T/2)处。还根据ASTMG34进行使用EXCO方法的剥落试验。在中间厚度072)和十分之一厚度0710)处取得试验样品。在表3中给出了实施例合金A-D和标称7085组成的测得性能。与标称7085组成相比,合金A按板材1尺寸表现出沿L和LT方向约3ksi的拉伸屈服和极限拉伸强度的增加,和约4%的强度增加;而合金B表现出约5ksi的拉伸屈服和极限拉伸的增加,改善约6%。合金C和D甚至表现出更高的强度。两种合金的屈服和极限拉伸强度的增加均为约7ksi,提高约8%。飞机制造商认为这些是明显的强度改善。在获得强度提高的同时保持了优异的抗剥落性,实施例合金的所有样品均获得EA等级。表3合金/片方向UTS(ksi)TYS(ksi)CYS(ksi)Kip(ksWin)KappEXCO7085样品LT83.783.7'79.979.681.4na.50.641.1128.9102.6EA(t/2)EA(t/10)实施例合金A板材1L86.786.883.282.684.350.940.8127.594.0EA(t/2)EA(■)实施例合金A板材2LT.85.885.781.781.583.049.139.6129.291.9EA(t/2)EA(t/10)实施例合金B板材11LT89.389.285.785.086.7ri343.834.2113.278.6EA(t/2)EA(t/10)实施例合金B板材2LT87.888.584.384.186.4ri343.634.5129.186.0EA(t/2)EA(,实施例合金CLT卯.2.卯.2'87.2:84.686.536.030.0115.671.2EA(t/2)EA(t/10)实施例合金D90.490.687.186.586.2加40.131.5107.968.8EA(t/2)EA(t/10)在图3A、3B和4中显示了实施例合金A-D的强度和韧性组合,在所述图中将它们与现有技术合金进行了对比。图3A和3B对比了实施例合金A-D、7085样品对照批次(表3)、给予有更适合于下机翼的较低强度时效作业的7085薄板材的另四个批次(表l)的作为L(轧制)方向最小拉伸屈服强度的函数的沿L-T方向(该取向对应于负载于上机翼中的主要方向)的平面应变断裂韧性Kk,和处于T7951状态且具有过时效回火处理的改进形式7055的值。另外,显示了薄板形式的其它现有技术合金的典型断裂Kie断裂韧性。对于实施例合金和7055的过时效状态(其目前不存在材料规范),通过从测量值减去3ksi来估计最小拉伸屈服强度。本发明公开的合金的一条最低性能线用线A-A表示,该线具有方程式FT=-2.3*OTS)+229,其中TYS是根据ASTM标准E8和ASTMB557测得的板材以ksi计的L拉伸屈服强度,并且其中FT是根据ASTME399测得的板材以ksiV英寸计的L-T平面应变断裂韧性。图3A还包括突出本发明的薄板材合金产品的潜在性能的阴影区域。该阴影区域由36ksi《英寸的最小L-T韧性、74ksi的最小强度和A-A线所围闭,该A-A线具有如上文所提供的方程式FT=-2.3*(TYS)+229。图3A的阴影区域特别适合于T74状态的薄板材合金产品,尽管可制得具有其它状态(例如T6、T73、T76、T79)的合金,所述合金可具有位于该阴影区域内的性能。图3B还包括突出本发明的薄板材合金产品的潜在性能的阴影区域。该阴影区域由30ksiV英寸的最小韧性、79ksi的最小强度和A-A线所围闭,该A-A线具有上文所提供的方程式FT=-2.3"TYS)+229。图3B的阴影区域特别适合于T76状态的薄板材合金产品,尽管可制得具有其它状态(例如T6、T73、T74、T79)的合金,所述合金可具有位于该阴影区域内的性能。图4再次将本发明公开的合金的实施方案的L拉伸屈服强度和在L-T方向的表观平面应力断裂韧性(Lpp)与7085的5个批次以及改进7055的值进行了对比。7085的改善的强度和韧性组合相对于改进形式的7055是明显的。本发明公开的合金的一条最低性能线用线B-B表示,其具有方程式FT=-4.0*(TYS)+453,其中TYS是根据ASTM标准E8和ASTMB557测得的板材以ksi计的L拉伸屈月良强度,其中FT是板材以ksiV英寸计的L-T平面应力断裂韧性(Kapp),其中FT根据ASTM标准E561和B646对中心开裂的铝合金试样测得,所述试样取自铝合金板材的T/2位置,并且其中所述试样具有16英寸的宽度、0.25英寸的厚度和4英寸的初始疲劳预裂长度。甚至使用明显过时效以获得与本发明公开的合金相同或相似的强度水平,但7055的断裂韧性显著较低。因为本发明公开的合金中Cu和Mg的水平处于7085和改进形式的7055之间,而Fe和Si的水平同样地低,所以本发明公开的合金可获得的强度和韧性组合有望落入7085和改进7055之间。出人意料地,本发明公开的合金表现出既高于7055又高于7085的改善的强度和韧性组合。因此,本发明公开的合金的实施方案确定了"称意"组成范围,该组成范围提供的强度和断裂韧性的组合比现有技术合金所表现出的更高。虽然K,值和相对改进对应于所指出的类型和尺寸的试验试样,但在其它类型和尺寸的试验试样中将预期观测到类似的相对改进。然而,本领域技术人员还应理解,实际Kapp值可在前述其它试样类型和尺寸间发生显著变化并且差异幅度也可发生变化。图4还包括突出本发明的薄板材合金产品的潜在性能的阴影区域。该阴影区域由100ksiV英寸的最小韧性(Kapp)、80ksi的最小拉伸屈服强度和B-B线所围闭,该B-B线具有如上文所提供的方程式FT=-4.0*(TYS)+453。图4的阴影区域特别适合于T79状态的薄板材合金产品,尽管可制得具有其它状态(例如T6、T73、T74、T76)的合金,所述合金可具有位于该阴影区域内的性能。此外,使本发明公开的一些薄板产品能够获得图4的阴影区域所限定的平面应力断裂韧性和拉伸屈服强度值,以及图3A和/或3B的阴影区域所限定的平面应变断裂韧性和拉伸屈服强度值。28实施例2向实施例1中制造的实施例合金A和B板材的4组处于固溶热处理、淬冷和伸展状态(W51状态)的样品赋予实施例1中所用的三步骤作业的前两个时效步骤。随后,与实施例1中所使用的相同,向第一组样品赋予时效时间为24小时的第三步骤,而向第二和第三组赋予6和l2小时的较短时效时间。在第4组样品中,不施用第三步骤(0小时)。将直径为0.125英寸的拉伸样品沿长横向(LT)方向和短橫向(ST)方向进行机加工,用于交替浸泡(AI)抗应力腐蚀开裂试验和海边(SC)暴露试验(在本文中有时还称作海边环境抗应力腐蚀开裂试验)。根据ASTMG44、G47和/或G49进行交替浸泡试验。更特别地,将样品暴露于多个如下循环中浸泡在3.5%NaCl水溶液中10分钟,接着空气干燥50分钟并同时在恒定应变下施加应力以达到所需应力水平。如下所述,在Alcoa的Pt.Judith,RI海边暴露地点进行该海边暴露试验。就ST方向选择3种第三步骤时效时间(0、12和24小时)和2种应力水平(16和20ksi)。第一应力水平代表沿ST方向对目前的上机翼合金7055和7449的最低要求。第二应力水平对应于高出25%的应力水平。7XXX合金就ST方向的AI试验暴露时间段典型地为20或30天或直到发生失效。在这些试验中,用于AI的最大暴露时间段延长至150天以更好地评估不同时效作业的效果。对于海边暴露,最长暴露时间为466天。在表4中给出了应力腐蚀开裂(SCC)试验的结果。表4<table>tableseeoriginaldocumentpage30</column></row><table>第三步骤时效时间为0(即没有第三步骤)、12和24小时的实施例合金A、片2的结果表明,对于具有或不具有第三时效步骤,或者对于较短或较长的第三步骤时效时间,本发明公开的合金的抗SCC性不存在明显差异。在所有情形中,对于在16ksi应力水平下(目前对上机翼合金的最低要求)和在20ksi的高25%的应力水平下的AISCC,达到失效时的天数均超过了7XXX合金的20天或30天标准暴露时间。达到失效时的天数对于3种不同的时效时间也是类似的。3个第三步骤时效时间的抗SCC性对于海边暴露也是类似的。仅就12小时第三步骤时效时间对合金A、片1和实施例合金B、片2进行评价。片1比片2薄且宽,因此预期具有不同的晶粒长径比和可能不同的抗SCC性。合金A、片1的结果似乎稍微优于片2的结果。合金B、片2的结果类似且可能优于合金A、片2的结果。还进行了沿LT方向的SCC试验。对于LT方向,在30、47和90天后中断暴露并且根据ASTMG139对暴露的样品进行破坏载荷试验。测定了暴露的试样相比于未暴露试样拉伸强度的强度保留或残留百分数。LT方向的应力水平为42和63ksi,对应于本发明公开的合金的LT屈服强度的约50%和75%。该试验是较短时间内获得更为定量的信息的手段,且因此对于更加抗SCC的LT方向是有用的,在该方能具有较大散布(scatter)的。在一个实验中,在47天暴露时间后对赋予了0、6和12小时第三步骤失效作业的实施例合金A和B进行破坏载荷试验。在第二实验中,对在一定应力水平下于AI中暴露30和47天暴露时间段和于海边暴露90天的实施例合金A和7055-T7951对照品进行破坏载荷试验,所述应力水平对应于每种合金的LT屈服强度的50_75%。在两个实验中,还包括无应力的样品。包括无应力和有应力样品还使强度由于普通腐蚀和点蚀而损失以及由于待单独进行的SCC而损失。在图5中显示了第一实验的结果,每个点表示5个样品的平均值。在这里,残留强度百分数是暴露试样的强度与未暴露试样(即未被腐蚀)的强度基于百分数表示的强度之比。结果表明,对于消除第三时效步骤,不存在抗普通腐蚀性(无应力)或抗SCC性(有应力)的损失。实际上,没有第三步骤的样品比具有6或12小时第三步骤的样品具有较大的保留或残留强度。对于给定的时效时间,合金B优于合金A。在图6中给出了第二实验的结果,每个点表示5个样品的平均值。图6是就在每种合金屈服强度的50-75%的应力水平下12小时的第二步骤时效时间并接着于3.5。/。NaCl溶液中暴露30和47天以及于海边暴露90天,对比本发明公开的合金和现有技术合金7055沿LT方向的残留强度百分数的坐标图。相比7055合金,就所有三种暴露在无应力和有应力状态下且在两个应力水平下,实施例合金A具有更大的保留强度百分数。总之,腐蚀结果表明两步骤和三步骤时效作业提供了本发明公开的合金用于上机翼应用的可接受的腐蚀性能。两步骤作业的一个缺点是强度稍微较低,如表4中就实施例合金A所述。相比于24小时的第三步骤时效时间,无第三步骤时屈服强度高了约1ksi。如前所述,本发明公开的合金的时效作业的灵活性是有益的特性。两步骤作业对于例如上机翼蒙皮和纵梁的应用是典型的,其中在时效成形加工期间飞机制造商或转包商部分或全部地施用时效,并且希望时效成形周期尽可能短以使生产产量最大化。在这一点上,本文所利用的具有两步骤作业的本发明公开的合金(其具有13小时的总均热时间)与目前的上机翼合金相比提供了改进。取决于时效成形要求,如果由材料生产商施用第一步骤并且在时效成形加工中仅进行第二步骤,则这可能进一步缩短至约7小时。当生产商以完全时效状态提供该材料以用于例如组合设计的上机翼翼梁或翼梁腹板的应用时,可以使用三步骤作业。对于这些应用,根据相对于合金产品晶粒取向的要求和设计应力的方向,在使用两步骤或三步骤作业时,还可以使用较低强度状态例如T76或T74状态。当本发明公开的合金待焊接到另一种合金产品并且作为多合金部件的一部分进行焊接后时效时,取决于本发明公开的合金待接合到的一种或多种合金的时效作业,可使用两步骤或三步骤作业。本发明公开的合金提供的灵活性对于将用于粘附增强材料的粘合剂的固化周期与本发明公开的合金的时效相结合也会是有用的。实施例3将实施例1中制造的固溶热处理、淬冷和伸展状态(W51状态)的实施例合金A板材的样品机加工成0.5英寸厚x6英寸宽x35英寸长的片。以T3511状态获得来自2099挤压件的样品并且将其机加工成相同的尺寸。在两种情形中,长度尺寸沿轧制方向。2099是铝业协会注册的具有如下组成的商购铝锂合金2.4-3.0wt.%Cu,0.l-O.5wt.窗g,0.4-1.0Zn,0.l-O.5Mn,0.05-0.12Zr和1.6-2.0Li,其余为Al和附带杂质。通过摩擦搅拌焊将实施例合金A和2099的片进行接合,焊接线沿着所述片的长度。例如对于多合金翼梁或翼肋,可使用其组成非常不相似的本发明公开的合金和2099的这种组合。在翼梁中,本发明公开的合金可用于需要高压缩强度的上帽和腹板中,而2099可用于下翼梁帽,在该下翼梁帽中高的抗疲劳裂紋扩展性是有益的。类似地,在翼肋中,本发明公开的合金可用于脚部(foot),在该脚部中高强度是重要的,而2099可用于翼梁腹板,在该翼梁腹板中高硬度和低密度是有益的。在摩擦搅拌焊操作之前,将合金A和2099的片分别时效。用于合金A的焊接前时效由在250。F下6小时的第一步骤构成,而2099的第一和第二步骤构;。接合片的焊接后时效作业:须相同并i由在250°F下6小时的第一步骤和在305°F下18小时的第二步骤构成。焊接后时效对于改善焊区的强度和抗腐蚀性是理想的。为提高焊接性能、特别是强度和抗腐蚀性,在焊接后应进行尽可能多的时效。然而,对于不相似的合金,这样做的能力可受对每种合金的单独时效要求和每个的最终所需状态的限制。对每种合金的焊接前时效作业和多合金片的焊接后时效作业进行仔细选择,目标是本发明公开的合金为-T76型状态,2099为-T83型状态。虽然如此,两种合金的时效作业的一些折衷是必需的,并且本发明公开的合金关于可成功利用的时效步骤数目和时间并同时获得良好性能的灵活性在此方面上是有益的。在焊接后时效之后,在基础金属(即焊缝和热影响区的外部)、热影响区(HAZ)和焊缝中测量机械性能,这些机械性能包括拉伸强度、压缩强度、拉伸和压缩弹性模量以及断裂韧性。使用跨焊缝的维氏显微硬度(VHN)测量和光学显微照片确定各个区域的范围及其中试样的位置。根据可适用的ASTM试验方法进行试验ASTME8和B557用于拉伸试验,E9用于压缩试验,Elll用于拉伸和压缩模量试验,及ASTME399用于平面应变断裂韧性。沿L和LT方向测量拉伸性能。仅沿L方向测量压缩强度和弹性模量。平面应变断裂韧性样品沿T-L方向,具有2英寸的宽度W并且为全片厚度。将断裂样品从片上切离使得它们的机加工狭槽(表示裂紋扩展的预期平面)对准目标区域。在焊缝和HAZ中取得两个样品,一个试样具有的机加工凹口的指向与焊33接操作期间摩擦搅拌焊工具行进的相同方向,一个试样具有的机加工凹口的指向沿相反方向。在表5中给出了这些试验的结果。表5<table>tableseeoriginaldocumentpage34</column></row><table>注:*橫贯焊缝和HAZ的LT拉伸样品在最弱位置失效。1与焊接操作期间焊接工具行进的方向相同的裂紋扩展。2与焊接操作期间焊接工具行进的方向相反的裂紋扩展。即使对于就每种合金所作出的时效作业折衷,接受了焊接前时效作业(对于各种合金是不同的)和焊接后时效作业(对于各种合金是相同的)的每种合金的基础金属获得了目标状态所需的强度和韧性水平。如对于焊缝所典型观测到的,在HAZ和焊缝中的性能较低。在摩擦搅拌焊加工期间焊缝区域基本上得到固溶热处理,因此该区域的人工时效仅在焊接后时效期间进行。同样,HAZ也在焊接加工期间受到加热,但是加热的温度低于用于固溶热处理的温度,且因此不足以将合金化元素充分固溶。这可限制焊接后时效期间其在HAZ中的时效响应并且劣化其强度和断裂韧性。尽管存在这些因素,但所获得的焊接效率(即,焊缝强度与基础金属强度之比)相当良好。垂直于其中拉伸试样包括焊缝和HAZ的焊接线测量时,相比于2099沿LT方向的基础金属强度,焊接效率对于拉伸屈服强度(TYS)为71%和对于极限拉伸强度为81%。在焊接后时效之后还接着对接合片进行应力腐蚀开裂(SCC)和剥落试验。对于SCC试验,在垂直并且跨越焊缝和HAZ的中间厚度处机加工出厚度为0.235英寸的扁平型拉伸(flattensile-type)样品。根据ASTMG44、G47和/或G49,通过交替浸泡在26和35ksi两个应力水平下分别试验3个样品。在250天的暴露时间段后没有观测到失效。对于剥落试验,根据ASTMG34使用EXCO试验方法测试含有焊缝、HAZ和基础金属的2个全片厚度的矩形样品。该试验方法对于7XXX合金例如本发明公开的合金是合适加速的试验方法。根据ASTMG85使用干底(DryBottom)MASTMAASIS测试第二组全片厚度的样品。该试验方法对于2099是合适的加速试验方法。合金A和2099的基础金属均具有EA剥落等级。该等级是良好腐蚀性能的指示并且符合每种合金的目标状态的典型性能。含有两种合金的混合物的焊缝区域具有根据EXCO试验方法的EB等级,再次指示了相当良好的抗剥蚀性。预期到焊缝腐蚀性能的一些劣化,这是因为该区域仅接受了焊接后时效。2099中的HAZ具有为P的MASTMAASIS等级,然而,合金A中的HAZ表现出局部侵蚀并且具有为ED的EXC0等级。这种腐蚀性能对于内部飞机结构例如翼梁和翼肋可能是不可接受的,但有可能通过使摩擦搅拌焊参数最优化或者在焊接期间使用冷却方法以减少输入到HAZ中的热量而得以改善。该区域还可在使用中通过采用腐蚀防护方法得到保护。例如,在施加已通常用于内部结构的腐蚀防护的阳极化处理和抗腐蚀性底涂漆之前,可沿焊缝通过热喷涂或其它方法施加比本发明公开的合金具有更大阳极性的铝合金。合金A和2099中腐蚀电势差产生的电化腐蚀可促成合金的HAZ中的局部侵蚀。在该情形中,使用与本发明公开的合金组成相似的较贫乏和较富含的合金(其与两种非常不相似的合金相比应具有较小的腐蚀电势差),或者单独使用不同状态的本发明公开的合金,对改善HAZ中的抗腐蚀性可以是有益的。实施例4按大的商业级坯锭铸造2个坯锭。所述坯锭具有与本发明的教导相一致的组成。第1个坯锭命名为合金E,第2个坯锭命名为合金F。另外,铸造4个铝协会合金7085的坯锭和6个铝协会合金7050的坯锭。在表6中提供合金E和F、7050和7085对照坯锭的组成,以及铝业协会注册的7085和7050的组成范围。<table>tableseeoriginaldocumentpage36</column></row><table>将坯锭去皮并以约870°F-910。F的最终均热温度均热。将具有组成E的坯锭热轧至厚度为3.125英寸的板材,而将具有组成F的坯锭热轧至厚度为4.Q英寸的板材。这样的尺寸代表了用于整体机加工零件的标准航空板材。将7085对照坯锭的批次1-3热轧至厚度为约4英寸的板材。将7085对照坯锭的批次4热轧至厚度为约3英寸的板材。将3个7050对照坯锭热轧到具有约4英寸厚度的板材。将另3个7050对照坯锭热轧至厚度为约3英寸的板材。将所有坯锭沿长的横向横轧小于15%。将所有板材在约880。F-900。F固溶热处理约2-4小时,喷水淬冷至环境温度,并且冷伸展约1.5-3%。从合金E和F板材获得样品。使用常规三步骤作业将这些样品时效至T74型状态(适合于整体机加工部件)。该三步骤作业由在约250。F下约6小时的第一步骤,在约310°F温度下15-20小时的第二步骤和在约250。F下约24小时的第三步骤构成。在第二步骤期间将合金E和F样品中的一些进行时效15小时(样品1)。在第二步骤期间将其它合金F样品进行时效18小时(样品2)。在第二步骤期间将其它合金E样品进行时效20小时(样品2)。还使用这种常规三步骤时效处理将7085的4英寸对照批次时效至T74状态。使用常规三步骤时效处理将7085对照批次的批次4的样品1(3英寸板材)时效至T76状态,和使用常规三步骤时效处理将7085对照批次的批次4的样品2(3英寸板材)时效至T74状态。使用常规两步骤时效处理将7050对照批次时效至T74状态。测量合金E和F以及7085和7050对照批次的样品的拉伸性能和平面应变(KIC)断裂韧性。根据ASTME8和ASTMB557进行拉伸试验。根据ASTME399进行平面应变fc)断裂韧性试验。合金E的平面应变断裂韧性样品沿T-L方向具有2英寸厚和4英寸的宽度W,并且沿S-L方向具有1英寸的厚度和2英寸的宽度W。合金F的平面应变断裂韧性样品沿T-L和S-L方向均具有1英寸的厚度和2英寸的宽度W。合金E和F的断裂韧性样品集中在板材的中间厚度(T/2)处。4英寸对照7085板材的平面应变断裂韧性样品沿T-L方向具有2英寸的厚度和4英寸的宽度W,并且沿S-L方向具有1.5英寸的厚度和3英寸的宽度W。3英寸对照7085板材的平面应变断裂韧性样品沿T-L方向具有1.75的厚度和5英寸的宽度W,并且沿S-L方向具有L25英寸的厚度和2.5英寸的宽度W。4英寸对照7085板材的断裂韧性样品集中沿T-L方向的板材四分之一厚度(T/4)处和沿S-L方向的板材中间厚度(T/2)处。3英寸对照7085板材的断裂韧性样品沿T-L和S-L方向均集中于板材中间厚度(T/2)处。对照7050板材的沿T-L方向的平面应变断裂韧性样品具有2英寸的厚度和4英寸的宽度W。3英寸厚的对照7050板材的沿S-L方向的平面应变断裂韧性样品具有l英寸的厚度和2英寸的宽度W。4英寸厚的对照7050板材的沿S-L方向的平面应变断裂韧性样品具有1.5英寸的厚度和3英寸的宽度W。对照7050板材的断裂韧性样品在沿T-L和S-L方向集中于板材中间厚度(T/2)处。对于合金F,根据ASTMG34标准进行使用了EXCO方法的剥落试验,其中试验样品在中间厚度(T/2)、四分之一厚度(T/4)和十分之一厚度(T/1G)处取得。在表7中提供了合金E和F以及7085和7050对照批次的测得性能。在板材厚度为约3英寸下,合金E与7050对照批次相比沿LT方向表现出约9-12ksi的拉伸屈服强提高和约6-8ksi的极限拉伸强度提高。类似地,合金E与7050对照批次相比沿ST方向表现出约8-10ksi的拉伸屈服强提高和约6-8ksi的极限拉伸强度提高。在板材厚度为约4英寸下,合金F与7050对照批次相比沿LT方向表现出约7-9ksi的拉伸屈服强提高和约3-4ksi的极限拉伸强度提高。类似地,合金F与7050对照批次相比沿ST方向表现出约5-7ksi的拉伸屈服强提高和约4-5ksi的极限拉伸强度提高。合金F与T74状态的7085对照批次相比沿LT和ST方向均表现出约2-5ksi的拉伸屈服和极限强度改善。飞机制造商认为这些强度改善是明显的强度改善。表7合金S,厚度(英寸)方向uts(ksi)伸长竿(%)取向KIc(ksiVin)7050-T7451批次l3LT66.276.611.4T-L28.2ST62.073.46.2S-L28.0批次2L丁65.876.211.4T-L29.2ST61.773.36.7S-L28.1批次33L丁65.375.3U.OT丄30.0ST61.072.56.6S-L28.8批次44LT65.275.81!.3T-L26.3ST62.974.65.8S-L22.4批次54LT65.676.110.8T-L26.4ST62.473.55.6S-L26.6批次64LT66.976.87.9T-L26.5ST61.673.05.1S-L26.27085-T7451■批次14LT69.176.410.5T-L29.1ST64.474.17.5S-L32.3批次24LT69.976.510,7T-L29,4ST64.774.37.0S-L31,0批次34LT'69,576.910.6T-L30.1ST65.474.86:2S-L32.17085-T7X5咏次4,降品23ur69.3j75.418.2T-L35.43ST66.575.013.5S-L39.6叱次4,降品13LT68.674.519,0T-L37.23ST65.574.113.9S-L37.7合金E样品13.125LT77.683,89.3T-L25.0ST'71.580.97,8S-L27.6样品23.125LT74.782.09.7T-L26,9ST69.779.48.6S-L29.4合金F样品14IT74.5肌310.0丁-L26.4ST69.278.27.8S-L25.1样品24LT73.079.610.0T-L28.3ST67.377.68.6S-L27.4在图7中图解了具有约3英寸厚度的合金E和各种常规合金的性能。更特别地,图7对比了合金E(厚度为3.125英寸)、7050对照批次(具有约3英寸的厚度)的作为沿LT(长横向)方向拉伸屈服强度的函数的沿T-L方向平面应变断裂韧性(Kn;)和来自于3英寸7085批次的数据。合金E获得了显著较高的拉伸屈服强度,具有类似于7050对照批次的韧性。合金E还获得比得上7085合金的强度与韧性关系,但如下所述,7085合金不能够一致地通过海边环境SCC试验。换言之,合金E与类似制造和尺寸(size)的7085合金相比获得相等或较好的抗应力腐蚀性,但是处于较高的LT强度。因此,合金E在规定厚度范围下获得了目前为止尚未获得的LT强度、T-L韧性和抗腐蚀性的组合。图7还包括突出本发明的合金板材产品的潜在性能的阴影区域。该阴影区域由22ksi《英寸的最小韧性、72ksi的最小强度和C-C线所围闭,所述C-C线具有方程式FT—TL=-1.0*(TYS-LT)+98,其中TYS-LT是才艮据ASTM标准E8和ASTMB557测得的该板材以ksi计的LT拉伸屈服强度,并且其中FT—TL是根据ASTME399测得的该板材以ksiV英寸计的T-L平面应变断裂韧性。图7的阴影区域特别适合于厚度为约2.0-2.5英寸至约3.0、3.125或3.25英寸且状态为T73、T74、T76或T79的板材合金产品。在图8中图解了具有4英寸厚度的合金F和各种常规合金的性能。更特别地,图8对比了合金F(厚度为4.0英寸)、7050对照批次(具有约4英寸的厚度)和4英寸7085批次的作为沿LT(长横向)方向拉伸屈服强度的函数的沿T-L方向平面应变断裂韧性(KIC)。合金F获得了显著较高的拉伸屈服强度,具有类似于7050对照批次的韧性。合金F还获得了类似于7085对照批次的强度与韧性关系,但如下所述,7Q85合金不能够一致地通过海边环境SCC试验。换言之,合性,但是处于较高的LT强度。因此,合金F在规定厚度范围下获得了目前为止尚未获得的LT强度、T-L韧性和抗腐蚀性的组合。图8还包括突出本发明的合金板材产品的潜在性能的阴影区域。该阴影区域由21ksiv/英寸的最小韧性、71ksi的最小强度和D-D线所围闭,该D-D线具有方程式FT-TL=-1.0*(TYS_LT)+98,其中TYS-LT是根据ASTM标准E8和ASTMB557测得的该板材以ksi计的LT拉伸屈服强度,其中FT-TL是根据ASTME399测得的该板材以ksi《英寸计的T-L平面应变断裂韧性。图8的阴影区域特别适合于厚度为约3.0-3.125或3.25英寸至约3.5、3.75或4英寸且状态为T73、T74、T76或T79的板材合金产品。在图9中还图解了具有约3英寸厚度的合金E和各种常规合金的性能。更特别地,图9对比了合金E(厚度为3.125英寸)和7050对照批次(具有约3英寸的厚度)以及3英寸7085对照批次的作为沿ST(短横向)方向拉伸屈服强度的函数的沿S-T方向平面应变断裂韧性(KJ。合金E获得了显著较高的拉伸屈服强度,具有类似于7050对照批次的韧性。合金E还获得了类似于7085对照批次的强度与韧性关系,但如下所述,7085合金不能够一致地通过海边环境SCC试验。换言之,合金F与类似制造和尺寸的7085合金相比获得相等或较好的抗应力腐蚀性,但是处于较高的ST强度。因此,合金E在规定厚度范围下获得了目前为止尚未获得的ST强度、S-L韧性和抗腐蚀性的组合。图9还包括突出本发明的合金板材产品的潜在性能的阴影区域。该阴影区域由22ksi《英寸的最小韧性、69ksi的最小强度和E-E线所围闭,该E-E线具有方程式FT-SL=-1.l*(TYS—ST)+99,其中TYS-ST是根据ASTM标准E8和ASTMB557测得的该板材以ksi计的ST拉伸屈服强度,并且其中FT—SL是根据ASTME399测得的该板材以ksi《英寸计的S-L平面应变断裂韧性。图9的阴影区域特别适合于厚度为约2.0-2.5英寸至约3.0、3.125或3.25英寸且状态为T73、T74、T76或T79的板材合金产品。在图10中还图解了具有约4英寸厚度的合金F和多种常规合金的性能。更特别地,图IO对比了合金F(厚度为4.O英寸)和705040对照批次(具有约4英寸的厚度)以及7085对照批次(具有约4英寸的厚度)的作为沿ST(短横向)方向拉伸屈服强度的函数的沿S-L方向平面应变断裂韧性(KIC)。合金F获得了显著较高的拉伸屈服强度,具有类似于7050对照批次的韧性。合金F还获得了类似于7085对照批次的强度与韧性关系,但如下所述,7085合金不能够一致地通过海边环境SCC试验。换言之,合金F与类似制备和尺寸的7085合金相比获得相等或较好的抗应力腐蚀性,但是处于较高的ST强度。因此,合金F在规定厚度范围下获得了目前为止尚未获得的ST强度、S-L韧性和抗腐蚀性的组合。图10还包括突出本发明的合金板材产品的潜在性能的阴影区域。该阴影区域由20ksiV英寸的最小韧性、66ksi的最小强度和F-F线所围闭,该F-F线具有方程式FT-SL=-1.1*(TYS-ST)+99,其中TYS-ST是根据ASTM标准E8和ASTMB557测得的该板材以ksi计的ST拉伸屈服强度,其中FT—SL是根据ASTME399测得的该板材以ksiV英寸计的S-L平面应变断裂韧性。图IO的阴影区域特别适合于厚度为约2.0-2.5英寸至约3.0、3.125或3.25英寸且状态为T73、T74、T76或T79的板材合金产品。根据ASTMG34就抗剥蚀性(EXCO)测试了处于两种时效状态的合金F。两种时效状态的合金F获得了与7XXX合金的良好抗剥蚀性一致的EA等级。如果对合金E进行EXCO试验,可预期到类似结果。因此,本发明公开的合金获得了强度改善并同时保持优异的抗剥落特性,合金F的所有样品获得了为EA的EXCO等级。对合金E、F和7085合金进行两种类型的应力腐蚀开裂试验。第一试验,根据ASTMG44、G47和/或G49标准,对合金E和F的样品1和2、以及对基于在沿ST方向的中间厚度(T/2)处取得的试验样品的7085对照板材,进行交替浸泡(AI)加速应力腐蚀开裂(SCC)试验。在表8(4英寸)和表9(3英寸)中还说明了AISCC试验结果。表8<table>tableseeoriginaldocumentpage42</column></row><table>合金E和F在40和50ksi的应力水平下分别获得5和15ksi的可接受的性能,该性能高于使合金具有T74状态的最低要求。还对基于在沿ST方向的中间厚度072)处取得的试验样品的合金E的样品1和2进行海边环境SCC试验。还获得合金7085的海边环境SCC试验。以恒定的应变固定器(例如类似于加速实验室SCC试验中所用的那些)对用于海边环境SCC试验的样品进行试验。海边SCC试验条件包括通过机架(rack)将样品连续暴露于海边环境,其中样品距离地面约1.5米,样品与水平面成45。进行取向,并且样品面面向盛行风(prevailingwind)。样品位于距离海岸线约100米。在一个实施方案中,海岸线为多岩石性质,盛行风朝向样品取向以便提供侵蚀性的盐雾暴露(例如,类似于海边暴露场所AlcoaInc.的Pt.Judith,RhodeIsland,USA的位置)。在表10中描述了合金E和7085合金的海边SCC试验结果。表10合金TYS批次/(LT>样品号厚度(英寸)应力(ksi)试验#试验天数失效(天数)合金E77.6ksi样品13.12540262无失效50326260,10274.7ksi样品23.125403262无失效503262无失效708568.6ksi(匕次4,羊品2335525无失效708569.4ksi比次4,羊品13552576,132和3无失效在262天的暴露后,合金E的许多样品在40ksi和50ksi的应力水平下没有失效(当试样分离成两片或者裂紋变得用肉眼可见时则其失效)。回想到合金E就样品1和2分别获得74.7ksi和77.6ksi的LT强度。相反地,厚度类似且仅具有68.6和69.4ksi的LT强度的7085合金分别在5次中失效Q次和在5次中失效2次。注意到7085数据的趋势是,7085合金的强度仅较小提高,通过海边环境SCC试验的能力降低。预见到的是,如果对7085合金进行处理以获得在3英寸厚度下72ksi的LT强度水平,则这样的7085合金将一致地通不过海边环境SCC试验(沿ST方向处于35ksi的应力),而合金E(和本发明限定的其它合金)在相同的强度和SCC应力水平下将一致地通过海边环境SCC试验。因此,本发明公开的合金在规定厚度范围下能够获得目前为止尚未获得的强度、韧性和抗腐蚀性的组合。在一个实施方案中,43提供T74状态的铝合金产品。该铝合金产品可由第一板材、第二板材和/或第三板材制成。如果利用第一板材,则第一板材将具有不大于约2.OO英寸的厚度,并且包含上述图2C-1、2C-2、2D-1和2D-2的实施方案1、2、3、4或5、或者图2E和2F的实施方案1或2中任何实施方案的合金组成。如果利用第二板材,则第二板材将具有大于约2.00英寸但不大于3.OO英寸的厚度,并且包含上述图2C-1、2C-2、2D-1和2D-2的实施方案1、2、3、4或5、或者图2E和2F的实施方案1或2中任何实施方案的合金组成。如果利用第三板材,则第三板材将具有大于约3.00英寸但不大于4.00英寸的厚度,并且包含上述图2C-1、2C-2、2D-1和2D-2的实施方案1、2、3、4或5、以及图2E和2F的实施方案1或2中任何实施方案的合金组成。铝合金产品可以包含除上述组成水平外的其它组成。此外,在任何这些实施方案中,铝合金可基本上由规定成分(除铝外)、余量的铝和附带元素及杂质构成。在该实施方案中,任何第一板材可以具有满足表达式FT>-2.3*(TYS)+229的强度与韧性关系,其中TYS是根据ASTM标准E8和ASTMB557测量时第一板材以ksi计的L拉伸屈服强度,其中FT是根据ASTME399测量时第一板材以ksiv/英寸计的L-T平面应变断裂韧性,其中第一板材具有至少74ksi的TYS,其中第一板材具有至少36ksi《英寸的FT。在这些实施方案的一些中,该板材可具有至少约75ksi例如至少约76ksi、或至少约77ksi、或至少约78ksi、或至少约79ksi、或甚至至少约80ksi的拉伸屈服强度。在这些实施方案的一些中,该板材可具有至少约40ksi《英寸例如至少约42ksi《英寸、或至少约44ksiv/英寸、或至少约46ksiV英寸、或至少约48ksi《英寸、或甚至至少约50ksi《英寸的韧性。在该实施方案中,任何第二板材可具有满足表达式FT-TL0*(TYS—LT)+98的强度与韧性关系,其中TYS-LT是根据ASTM标准E8和ASTMB557测量时第二板材以ksi计的LT拉伸屈服强度,其中FT-TL是根据ASTME399测量时第二板材以ksi《英寸计的T-L平面应变断裂韧性,其中第二板材具有至少72ksi的TYS-LT,并且其中第二板材具有至少24.5ksi《英寸的FT-TL。在这些实施方案的一些中,该板材可具有至少约73ksi例如至少约74ksi、或至少约75ksi、或至少约76ksi、或甚至至少约77ksi的拉伸屈服强度。在这些实施方案的一些中,该板材可具有至少约25ksi《英寸例如至少约26ksiV英寸、或至少约27ksiV英寸、或甚至至少约28ksi《英寸的韧性。在该实施方案中,任何第二板材可以具有满足表达式FT_SL>-1.l*(TYS-ST)+99的强度与韧性关系,其中TYS-ST是根据ASTM标准E8和ASTMB557测量时第二板材以ksi计的ST4i伸屈^^强度,其中FT-SL是根据ASTME399测量时第二板材以ksiv/英寸计的S-L平面应变断裂韧性,其中第二板材具有至少69ksi的TYS-ST,其中第二板材具有至少25ksi《英寸的FT—SL。在这些实施方案的一些中,该板材可具有至少约69.5ksi例如至少约70ksi、或至少约70.5ksi、或甚至至少约71ksi的拉伸屈服强度。在这些实施方案的一些中,该板材可具有至少约26ksi《英寸例如至少约27ksi《英寸、或至少约28ksiV英寸、或至少约29ksiV英寸、或至少约30ksiV英寸、或甚至至少约31ksi《英寸的韧性。在该实施方案中,任何第三板材可以具有满足表达式FT-TL>-1.0*(TYS—LT)+98的强度与韧性关系,其中TYS-LT是根据ASTM标准E8和ASTMB557测量时第三板材以ksi计的LT拉伸屈服强度,其中FT一TL分别是才艮据ASTME399测量时第三板材以ksi《英寸计的T-L平面应变断裂韧性,其中第三板材具有至少71ksi的TYS-LT,并且其中第三板材具有至少约23ksi《英寸的FT_TL。在这些实施方案的一些中,该板材可具有至少约71.5ksi例如至少约72ksi、或至少约72.5ksi、或至少约73ksi、或至少约73.5ksi、或甚至至少约74ksi的拉伸屈服强度。在这些实施方案的一些中,该板材可具有至少约24ksi《英寸例如至少约25ksi《英寸、或至少约26ksi《英寸、或至少约27ksi《英寸、或至少约28ksi《英寸、或甚至至少约29ksi《英寸的韧性。在该实施方案中,任何第三板材可具有满足表达式FT-SLl*(TYS—ST)+99的强度与韧性关系,其中TYS-ST是根据ASTM标准E8和ASTMB557测量时第三板材以ksi计的ST拉伸屈服强度,其中FT-SL是根据ASTME399测量时第三板材以ksi7英寸计的S-L平面应变断裂韧性,其中第三板材具有至少66ksi的TYS-ST,并且其中第三板材具有至少约23ksiV英寸的FT-SL。在这些实施方案的一些中,该板材可具有至少约66.5ksi例如至少约67ksi、或至少约67.5ksi、或至少约68ksi、或至少约68.5ksi、或甚至至少约69ksi的拉伸屈服强度。在这些实施方案的一些中,该板材可具有至少约24ksi《英寸例如至少约25ksiV英寸、或至少约26ksi《英寸、或至少约27ksi《英寸、或甚至至少约28ksiV英寸的韧性。在该实施方案中,第一、第二或第三板材中的任一个或任一些可一致地通过一个或多个应力腐蚀开裂试验。在特定的实施方案中,根据T74状态的定义,在沿ST方向的至少35ksi的应力、或沿ST方向的至少约40ksi、或甚至沿ST方向的至少45ksi下,并且持续至少180天的时段,所述板材一致地通过(下述)海边环境抗应力腐蚀开裂(SCC)试验。在一些实施方案中,在(一种或多种)规定应力水平下,所述板材一致地通过了持续至少230天、或至少280天、或至少330天、或甚至至少365天时段的海边环境SCC试验。在特定的实施方案中,所述板材一致地通过了持续至少30天时段的交替浸泡SCC试验(根据ASTMG44、G47和/或G49标准)。在一些实施方案中,所述板材一致地通过了持续至少40天、或至少60天、或至少80天、或甚至至少IOO天时段的交替浸泡SCC试验。已知T74状态的常规7XXX系列合金不能够获得如下所有项(i)在提供的厚度范围下的上文提供的强度,(ii)在提供的厚度范围下的上文提供的韧性,(iii)在提供的厚度范围下的上文提供的强度与韧性关系,和(iv)在提供的厚度范围下一致地通过一个或两个上文提及的SCC试验的能力。在另一个实施方案中,提供T76状态的铝合金产品。该铝合金产品可由第一板材、第二板材和/或第三板材制成。如果利用第一板材,则第一板材将具有不大于约2.OO英寸的厚度,并且包含如上所述的图2C-1、2C-2、2D-1和2D-2的实施方案1、2、3、4或5、或者图2E和2F的实施方案1或2中任何实施方案的合金组成。如果利用第二板材,则第二板材将具有大于2.00英寸但不大于3.00英寸的厚度,并且包含如上所述的图2C-1、2C-2、2D-1和2D-2的实施方案1、2、3、4或5、或者图2E和2F的实施方案1或2中任何实施方案的合金组成。如果利用第三板材,则第三板材将具有大于3.OO英寸但不大于4.00英寸的厚度,并且包含如上所述的图2C-1、2C-2、2D-1和2D-2的实施方案1、2、3、4或5、或者图2E和2F的实施方案1或2中任何实施方案的合金组成。该铝合金产品可以包含除上述组成水平外的其它组成。此外,在任何这些实施方案中,该铝合金可基本上由规定成分(除铝外)、余量的铝和附带元素及杂质构成。在该实施方案中,任何第一板材可具有满足表达式FT>-2.3*(TYS)+229的强度与韧性关系,其中TYS是根据ASTM标准E8和ASTMB557测量时第一板材以ksi计的L拉伸屈服强度,其中FT是根据ASTME399测量时第一板材以ksiV英寸计的L-T平面应变断裂韧性,其中第一板材具有至少79ksi的TYS,其中第一板材具有至少30ksi《英寸的FT。在这些实施方案的一些中,该板材可具有至少约80ksi例如至少约81ksi、或至少约82ksi、或至少约83ksi、或至少约84ksi、或至少约85ksi、或甚至至少约86ksi的拉伸屈服强度。在这些实施方案的一些中,该板材可具有至少约3Zksi《英寸例如至少约34ksi《英寸、或至少约36ksi《英寸、或至少约38ksiV英寸、或至少约40ksi《英寸、或甚至至少约42ksi《英寸的韧性。在该实施方案中,任何第二板材可具有满足表达式FT_TL0*(TYS_LT)+98的强度与韧性关系,其中TYS-LT是根据ASTM标准E8和ASTMB557测量时第二板材以ksi计的LT拉伸屈服强度,其中FT-TL是根据ASTME399测量时第二板材以ksiV英寸计的T-L平面应变断裂韧性,其中第二板材具有至少76ksi的TYS-LT,并且其中第二板材具有至少22ksi《英寸的FT一TL。在这些实施方案的一些中,该板材可具有至少约77ksi例如至少约78ksi、或至少约79ksi、或至少约80ksi、或甚至至少约81ksi的拉伸屈服强度。在这些实施方案的一些中,该板材可具有至少约22.5ksi《英寸例如至少约23ksiv/英寸、或至少约23.5ksiV英寸、或至少约24ksiV英寸、或至少约24.5ksi《英寸、或甚至至少约25ksiV英寸的韧性。在该实施方案中,任何第二板材可具有满足表达式FT-SLl*(TYS_ST)+99的强度与韧性关系,其中TYS—ST是根据ASTM标准E8和ASTMB557测量时第二板材以ksi计的ST拉伸屈服强度,其中FT-SL是根据ASTME399测量时第二板材以ksi7英寸计的S-L平面应变断裂韧性,其中第二板材具有至少71ksi的TYS一ST,其中第二板材具有至少约22ksi《英寸的FT-SL。在这些实施方案的一些中,该板材可具有至少约71.5ksi例如至少约72ksi、或至少约72.5ksi、或甚至至少约73ksi的拉伸屈服强度。在这些实施方案的一些中,该板材可具有至少约23ksiv/英寸例如至少约24ksi《英寸、或至少约25ksi《英寸、或至少约26ksi《英寸、或至少约27ksi《英寸、或甚至至少约28ksi《英寸的韧性。在该实施方案中,任何第三板材可具有满足表达式FT—TL0*(TYS—LT)+98的强度与韧性关系,其中TYS-LT是根据ASTM标准E8和ASTMB557测量时第三板材以ksi计的LT拉伸屈服强度,其中FT—TL是根据ASTME399测量时第三板材以ksi《英寸计的T-L平面应变断裂韧性,其中第三板材具有至少75ksi的TYS一LT,并且其中第三板材具有至少21ksiV英寸的FT-TL。在这些实施方案的一些中,该板材可具有至少约75.5ksi例如至少约76ksi、或至少约76.5ksi、或至少约77ksi、或至少约77.5ksi、或甚至至少约78ksi的拉伸屈服强度。在这些实施方案的一些中,该板材可具有至少约22ksiV英寸例如至少约23ksi《英寸、或至少约24ksi《英寸、或至少约25ksi《英寸、或至少约26ksi《英寸、或甚至至少约27ksiV英寸的韧性。在该实施方案中,任何第三板材可具有满足表达式FT-SLl*(TYS-ST)+99的强度与韧性关系,其中TYS一ST是根据ASTM标准E8和ASTMB557测量时第三板材以ksi计的ST拉伸屈服强度,其中FT—SL是根据ASTME399测量时第三板材以ksiV英寸计的S-L平面应变断裂韧性,其中第三板材具有至少70ksi的TYS-ST,且其中第三板材具有至少约20ksi《英寸的FT—SL。在这些实施方案的一些中,该板材可具有至少约70.5ksi例如至少约71ksi、或至少约71.5ksi、或至少约72ksi、或至少约72.5ksi、或甚至至少约73ksi的拉伸屈服强度。在这些实施方案的一些中,该板材可具有至少约21ksi《英寸例如至少约22ksi《英寸、或至少约23ksi《英寸、或至少约24ksi《英寸、或甚至至少约25ksiv/英寸的韧性。在该实施方案中,第一、第二或第三板材中的任何板材可一致地通过一个或多个应力腐蚀开裂试验。在特定的实施方案中,根据T76状态的定义,在沿ST方向的至少约25ksi(例如25ksi-34ksi)的应力下并且持续至少180天的时段,该板材一致地通过了(下述)海边环境抗应力腐蚀开裂(SCC)试验。在一些实施方案中,在(一种或多种)规定应力水平下,所述板材一致地通过了持续至少230天、或至少280天、或至少330天、或甚至至少365天时段的海边环境SCC试验。在特定的实施方案中,所述板材一致地通过了持续至少30天时段的交替浸泡SCC试验(根据ASTMG44、G47和/或G49标准)。在一些实施方案中,所述板材一致地通过了持续至少40天、或至少60天、或至少80天、或甚至至少IOO天时段的交替浸泡SCC试验。已知T76状态的常规7XXX系列合金不能获得如下所有项(i)在提供的厚度范围下的上文提供的强度,(ii)在提供的厚度范围下的上文提供的韦刃性,(iii)在提供的厚度范围下的上文提供的强度与韧性关系,和(iv)在提供的厚度范围下一致地通过一个或两个上文提及的SCC试验的能力。在一个实施方案中,使用铝合金作为用于航空运载工具的上机翼蒙皮。该上机翼蒙皮可由厚度不大于约2.OO英寸的铝合金板材制成,其中所述铝合金包含图2C-1、2C-2、2D-1和2D-2的实施方案491、2、3、4或5中的任何组成。该铝合金产品可(不经常)包含除上述组成水平外的任何其它组成。在任何这些实施方案中,铝合金可基本上由规定成分(除铝外)、余量的铝和附带元素及杂质构成。在这些实施方案中,铝合金板材可具有满足表达式FT>-4.0*(TYS)+453的强度与韧性关系,其中TYS是根据ASTM标准E8和ASTMB557测量时该板材以ksi计的L拉伸屈服强度,其中FT是根据ASTM标准E561和B646对取自铝合金板材T/2厚度处的中心开裂的铝合金试样进行测量时该板材以ksi一英寸计的L-T平面应力断裂韧性(Lpp),其中所述试样具有16英寸的宽度、0.25英寸的厚度和4英寸的初始疲劳预裂长度。在这些实施方案的一些中,该板材可具有至少约80ksi例如至少约81ksi、或至少约82ksi、或至少约83ksi、或至少约84ksi、或甚至至少约85ksi的屈服强度。在这些实施方案的一些中,该板材可具有至少约100ksi《英寸例如至少约101ksi《英寸、或至少约102ksi《英寸、或至少约103ksi《英寸、或至少约104ksi《英寸或甚至至少约105ksiv/英寸的韧性。除改善的拉伸屈服强度和平面应力断裂韧性外,上机翼蒙皮板材还可获得改善的平面应变断裂韧性(KIC)。因此,在这些实施方案中,该板材可具有满足表达式FT_K1C>-2.3*(TYS)+229的强度与韧性关系,其中TYS是如上所述的L拉伸屈服强度,并且其中FT—K1C是根据ASTME399测量时该板材以ksi《英寸计的L-T平面应变断裂韧性,其中该板材具有至少34ksiV英寸的FT-K1C。在这些实施方案的一些中,该板材可具有至少约36ksi《英寸例如至少约38ksiV英寸、或至少约40ksi《英寸、或甚至至少约42ksi《英寸的FT-K1C断裂韧性。已知没有常规7XXX系列合金能够获得如下所有项(i)在规定的厚度范围下的上文规定的强度,(n)在规定的厚度范围下的上文规定的韧性,(iH)在规定的厚度范围下的上文规定的强度与韧性关系。这些合金还能够获得上文就实施例2中所规定的抗腐蚀性。虽然按照合金板材展现了本发明的主要部分,但应预期到利用本发明公开的合金在其它产品形式例如挤压件和锻压件中将获得类似的改进。此外,虽然详细记载了本发明的具体实施方案,但本领域技术人员应理解,根据所公开内容的总体教导,可对这些细节进行各种改变和替代。因此,所公开的具体配置意味着仅是说明性的,并且不是对本发明范围的限制,本发明的范围将由所附权利要求书及其任何和所有等效方式的全部范围给出。权利要求1.用于航空运载工具的上机翼蒙皮,该上机翼蒙皮包含铝合金,其中该铝合金基本上由如下构成7.8-8.5wt.%Zn,1.95-2.25wt.%Cu,1.7-2.0wt.%Mg,以及至多0.25wt.%的Zr、Hf、Sc、Mn和V中的至少一种,余量是铝、附带元素和杂质,其中所述上机翼蒙皮由厚度不大于约2.00英寸的板材制成,其中该板材具有满足表达式FT≥-4.0*(TYS)+453的强度与韧性关系,其中TYS是根据ASTM标准E8和ASTMB557测量时该板材以ksi计的L拉伸屈服强度,其中FT是该板材以ksi√英寸计的L-T平面应力断裂韧性(Kapp),其中该板材具有至少80ksi的TYS,并且其中该板材具有至少100ksi√英寸的FT,其中FT根据ASTM标准E561和B646对取自铝合金板材T/2位置的中心开裂铝合金试样测得,其中所述试样具有16英寸的宽度、0.25英寸的厚度和4英寸的初始疲劳预裂长度。2.权利要求1的上机翼蒙皮,其中所述铝合金基本上由如下构成7.9-8.2wt.%Zn,2.05-2.15wt.%Cu,1.75-1.85wt.%Mg,至多0.25wt.。/。的Zr、Hf、Sc、Mn和V中的至少一种,余量是铝、附带元素和杂质。3.权利要求1或2的上机翼蒙皮,其中所述板材具有满足表达式FT-KlC>-2.3*(TYS)+229的强度与韧性关系,其中FT—K1C是根据ASTME399测量时该第一板材以ksiV英寸计的L-T平面应变断裂韧性,其中该第一板材具有至少34ksiv/英寸的FT。4.铝合金产品,包含基本上由如下构成的合金6.8-8.5wt.°/。Zn,1.5-2.0wt.°/。Mg,1.75-2.3wt.%Cu;0.05-0.3wt.%Zr,小于0.1wt.°/。Mn,小于0.05wt.%Cr,以及余量的Al与附带元素和杂质。5.权利要求4的合金产品,其中该合金产品包括厚度不大于2.00英寸的截面,并且具有图3中A-A线上或上方及右方的沿L-T方向的平面应变断裂韧性和沿纵向的最小拉伸屈服强度。6.权利要求5的合金产品,包括厚度不大于2.OO英寸的截面,并且在以具有4英寸初始裂紋长度(2ao)和约0.25英寸厚度的16英寸宽的中心开裂片进行试验时,具有图4中B-B线上或上方及右方的沿L-T方向的表观平面应力断裂韧性和拉伸屈服强度。7.权利要求4的合金产品,其中该合金产品是机身部件。8.权利要求4的合金产品,其中该合金产品是装曱部件。9.权利要求4的合金产品,其中该合金产品是片材、板材、挤压件或锻造产品形式。10.权利要求4的合金产品,其中该合金产品一致地通过海边环境抗应力腐蚀开裂试验,其中该海边环境抗应力腐蚀开裂试验在沿ST方向的至少25ksi应力下进行至少180天的时间段。11.权利要求10的合金产品,其中该合金产品一致地通过交替浸泡抗应力腐蚀开裂试验,其中该交替浸泡抗应力腐蚀开裂试验在沿ST方向的至少25ksi应力下进行至少30天的时间段,其中根据ASTMG44进行该交替浸泡抗应力腐蚀开裂试验。12.来自铝合金产品的航空部件,所述铝合金产品包含基本由如下构成的合金6.8-8,5wt.%Zn,1.5-2.00wt.%Mg,1.75-2.3wt.%Cu;0.05-0.3wt.%Zr,小于0.1wt.°/。Mn,小于0.05wt.%Cr,余量的Al、附带元素和杂质。13.将铝合金金属成形或成型为飞机结构部件的方法,该方法包括(a)提供基本组成如下的合金6.8-8.5wt.%Zn,1.5-2.Qwt.%Mg,1.75-2.3wt.%Cu;0.05-0.3wt.%Zr,小于0.1wt.%Mn,小于0.05wt.°/。Cr,余量的A1、附带元素和杂质;(b)通过选自轧制、挤压和锻造中的一种或多种方法将该合金均匀化和热力口工;(c)将该合金固溶热处理;(d)将该合金淬冷;和(e)对该合金进行应力消除,其中人工时效状态下的所述结构部件表现出强度和断裂韧性的改良组合。全文摘要铝合金产品及其制造方法,所述铝合金产品的厚度为约4英寸以下,且在固溶热处理、淬冷和人工时效并且为由该产品制成的零件时,具有能够获得强度、断裂韧性和抗腐蚀性的改良组合的能力,所述合金基本上由如下构成约6.8-约8.5wt.%Zn,约1.5-约2.00wt.%Mg,约1.75-约2.3wt.%Cu;约0.05-约0.3wt.%Zr,小于约0.1wt.%Mn,小于约0.05wt.%Cr,以及余量的Al、附带元素和杂质。本发明公开的合金用于制造商业飞机的结构构件,这些结构构件包括但不限于组合或整体结构的上机翼蒙皮和纵梁、翼梁帽、翼梁腹板和翼肋。文档编号C22F1/053GK101688269SQ200880021505公开日2010年3月31日申请日期2008年5月14日优先权日2007年5月14日发明者C·亚纳尔,D·J·查克拉巴蒂,D·K·丹泽,G·B·韦尼玛,G·H·布雷,J·C·林,J·波斯里,J·纽曼申请人:美铝公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1