挤压的粉末金属压块的制作方法

文档序号:3287606阅读:328来源:国知局
挤压的粉末金属压块的制作方法
【专利摘要】公开了一种粉末金属压块。该粉末压块包括包含纳米基质的显著伸长的蜂窝状纳米基质。该粉末压块还包括分散在蜂窝状纳米基质中的包含颗粒芯材料的多个显著伸长的分散颗粒,所述颗粒芯材料包含Mg、Al、Zn或Mn或其组合。该粉末压块进一步包括在分散颗粒之间遍及该蜂窝状纳米基质的结合层,其中该蜂窝状纳米基质和该分散颗粒在预定方向上显著伸长。
【专利说明】挤压的粉末金属压块
[0001]相关申请的交叉引用
[0002]本申请要求2011年7月29日提交的美国申请号13/194361的权益,其经此引用以全文并入本文。
[0003]本申请包含涉及共同未决申请的主题的主题,所述共同未决申请转让给与本申请
相同的受让人-Baker Hughes Incorporated of Houston, Texas。下面列举的申请经此
引用以全文并入本文:
[0004]2009 年 12 月 8 日提交的题为 COATED METALLIC POWDER AND METHOD OF MAKINGTHE SAME的美国专利申请序列号12/633,686 ;
[0005]2009 年 12 月 8 日提交的题为 METHOD OF MAKING A NANOMATRIX POWDER METALCOMPACT的美国专利申请序列号12/633,688 ;
[0006]2009 年 12 月 8 日提交的题为 ENGINEERED POWDER COMPACT COMPOSITE MATERIAL的美国专利申请序列号12/633,678 ;
[0007]2009 年 12 月 8 日提交的题为 TELESCOPIC UNIT WITH DISSOLVABLE BARRIER 的美国专利申请序列号12/633,683 ;
[0008]2009年12月8日提交的题为DISSOLVING TOOL AND METHOD的美国专利申请序列号 12/633,662 ;
[0009]2009 年 12 月 8 日提交的题为 MULT1-COMPONENT DISAPPEARING TRIPPING BALLAND METHOD FOR MAKING THE SAME 的美国专利申请序列号 12/633,677 ;
[0010]2009年12月8日提交的题为DISSOLVING TOOL AND METHOD的美国专利申请序列号 12/633,668 ;
[0011]2009年12月8日提交的题为NANOMATRIX POWDER METAL COMPACT的美国专利申请序列号12/633,682 ;
[0012]2010年10月27日提交的题为NANOMATRIX CARBON COMPOSITE的美国专利申请序列号 12/913,310 ;
[0013]2010年7月30日提交的题为NANOMATRIX METAL COMPOSITE的美国专利申请序列号 12/847,594 ;和
[0014]题为METHOD OF MAKING A POWDER METAL COMPACT的与本申请同日提交的美国专利申请案号C&P4-52150-US。
【背景技术】
[0015]石油和天然气井常常使用井孔部件或工具,由于它们的功能,这些部件或工具仅需要具有有限的使用寿命,该使用寿命显著低于井的使用寿命。在部件或工具的使用功能完成后,必须将其去除或处置以恢复用于包括烃生产、CO2封存等等的用途的流体通道的原始尺寸。部件或工具的处置通常通过铣削或钻削该部件或工具出井孔来实施,这通常会耗费时间,并且操作昂贵。
[0016]为了消除对铣削或钻削操作的需要,例如在本文中所述的相关申请中已经描述了通过使用具有蜂窝状纳米基质的受控电解材料溶解或腐蚀来除去部件或工具,所述蜂窝状纳米基质可以响应于井眼环境条件(如暴露于预定的井眼流体)而选择性和受控地降解或腐蚀。
[0017]虽然这些材料非常有用,但它们的强度、可腐蚀性和可制造性的进一步改进是非常期望的。
[0018]发明概述
[0019]公开了粉末金属压块的一个示例性实施方案。该粉末压块包括包含纳米基质材料的显著伸长的蜂窝状纳米基质。该粉末压块还包括分散在蜂窝状纳米基质中的包含颗粒芯材料的多个显著伸长的分散颗粒,所述颗粒芯材料包含Mg、Al、Zn或Mn或其组合。该粉末压块进一步包括遍及分散颗粒之间的蜂窝状纳米基质的结合层,其中该蜂窝状纳米基质和该分散颗粒在预定方向上是显著伸长的。
[0020]在另一个示例性实施方案中,粉末金属压块包括包含纳米基质材料的显著伸长的蜂窝状纳米基质。该粉末压块还包括分散在蜂窝状纳米基质中的包含颗粒芯材料的多个显著伸长的分散颗粒,所述颗粒芯材料包含具有低于Zn的标准氧化电位的金属、陶瓷、玻璃或碳或其组合。该粉末压块进一步包括遍及分散颗粒之间的蜂窝状纳米基质的结合层,其中该蜂窝状纳米基质和该分散颗粒在预定方向上是显著伸长的。
[0021]附图概述
[0022]下面参照附图,其中在多张图中以类似数字标记类似元件:
[0023]图1是本文公开的粉末10的显微照片,所述粉末10已经嵌在环氧树脂试样安装材料中并已剖开;
[0024]图2是如图1的2-2部分所代表的示例性截面图所呈现的粉末颗粒12的示例性实施方案的示意图;
[0025]图3是如图1的2-2部分所代表的第二示例性横截面图所呈现的粉末颗粒12的第二示例性实施方案的示意图;
[0026]图4是如图1的2-2部分所代表的第三示例性横截面图所呈现的粉末颗粒12的第三示例性实施方案的示意图;
[0027]图5是如图1的2-2部分所代表的第四示例性横截面图所呈现的粉末颗粒12的第四示例性实施方案的示意图;
[0028]图6是具有多峰粒度分布的本文中公开的粉末的第二示例性实施方案的示意图;
[0029]图7是具有多峰粒度分布的本文中公开的粉末的第三示例性实施方案的示意图;
[0030]图8是制造本文中公开的粉末的方法的示例性实施方案的流程图;
[0031]图9是本文中公开的粉末压块的示例性实施方案的显微照片;
[0032]图10是如沿横截面10-10所呈现的使用具有单层涂覆的粉末颗粒的粉末制得的图9的粉末压块的示例性实施方案的示意图;
[0033]图11是如具有均匀的多峰粒度分布的本文中公开的粉末压块的示例性实施方案的不意图;
[0034]图12是具有不均匀的多峰粒度分布的本文中公开的粉末压块的示例性实施方案的不意图;
[0035]图13是由第一粉末和第二粉末形成并具有均匀的多峰粒度分布的本文中公开的粉末压块的示例性实施方案的示意图;
[0036]图14是由第一粉末和第二粉末形成并具有不均匀的多峰粒度分布的本文中公开的粉末压块的示例性实施方案的示意图;
[0037]图15是沿横截面10-10所呈现的使用具有多层涂覆的粉末颗粒的粉末制得的图9的粉末压块的另一示例性实施方案的示意图;
[0038]图16是前体粉末压块的示例性实施方案的示意性横截面图;
[0039]图17是制造本文中公开的粉末压块的方法的示例性实施方案的流程图;
[0040]图18是制造本文中公开的包含显著伸长的粉末颗粒的粉末压块的方法的示例性实施方案的流程图;
[0041]图19是来自平行于本文中公开的预定伸长方向的截面的包含显著伸长的粉末颗粒的粉末压块的示例性实施方案的显微照片;
[0042]图20是取自横切本文中公开的预定伸长方向的截面的图27的粉末压块的显微照片;
[0043]图21是本文中公开的包含显著伸长的粉末颗粒的粉末压块的示例性实施方案的示意性横截面图;
[0044]图22是本文中公开的包含显著伸长的粉末颗粒的粉末压块的另一示例性实施方案的示意性横截面图;
[0045]图23是挤压模与由粉末形成包含显著伸长的粉末颗粒的粉末压块的方法的示例性实施方案的示意性横截面图;
[0046]图24是挤压模与由坯料(billet)形成包含显著伸长的粉末颗粒的粉末压块的方法的示例性实施方案的示意性横截面图;
[0047]图25是显示本文中公开的包含显著伸长的粉末颗粒的粉末压块的示例性实施方案的压缩强度的随应变而改变的压缩应力的绘图;
[0048]图26是由本文中公开的包含显著伸长的粉末颗粒的粉末压块形成的制品的示例性实施方案的示意性横截面图;和
[0049]图27是由本文中公开的包含显著伸长的粉末颗粒的粉末压块形成的制品的另一示例性实施方案的示意性横截面图。
[0050]发明详述
[0051]公开了轻重量高强度金属材料和制造这些材料的方法,这些材料可用于多种应用和应用环境,包括用于各种井眼环境以制造各种轻重量高强度制品,包括井下制品,特别是工具或其它井下部件,其通常描述为受控电解材料,并且其是可选和可控地可处置、可降解、可溶、可腐蚀的或以其它方式表征为可以从井眼中除去的。用于耐久的和可处置或可降解的制品的许多其它应用也是可能的。在一个实施方案中,这些轻重量、高强度和可选并可控地可降解材料包括由涂覆的粉末材料形成的完全致密的、烧结的粉末压块,所述涂覆的粉末材料包括各种轻重量颗粒芯和具有各种单层与多层纳米级涂覆层的芯材料。在另一实施方案中,这些材料包括可选并可控地可降解材料,所述可降解材料可以包括由这些涂覆的粉末材料形成的非完全致密的和/或未烧结的粉末压块。如本文中所述,这些粉末压块的特征在于其中使压实的粉末颗粒在预定方向上显著伸长以形成显著伸长的粉末颗粒的显微结构。与未显著伸长的粉末颗粒的类似粉末压块相比,该显著伸长的粉末颗粒有利地提供提高的强度(包括压缩强度)、可腐蚀性或可溶解性以及可制造性。这些粉末压块由涂覆的金属粉末制得,所述涂覆的金属粉末包括各种电化学活性的(例如具有相对更高的标准氧化电位)轻重量、高强度颗粒芯和芯材料(如电化学活性金属),其分散在由金属涂覆层材料的各种纳米级金属涂覆层形成的蜂窝状纳米基质中,并随后施以足以形成包括该颗粒芯和金属涂覆层的显著伸长的粉末颗粒并导致金属涂覆层变得不连续并在预定伸长方向上取向的显著变形。
[0052]这些改善的材料尤其可用于井眼应用。它们提供了机械强度性质(如抗压强度和剪切强度)、低密度和可选并可控的腐蚀性质(特别是在各种井眼流体中的快速和受控的溶解)的独特和有利的组合,其相对于不具有如本文中所述的具有显著伸长的粉末颗粒的显微结构的蜂窝状纳米基质材料得到改善。例如,可以选择这些粉末的颗粒芯与涂覆层以提供适于用作高强度工程材料的烧结粉末压块,所述高强度工程材料具有可以与各种其它工程材料,包括碳、不锈钢和合金钢相比的压缩强度与剪切强度,但是其还具有可以与各种聚合物、弹性体、低密度多孔陶瓷和复合材料相比的低密度。作为再一个例子,可以配置这些粉末和粉末压块材料以提供响应于环境条件变化的可选和可控的降解或处置,例如响应于由该压块形成的制品附近的井眼性质或条件(包括与该粉末压块接触的井眼流体的性质变化)的变化由非常低的溶解速率向非常快速的溶解速率的转变。所述的可选和可控的降解或处置特性还允许保持由这些材料制成的制品,如井眼工具或其它部件的尺寸稳定性和强度,直到不再需要它们,此时可以改变预定的环境条件,如井眼条件,包括井眼流体温度、压力或PH值以通过快速溶解促进它们的去除。
[0053]下面进一步描述这些涂覆的粉末材料和粉末压块和由它们形成的工程材料与制品,以及制造它们的方法。
[0054]参照图1-5,金属粉末10包括多个金属的、涂覆的粉末颗粒12。可以形成粉末颗粒12以提供粉末10,包括自由流动的粉末,该粉末可以以具有所有方式的形状与尺寸的所有方式的成形或造型(未显示)倾倒或以其它方式处置,并且其可用于制作前体粉末压块100(图16)和粉末压块200 (图10-15),如本文中所述,其可以用作或用于制造各种制造制品,包括各种井眼工具和部件。
[0055]粉末10的各个金属的、涂覆的粉末颗粒12包括颗粒芯14和设置在颗粒芯14上的金属涂覆层16。该颗粒芯14包括芯材料18。该芯材料18可以包括任何适于形成提供粉末颗粒12的颗粒芯14的材料,所述粉末颗粒12可以烧结以形成具有可选和可控的溶解特性的轻重量、高强度粉末压块200。合适的芯材料包括具有大于或等于Zn的标准氧化电位的电化学活性金属,包括如Mg、Al、Mn或Zn或其组合。这些电化学活性金属与大量常见井眼流体具有极高的反应性,这些井眼流体可以通过使用常规控制装置与方法选择性控制流体流入或流出井眼来选择性确定或预先确定。这些预先确定的井眼流体可以包括水、各种水溶液,包括含水盐溶液或盐水,或各种酸,或其组合。预先确定的井眼流体可以包括任意数量的离子流体或高极性流体,如含有各种氯化物的那些。实例包括包含氯化钾(KCl )、盐酸(HCl)、氯化钙(CaCl2)、溴化钙(CaBr2)或溴化锌(ZnBr2)的流体。芯材料18还可以包括电化学活性低于Zn的其它金属、或非金属材料、或其组合。合适的非金属材料包括陶瓷、复合材料、玻璃、或碳、或其组合。可以选择芯材料18以便提供在预定的井眼流体中的高溶解速率,但是还可以选择芯材料18以提供相对低的溶解速率,包括零溶解,其中纳米基质材料的溶解导致颗粒芯14迅速受到破坏并在与井眼流体的界面处从该颗粒压块中释放,使得用这些芯材料18的颗粒芯14制成的颗粒压块的有效溶解速率是高的,即使芯材料18本身具有低溶解速率,包括可以基本不溶于该井眼流体的芯材料20。
[0056]关于作为芯材料18的电化学活性金属,包括Mg、Al、Mn或Zn,这些金属可以以纯金属形式使用,或彼此任意组合使用,包括这些材料的各种合金组合,包括这些材料的二元、三元或四元合金。这些组合还可以包括这些材料的复合材料。此外,除了彼此的组合之外,该Mg、Al、Mn或Zn芯材料18还可以包括其它成分,包括各种合金化添加剂以便诸如通过改善芯材料18的强度、降低其密度或改变其溶解特性来改变颗粒芯14的一种或多种性质。
[0057]在电化学活性金属中,纯金属或合金或复合材料形式的Mg是特别有用的,因为其低密度和形成高强度合金的能力,以及其高度的电化学活性(因为其具有高于Al、Mn或Zn的标准氧化电位)。Mg合金包括具有Mg作为合金成分的所有合金。如本文中所述的结合其它电化学活性金属作为合金成分的Mg合金是特别有用的,包括二元的Mg-Zn、Mg-Al和Mg-Mn合金,以及三元的Mg-Zn-Y和Mg-Al-X合金,其中X包括Zn、Mn、S1、Ca或Y或其组合。这些Mg-Al-X合金可以按重量计包括至多约85%的Mg、至多约15%的Al和至多约5%的X。颗粒芯14和芯材料18,特别是包括Mg、Al、Mn或Zn或其组合的电化学活性金属,还可以包括稀土元素或稀土元素的组合。本文中所用的稀土元素包括Sc、Y、La、Ce、Pr、Nd或Er或稀土元素的组合。当存在时,稀土元素或稀土元素的组合可以以按重量计约5%或更少的量存在。
[0058]颗粒芯14和芯材料18具有熔融温度(Tp)。本文中所用的Tp包括在芯材料18中发生初期熔融或液化或其它形式的部分熔融时的最低温度,而不管芯材料18是否包含纯金属、具有多个熔融温度不同的相的合金或具有不同熔融温度的材料的复合材料。
[0059]颗粒芯14可以具有任何合适的颗粒尺寸或颗粒尺寸范围或颗粒尺寸分布。例如,如图1中大体所示,可以选择该颗粒芯14以提供在平均值或中值附近的正态分布或高斯型单峰分布所表示的平均粒度。在另一实例中,可以选择或混合颗粒芯14以提供多峰的粒度分布,包括多个平均离子芯尺寸,例如均匀的双峰平均粒度分布,如图6中大体和示意性所示。选择颗粒芯尺寸的分布可用于确定例如粉末10的颗粒12的粒度及颗粒间间距15。在一个示例性实施方案中,该颗粒芯14可以具有单峰分布,以及约5微米至约300微米、更特别约80微米至约120微米且甚至更特别约100微米的平均粒径。在另一个示例性实施方案中,其可以包括多峰粒度分布,该颗粒芯14可以具有约50纳米至约500微米、更特别约500纳米至约300微米和甚至更特别约5微米至约300微米的平均粒径。
[0060]颗粒芯14可以具有任何合适的颗粒形状,包括任何规则或不规则的几何形状,或其组合。在一个示例性实施方案中,颗粒芯14是基本球形的电化学活性金属颗粒。在另一个示例性实施方案中,颗粒芯14是基本不规则形状的陶瓷颗粒。在再一个示例性实施方案中,颗粒芯14是碳或其它纳米管结构或中空的玻璃微球。
[0061]粉末10的各个金属的、涂覆的粉末颗粒12还包括布置在颗粒芯14上的金属涂覆层16。金属涂覆层16包括金属涂覆材料20。金属涂覆材料20赋予该粉末颗粒12和粉末10其金属性质。金属涂覆层16是纳米级涂覆层。在一个示例性实施方案中,金属涂覆层16可以具有约25纳米至约2500纳米的厚度。金属涂覆层16的厚度可以在颗粒芯14的表面上方变化,但是优选在颗粒芯14的表面上方具有基本均匀的厚度。金属涂覆层16可以如图2所示包括单一层,或如图3-5中对至多四个层所示包括多个层作为多层涂覆结构。在单一层涂层中,或在多层涂层的各个层中,金属涂覆层16可以包括单一组成化学元素或化合物,或可以包括多种化学元素或化合物。当层包括多种化学成分或化合物时,它们可以具有均匀或不均匀分布的所有方式,包括金相的均匀或不均匀分布。这可以包括其中化学成分或化合物的量根据跨越层厚度的各自的成分分布而改变的分级分布。在单一层或多层涂层16中,每个层各自或其组合可以用于向粉末颗粒12或由此形成的烧结粉末压块提供预先确定的性质。例如,该预先确定的性质可以包括颗粒芯14与涂覆材料20之间金相结合的结合强度;颗粒芯14与金属涂覆层16之间的相互扩散特性,包括在多层涂覆层16的层之间的任何相互扩散;在多层涂覆层16的多个层之间的相互扩散特性;在一个粉末颗粒的金属涂覆层16与相邻粉末颗粒12的金属涂覆层16之间的相互扩散特性;相邻的烧结粉末颗粒12的金属涂覆层(包括多层涂覆层的最外层)之间的金相结合的结合强度;以及涂覆层16的电化学活性。
[0062]金属涂覆层16和涂覆材料20具有熔融温度(T。)。如本文中所用,T。包括在涂覆材料20中发生初期熔融或液化或其它形式的部分熔融时的最低温度,而不管涂覆材料20是否包含纯金属、具有熔融温度各不相同的多个相的合金或复合材料,包括包含多个具有不同熔融温度的涂覆材料层的复合材料。
[0063]金属涂覆材料20可以包括提供可烧结外表面21的任何合适的金属涂覆材料20,将所述可烧结外表面21配置成烧结到同样具有金属涂覆层16和可烧结外表面21的相邻粉末颗粒12上。在还包括第二或附加(涂覆的或未涂覆的)颗粒32的粉末10中,如本文中所述,金属涂覆层16的可烧结外表面21还配置成烧结到第二颗粒32的可烧结外表面21上。在一个示例性实施方案中,该粉末颗粒12在随芯材料18与涂覆材料20改变的预定烧结温度(Ts)下是可烧结的,使得粉末压块200的烧结完全在固态下实现,并且其中Ts小于Tp和T。。在固态下烧结将颗粒芯14/金属涂覆层16的相互作用限制为固态扩散过程和金相转移现象,并限制了它们之间所得界面的生长并提供了对所得界面的控制。相反,例如,引入液相烧结将提供颗粒芯14/金属涂覆层16材料的快速相互扩散,并使得难以限制在它们之间的所得界面的生长和提供对所得界面的控制,由此阻碍了本文中所述的颗粒压块200的所需显微结构的形成。
[0064]在一个示例性实施方案中,选择芯材料18以提供芯化学组成,并选择涂覆材料20以提供涂层化学组成,还选择这些化学组成以使彼此不同。在另一个示例性实施方案中,选择芯材料18以提供芯化学组成,选择涂覆材料20以提供涂层化学组成,并且还选择这些化学组成以使得在其界面处彼此不同。可以选择涂覆材料20与芯材料18的化学组成方面的差异以提供令它们可选和可控地可溶的混入它们的粉末压块200的不同溶解速率和可选且可控的溶解。这包括响应于井眼中变化的条件(包括井眼流体的间接或直接变化)而不同的溶解速率。在一个示例性实施方案中,粉末压块200由粉末10形成,所述粉末10具有芯材料18和涂覆材料20的化学组成,所述化学组成使得该压块200响应于变化的井眼条件可选地可溶于井眼流体,所述变化的井眼条件包括井眼流体或其组合的温度变化、压力变化、流速变化、PH变化或化学组成变化。响应于变化的条件的可选的溶解可以归因于促进不同溶解速率的实际化学反应或过程,但是也包括与物理反应或过程相关的溶解响应的变化,如井眼流体压力或流速的变化。[0065]在粉末10的一个示例性实施方案中,颗粒芯14包括Mg、Al、Mn或Zn或其组合作为芯材料18,并更特别可以包括纯Mg和Mg合金,并且金属涂覆层16包括Al、Zn、Mn、Mg、Mo、W、Cu、Fe、S1、Ca、Co、Ta、Re或Ni,或其氧化物、氮化物或碳化物、金属间化合物或金属陶瓷、或任何前述材料的组合作为涂覆材料20。
[0066]在粉末10的另一个示例性实施方案中,颗粒芯14包括Mg、Al、Mn或Zn或其组合作为芯材料18,并更特别可以包括纯Mg和Mg合金,并且如图2中所示,金属涂覆层16包括Al或Ni或其组合的单一层作为涂覆材料20。当金属涂覆层16包括两种或更多种成分的组合,如Al和Ni时,该组合可以包括这些材料的各种分级或共沉积结构,其中各成分的量,以及因此该层的组成跨越该层厚度变化,同样如图2中所示。
[0067]在再一个示例性实施方案中,颗粒芯14包括Mg、Al、Mn或Zn或其组合作为芯材料18,并更特别可以包括纯Mg和Mg合金,并且如图3中所示,涂覆层16包括两个层作为芯材料20。第一层22设置在颗粒芯14的表面上,并如本文中所述包括Al或Ni或其组合。第二层24设置在第一层的表面上并包括八1、211、]\%、]\10、1、(:11、?6、3丨、0&、&)、了&、1^或附或其组合,并且该第一层具有不同于该第二层的化学组成的化学组成。通常,选择第一层22以提供对颗粒芯14的牢固的金相结合和限制颗粒芯14与涂覆层16,特别是第一层22之间的相互扩散。选择第二层24以提高金属涂覆层16的强度和/或提供与相邻的粉末颗粒12的第二层24的牢固的金相结合并促进与相邻的粉末颗粒12的第二层24的烧结。在一个示例性实施方案中,可以选择金属涂覆层16的各自层以促进如本文中所述的涂覆层16响应于井眼(包括井眼流体)性质变化的选择性和可控的溶解。但是,这仅仅是示例性的,将会理解,还可以对各个层采用其它选择标准。例如,可以选择任何各自层以促进如本文中所述的涂覆层16响应于井眼(包括井眼流体)性质变化的选择性和可控的溶解。用在包含Mg的颗粒芯14上的双层金属涂覆层16的示例性实施方案包括包含Al/Ni和A1/W的第一 /第二层组合。
[0068] 在又一个实施方案中,颗粒芯14包括Mg、Al、Mn或Zn或其组合作为芯材料18,并更特别可以包括纯Mg和Mg合金,并且如图4中所示,涂覆层16包括三个层。第一层22设置在颗粒芯14上,并可以包括Al或Ni或其组合。第二层24设置在第一层22上,并可以包括Al、Zn、Mg、Mo、W、Cu、Fe、S1、Ca、Co、Ta、Re或Ni,或其氧化物、氮化物、碳化物、金属间化合物或金属陶瓷,或任何前述第二层材料的组合。第三层26设置在第二层24上,并可以包括Al、Mn、Fe、Co、Ni或其组合。在三层构造中,相邻层的组成不同,使得第一层具有不同于第二层的化学组成,第二层具有不同于第三层的化学组成。在一个示例性实施方案中,选择第一层22以提供对颗粒芯14的牢固的金相结合和限制颗粒芯14与涂覆层16,特别是第一层22之间的相互扩散。选择第二层24以提高金属涂覆层16的强度,或限制颗粒芯14或第一层22与外面的层或第三层26之间的相互扩散,或促进第三层26与第一层22之间的附着和牢固的金相结合,或它们的任意组合。选择第三层26以提供与相邻的粉末颗粒12的第三层26的牢固的金相结合并促进与相邻的粉末颗粒12的第三层26的烧结。但是,这仅仅是示例性的,将会理解,还可以采用对各个层的其它选择标准。例如,可以选择任何各自层以促进如本文中所述的涂覆层16响应于井眼(包括井眼流体)性质变化的选择性和可控的溶解。用在包含Mg的颗粒芯上的三层涂覆层的示例性实施方案包括包含A1/A1203/A1的第一 /第二 /第三层组合。[0069]在又一个实施方案中,颗粒芯14包括Mg、Al、Mn或Zn或其组合作为芯材料18,并更特别可以包括纯Mg和Mg合金,并且如图5中所示,涂覆层16包括四个层。在该四层构造中,第一层22可以如本文中所述包括Al或Ni或其组合。该第二层24可以包括Al、Zn、Mg、Mo、W、Cu、Fe、S1、Ca、Co、Ta、Re或Ni或其氧化物、氮化物、碳化物、金属间化合物或金属陶瓷,或任何前述第二层材料的组合。第三层26也可以包括Al、Zn、Mg、Mo、W、Cu、Fe、S1、Ca、Co、Ta、Re或Ni,或其氧化物、氮化物、碳化物、金属间化合物或金属陶瓷,或任何前述第三层材料的组合。第四层28可以包括Al、Mn、Fe、Co、Ni或其组合。在该四层构造中,相邻层的化学组成不同,使得第一层22的化学组成不同于第二层24的化学组成,第二层24的化学组成不同于第三层26的化学组成,第三层26的化学组成不同于第四层28的化学组成。在一个示例性实施方案中,关于内部(第一)和外部(第四)层,不同层的选择类似于上文的三层构造所述,第二和第三层可用于提供提高的层间粘接、整个金属涂覆层16的强度、受限的层间扩散或可选和可控的溶解或其组合。但是,这仅仅是示例性的,将会理解,还可以对各个层采用其它选择标准。例如,可以选择任何各自层以促进如本文中所述的涂覆层16响应于井眼(包括井眼流体)性质变化的选择性和可控的溶解。
[0070]多层构造中各个层的厚度可以以任何方式在各个层之间分配,只要层厚度的总和提供纳米级涂覆层16,包括如本文中所述的层厚度。在一个实施方案中,该第一层22和外层(取决于层数量为24、26或28)可以比存在的其它层更厚,因为需要提供足够的材料以便在烧结粉末压块200的过程中促进第一层22与颗粒芯14的所需结合,或相邻粉末颗粒12的外层的结合。
[0071]如图7中所示,粉末10还可以包括散布在多个粉末颗粒12中的附加或第二粉末30。在一个示例性实施方案中,第二粉末30包括多个第二粉末颗粒32。可以选择这些第二粉末颗粒32以改变由粉末10和第二粉末30形成的粉末颗粒压块200的物理、化学、机械或其它性质,或这些性质的组合。在一个示例性实施方案中,性质变化可包括由粉末10和第二粉末30形成的粉末压块200的压缩强度的提高。在另一个示例性实施方案中,可以选择第二粉末30以促进如本文中所述的由粉末10和第二粉末30形成的颗粒压块200响应于井眼(包括井眼流体)性质变化的选择性和可控的溶解。第二粉末颗粒32可以是未涂覆的,或涂覆有金属涂覆层36。当涂覆时,包括单一层或多层涂覆层,第二粉末颗粒32的涂覆层36可以包含与粉末颗粒12的涂覆材料20相同的涂覆材料40,或者该涂覆材料40可以不同。第二粉末颗粒32 (未涂覆)或颗粒芯34可以包括任何合适的材料以提供所需益处,包括许多金属。在一个示例性实施方案中,当使用包含Mg、Al、Mn或Zn或其组合的涂覆的粉末颗粒12时,合适的第二粉末颗粒32可以包括N1、W、Cu、Co或Fe或其组合。因为还将配置第二粉末颗粒32用于在预定烧结温度(Ts)下固态烧结到粉末颗粒12上,所以颗粒芯34将具有熔融温度TAP,任何涂覆层36将具有第二熔融温度Ta。,其中Ts小于Tap和TA。。还将认识到,第二粉末30不限于一种附加的粉末颗粒32类型(即第二粉末颗粒),而是可以包括任何数量的多种附加粉末颗粒32 (即第二、第三、第四等类型的附加粉末颗粒32)。
[0072]参照图8,公开了制造金属粉末10的方法300的示例性实施方案。方法300包括形成310如本文中所述的多个颗粒芯14。方法300还包括在多个颗粒芯14的每一个上沉积320金属涂覆层16。沉积320是如本文中所述的由此在颗粒芯14上布置涂覆层16的工艺。[0073]颗粒芯14的形成310可以通过用于形成多个所需芯材料18的颗粒芯14的任何合适方法进行,其基本上包括形成芯材料18的粉末的方法。合适的粉末形成方法包括机械方法;包括机加工、纟先削、冲击和用于形成金属粉末的其它机械方法;化学方法,包括化学分解、由液体或气体析出、固-固反应性合成和其它化学粉末形成方法;雾化法,包括气体雾化、液体和水雾化、离心雾化、等离子体雾化和用于形成粉末的其它雾化方法;以及各种蒸发和冷凝方法。在一个示例性实施方案中,包含Mg的颗粒芯14可以使用雾化法制造,如真空喷射成形或惰性气体喷射成形。
[0074]在多个颗粒芯14上沉积320金属涂覆层16可以使用任何合适的沉积方法进行,包括各种薄膜沉积法,例如化学气相沉积和物理气相沉积法。在一个示例性实施方案中,使用流化床化学气相沉积(FBCVD)进行金属涂覆层16的沉积320。通过FBCVD沉积320金属涂覆层16包括使包括所需金属涂覆材料20的作为涂覆介质的反应性流体在合适条件下流过在反应器容器中流化的颗粒芯14的床,所述合适条件包括温度、压力和流速条件等等,并且所述合适条件足以引发涂覆介质的化学反应以产生所需金属涂覆材料20并引发其在颗粒芯14表面上的沉积以形成涂覆的粉末颗粒12。选择的反应性流体将取决于所需的金属涂覆材料20,并通常包含包括待沉积的金属材料的有机金属化合物,如四羰基镍(Ni (CO) 4)、六氟化钨(WF6)和三乙基铝(C6H15Al ),该有机金属化合物在载体流体如氦气或氩气中传输。该反应性流体,包括载体流体,导致多个颗粒芯14的至少一部分悬浮在该流体中,由此使得悬浮的颗粒芯14的整个表面暴露于该反应性流体,所述反应性流体包括例如所需有机金属成分,并能够在颗粒芯14的整个表面上沉积金属涂覆材料20和涂覆层16,以使它们各自变得封闭,形成具有金属涂覆层16的涂覆的颗粒12,如本文中所述。同样如本文中所述,各金属涂覆层16可以包括多个涂覆层。涂覆材料20可以通过以下方法以多个层沉积以便形成多层金属涂覆层16:重复上述沉积320的步骤并改变330反应性流体以便对各后继层提供所需的金属涂覆材料20,其中各后继层沉积在已经包括构成金属涂覆层16的任何先前沉积的涂覆层的颗粒芯14的外表面上。各自层(例如22、24、26、28等等)的金属涂覆材料20可以彼此不同,并且可以通过使用不同的反应性介质提供这种差异,配置所述不同反应性介质以便在流化床反应器中在颗粒芯14上产生所需的金属涂覆层16。
[0075]如图1和9中所不,可以选择颗粒心14和心材料18和金属涂復层16和涂復材料20以提供粉末颗粒12和粉末10,为了压实和烧结以提供轻重量(即具有相对的密度)、高强度并响应于井眼性质变化从井眼中可选和可控地除去(包括可选和可控地可溶于合适的井眼流体,包括本文中公开的各种井眼流体)的粉末压块200,配置所述粉末颗粒12和粉末10。粉末压块200包括纳米基质材料220的基本连续的蜂窝状纳米基质216,所述纳米基质材料220具有遍及蜂窝状纳米基质216分散的多个分散颗粒214。基本连续的蜂窝状纳米基质216和烧结的金属涂覆层16形成的纳米基质材料220通过压实和烧结多个粉末颗粒12的多个金属涂覆层16来形成。由于与本文中所述的烧结相关的扩散效应,纳米基质材料220的化学组成可以不同于涂覆材料20的。粉末金属压块200还包括多个分散颗粒214,所述分散颗粒214包含颗粒芯材料218。当金属涂覆层16烧结在一起形成纳米基质216时,分散的颗粒芯214和芯材料218对应于多个粉末颗粒12的多个颗粒芯14和芯材料18并由多个粉末颗粒12的多个颗粒芯14和芯材料18形成。由于与本文中所述的烧结相关的扩散效应,芯材料218的化学组成可以不同于芯材料18。[0076]如本文中所用,使用术语基本连续的蜂窝状纳米基质216不意味着粉末压块的主要成分,而是指次要成分,无论按重量计还是按体积计。这有别于其中基质包括按重量或体积计的主要成分的大多数基质复合材料。使用术语基本连续的蜂窝状纳米基质意在描述纳米基质材料220在粉末压块200中分布的广泛的、规则的、连续的和互连的性质。本文中所用的“基本连续的”描述了纳米基质材料遍及粉末压块200,使得其在基本所有分散颗粒214之间扩展并包封基本所有分散颗粒214。基本连续用于表示不需要纳米基质在每个分散颗粒214周围的完全连续性和规则的秩序。例如,在某些粉末颗粒12上在颗粒芯14上方的涂覆层16的缺陷可导致烧结粉末压块200的过程中颗粒芯14的桥连,由此导致在蜂窝状纳米基质216中获得局部不连续性,即使在该粉末压块的其它部分中该纳米基质是基本连续的,并表现出本文中所述的结构。如本文中所用,“蜂窝状”用于表示纳米基质限定了通常重复的、互连的纳米基质材料220的隔室或胞室的网络,该纳米基质材料220包围分散颗粒214并与分散颗粒214相互连接。如本文中所用,“纳米基质”用于描述基质的尺寸或尺度,特别是相邻的分散颗粒214之间该基质的厚度。烧结在一起以形成该纳米基质的金属涂覆层本身是纳米级厚度的涂覆层。由于除了超过两个分散颗粒214相交处之外的大多数位置处的纳米基质通常包含来自具有纳米级厚度的相邻粉末颗粒12的两个涂覆层16的相互扩散与结合,形成的基质也具有纳米级厚度(例如本文中所述的涂覆层厚度的约两倍)并由此描述为纳米基质。此外,使用术语分散颗粒214并不意味粉末压块200的次要成分,而是指主要成分,无论按重量计还是按体积计。使用术语分散颗粒意在表达粉末压块200中颗粒芯材料218的不连续和离散的分布。
[0077]粉末压块200可以具有任何所需的形状或尺寸,包括圆柱形坯料或棒的形状或尺寸,所述圆柱形坯料或棒可以机加工或以其它方式用于形成可用的制造制品,包括各种井眼工具和部件。用于形成前体粉末压块100的压制以及用于形成粉末压块200和使包括颗粒芯14与涂覆层16的粉末颗粒12变形的烧结与压制过程提供粉末压块200的完全密度和所需宏观形状与尺寸以及其显微结构。粉末压块200的显微结构包括分散遍及且嵌入在烧结涂覆层的基本连续的蜂窝状纳米基质216中的分散颗粒214的等轴构型。这种显微结构有些类似于具有连续晶界相的等轴晶粒显微结构,除了其不需要使用能够产生此类结构的具有热动力学相平衡性质的合金成分。相反,可以使用其中热等力学相平衡条件不会产生等轴结构的成分制造这种等轴分散颗粒结构与烧结金属涂覆层16的蜂窝状纳米基质216。分散颗粒214的等轴形貌和颗粒层的蜂窝状网络216来自于粉末颗粒12的烧结与变形,因为它们被压实并相互扩散和变形以填充颗粒间空隙15 (图1)。可以选择烧结温度与压力以确保粉末压块200的密度达到基本完全理论密度。
[0078]在如图1和9中所示的示例性实施方案中,分散颗粒214由分散在烧结的金属涂覆层16的蜂窝状纳米基质216中的颗粒芯14形成,如图10中示意性所示,该纳米基质216包括固态金相结合217或结合层219,在分散颗粒214之间延伸遍及在烧结温度(Ts)下形成的蜂窝状纳米基质216,其中Ts小于T。和TP。如所示那样,固态金相结合217通过本文中所述的相邻粉末颗粒12的涂覆层16之间的固态相互扩散以固态形成,所述相邻粉末颗粒在用于形成粉末压块200的压实与烧结过程中被压实至相互接触。因此,蜂窝状纳米基质216的烧结的涂覆层16包括具有厚度(t)的固态结合层219,所述厚度(t)由涂覆层16的涂覆材料20的相互扩散程度限定,所述相互扩散的程度进而由涂覆层16的性质限定,包括它们是单层还是多层涂覆层,选择它们以促进还是限制此类相互扩散、和如本文中所述的其它因素,以及烧结和压实条件,包括用于形成粉末压块200的烧结时间、温度和压力。
[0079]在形成纳米基质216时——包括结合217和结合层219,金属涂覆层16的化学组成和/或相分布可以改变。纳米基质216还具有熔融温度(TM)。本文中所用的Tm包括在纳米基质216中发生初期熔融或液化或其它形式的部分熔融时的最低温度,而不管纳米基质材料220是否包含纯金属、具有多个各自具有不同熔融温度的相的合金或复合材料,包括包含具有不同熔融温度的各种涂覆材料的多个层的复合材料,或其组合,或其它。当分散颗粒214与颗粒芯材料218与纳米基质216结合形成时,金属涂覆层16的成分也可能扩散到颗粒芯14中,这可导致颗粒芯14的化学组成和/或相分布的改变。结果,分散颗粒214和颗粒芯材料218可以具有不同于Tp的熔融温度(TDP)。本文中所用的Tdp包括在分散颗粒214中发生初期熔融或液化或其它形式的部分熔融时的最低温度,而不管颗粒芯材料218是否包含纯金属、具有多个各自具有不同熔融温度的相的合金或复合材料,或其它。在一个实施方案中,粉末压块200在烧结温度(Ts)下形成,其中Ts小于T。、Tp, Tm和TDP,并且该烧结完全在固态下进行,获得固态结合层。在另一个示例性实施方案中,粉末压块200在烧结温度(Ts)下形成,其中Ts大于或等于T。、Tp, Tm或Tdp中的一个或多个,烧结包括如本文所述的粉末压块200中的有限或部分熔融,并进一步可以包括液态或液相烧结,获得至少部分熔融并再凝固的结合层。在这种实施方案中,将选择预定的Ts和预定的烧结时间(ts)的组合以保持包括该蜂窝状纳米基质216和分散颗粒214的所需显微结构。例如,在所有或一部分纳米基质216中例如可以允许发生局部的液化或熔融,只要保持该蜂窝状纳米基质216/分散颗粒214形貌,如通过选择不会导致颗粒芯完全熔融的颗粒芯14、Ts和ts。类似地,例如,在所有或一部分分散颗粒214中可以允许发生局部的液化,只要保持该蜂窝状纳米基质216/分散颗粒214形貌,如通过选择不会导致涂覆层16完全熔融的金属涂覆层16、Ts和ts。例如在烧结过程中沿着金属层16/颗粒芯14界面,或沿着多层涂覆层16的相邻层之间的界面,可以发生金属涂覆层16的熔融。要认识到,超出预定值的Ts和ts的组合可产生其它显微结构,例如,产生平衡熔融/再凝固显微结构,如果纳米基质216(即金属涂覆层16的组合)和分散颗粒214 (即颗粒芯14)熔融,由此允许这些材料的快速相互扩散的话。
[0080]分散颗粒214可以包含本文中对颗粒芯14所述的任何材料,尽管由于本文中所述的扩散效应,分散颗粒214的化学组成可能不同。在一个示例性实施方案中,分散颗粒214由颗粒芯14形成,所述颗粒芯14包含标准氧化电位大于或等于Zn的材料,包括Mg、Al、Zn或Mn或其组合,可以包括各种二元、三元和四元合金或与颗粒芯14结合的本文中公开的这些成分的其它组合。在这些材料中,具有包含Mg的分散颗粒214和由本文中所述的金属涂覆材料16形成的纳米基质216的那些材料是特别有用的。Mg、Al、Zn或Mn或其组合的颗粒芯材料218和分散颗粒214还可以包括稀土元素,或与颗粒芯14结合的本文中公开的稀土元素的组合。
[0081]在另一个示例性实施方案中,分散颗粒214由颗粒芯14形成,所述颗粒芯14包含电化学活性低于Zn的金属或非金属材料。如本文中所述,合适的非金属材料包括陶瓷、玻璃(例如中空玻璃微球)或碳或其组合。
[0082]粉末压块200的分散颗粒214可以具有任何合适的粒度,包括本文中对颗粒芯14所述的平均粒度。
[0083]根据对颗粒芯14和粉末颗粒12所选择的形状,以及用于烧结和压实粉末10的方法,分散颗粒214可以具有任何合适的形状。在一个示例性实施方案中,粉末颗粒12可以是球形或基本球形的,并且分散颗粒214可以包括如本文中所述的等轴颗粒构型。
[0084]可以通过选择用于制造颗粒压块200的粉末10来影响分散颗粒214的分散性质。在一个示例性实施方案中,如图9中大体所示,可以选择具有粉末颗粒12尺寸的单峰分布的粉末10来形成粉末压块200并在蜂窝状纳米基质216中产生分散颗粒214的粒度的基本均匀的单峰分散。在另一个示例性实施方案中,如图6和11中示意性所示,可以选择多个具有多个粉末颗粒(所述粉末颗粒具有颗粒芯14,所述颗粒芯14具有相同的芯材料18和不同的芯尺寸和相同的涂覆材料20)的粉末10并如本文中所述均匀混合以提供具有粉末颗粒12尺寸的均匀的多峰分布的粉末10,并可用于形成在蜂窝状纳米基质216中具有分散颗粒214的粒度的均匀的多峰分布的粉末压块200。类似地,在再一个示例性实施方案中,如图12中示意性所示,可以选择多个具有多个颗粒芯14 (其具有相同的芯材料18和不同的芯尺寸与相同的涂覆材料20)的粉末10,并以不均匀的方式分布以提供粉末颗粒尺寸的不均匀的多峰分布,并可用于形成在蜂窝状纳米基质216中具有分散颗粒214的粒度的不均匀的多峰分布的粉末压块200。颗粒芯尺寸的分布的选择可用于确定例如在由粉末10制成的粉末压块200的蜂窝状纳米基质216中分散颗粒214的粒度和颗粒间间距。
[0085]如图7和13大体所示,如本文中所述,还可以使用涂覆的金属粉末10和附加或第二粉末30形成粉末金属压块200。使用附加的粉末30提供了还包括多个如本文中所述的分散的第二颗粒234的粉末压块200,所述第二颗粒234分散在纳米基质216中并还相对于该分散颗粒214分散。如本文中所述,分散的第二颗粒234可以由涂覆或未涂覆的第二粉末颗粒32形成。在一个示例性实施方案中,涂覆的第二粉末颗粒32可以涂有与粉末颗粒12的涂覆层16相同的涂覆层36,使得涂覆层36也有助于形成该纳米基质216。在另一个示例性实施方案中,该第二粉末颗粒232可以是未涂覆的,使得分散的第二颗粒234嵌在纳米基质216中。如本文中公开的那样,粉末10和附加粉末30可以混合以便如图13中所示形成分散颗粒214与分散的第二颗粒234的均匀分散,或如图14中所示形成这些颗粒的不均匀分散。分散的第二颗粒234可以由不同于粉末10 (这是由于颗粒芯34和/或涂覆层36中的组成差异)的任何合适的附加粉末30形成,并可以包括本文中公开的用作第二粉末30的任何材料,所述第二粉末30不同于为了形成粉末压块200而选择的粉末10。在一个示例性实施方案中,分散的第二颗粒234可以包括Fe、N1、Co或Cu,或其氧化物、氮化物、碳化物、金属间化合物或金属陶瓷,或任何前述材料的组合。
[0086]纳米基质216是彼此烧结的金属涂覆层16的基本连续的蜂窝状网络。纳米基质216的厚度将取决于用于形成粉末压块200的粉末10的性质,以及任何第二粉末30的混入,特别是与这些颗粒相关的涂覆层厚度。在一个示例性实施方案中,纳米基质216的厚度遍及粉末压块200的显微结构上是基本均匀的,并包括粉末颗粒12的涂覆层16的厚度的约两倍。在另一个示例性实施方案中,该蜂窝状网络216具有约50纳米至约5000纳米的在分散颗粒214之间的基本均匀的平均厚度。
[0087]如本文中所述,通过相互扩散和产生结合层219,通过将相邻颗粒的金属涂覆层16烧结在一起来形成纳米基质216。金属涂覆层16可以是单层或多层结构,并可以选择它们以便促进和/或抑制在该层内、或在金属涂覆层16的层之间、或在金属涂覆层16与颗粒芯14之间、或在金属涂覆层16与相邻粉末颗粒的金属涂覆层16之间的扩散,取决于涂层厚度、所选择的涂覆材料、烧结条件和其它因素,烧结过程中金属涂覆层16的相互扩散的程度可以是有限的或广泛的。考虑到成分的相互扩散与相互作用的潜在复杂性,纳米基质216和纳米基质材料220的所得化学组成的描述可以简单理解为涂覆层16的成分的组合,取决于发生在分散颗粒214与纳米基质216之间的相互扩散(如果发生的话)的程度,该组合还可以包括分散颗粒214的一种或多种成分。类似地,分散颗粒214和颗粒芯材料218的化学组成可以简单理解为颗粒芯14的组分的组合,该颗粒芯14还可包括纳米基质材料220和纳米基质216的一种或多种组分,这取决于在分散颗粒214和纳米基质216之间发生的相互扩散的程度(如果有的话)。
[0088]在一个示例性实施方案中,纳米基质材料220具有化学组成,颗粒芯材料218具有与纳米基质材料220不同的化学组成,并且可以配置化学组成方面的差异,以便如本文中所述响应于压块200附近的井眼性质或条件的受控变化,包括与粉末压块200接触的井眼流体的性质变化,提供可选和可控的溶解速率,包括从极低溶解速率向非常快的溶解速率的可选的转变。纳米基质216可以由具有单层和多层涂覆层16的粉末颗粒12形成。这种设计灵活性提供了大量材料组合,特别是在多层涂覆层16的情况下,这种设计灵活性可用于通过控制在给定层中、以及在涂覆层16和与之相关的颗粒芯14或相邻粉末颗粒12的涂覆层16之间的涂覆层成分的相互作用来调节该蜂窝状纳米基质216以及纳米基质材料220的组成。下面提供了证实这种灵活性的几个示例性实施方案。
[0089]如图10中所示,在一个示例性实施方案中,粉末压块200由粉末颗粒12形成,其中该涂覆层16包含单一层,在多个分散颗粒214的相邻颗粒之间的所得纳米基质216包含一个粉末颗粒12的单一金属涂覆层16、结合层219和另一个相邻粉末颗粒12的单一涂覆层16。结合层219的厚度(t)由单一金属涂覆层16之间相互扩散的程度来决定,并可以包括纳米基质216的整个厚度或仅其一部分。在使用单一层粉末10形成的粉末压块200的一个示例性实施方案中,粉末压块200可以包括如本文中所述的包含Mg、Al、Zn或Mn或其组合的分散颗粒214,纳米基质216可以包括Al、Zn、Mn、Mg、Mo、W、Cu、Fe、S1、Ca、Co、Ta、Re或Ni,或其氧化物、碳化物、氮化物、金属间化合物或金属陶瓷,或任何前述材料的组合,包括以下组合:其中包括结合层219的蜂窝状纳米基质216的纳米基质材料220具有化学组成,并且分散颗粒214的芯材料218具有不同于纳米基质材料216的化学组成的化学组成。纳米基质材料220与芯材料218的化学组成方面的差异可用于如本文中所述响应于井目艮,包括井眼流体的性质变化提供可选和可控的溶解。在由具有单一涂覆层配置的粉末10形成的粉末压块200的进一步示例性实施方案中,分散颗粒214包括Mg、Al、Zn或Mn或其组合,蜂窝状纳米基质216包括Al或Ni或其组合。
[0090]如图15中所示,在另一个示例性实施方案中,粉末压块200由粉末颗粒12形成,其中涂覆层16包含具有多个涂覆层的多层涂覆层16,并且在多个分散颗粒214的相邻颗粒之间的所得纳米基质216包含多个层(t),所述多个层包含一颗粒12的涂覆层16、结合层219、和包含另一粉末颗粒12的涂覆层16的多个层。在图15中,这用双层金属涂覆层16来说明,但是要理解的是,多层金属涂覆层16的多个层可以包括任意所需数量的层。结合层219的厚度(t)同样由各自涂覆层16的多个层之间相互扩散的程度来决定,并且可包括纳米基质216的整个厚度或仅其一部分。在该实施方案中,包含各涂覆层16的多个层可用于控制相互扩散和结合层219的形成和厚度(t)。
[0091]在使用具有多层涂覆层16的粉末颗粒12制造粉末压块200的一个示例性实施方案中,该压块包括如本文中所述的包含Mg、Al、Zn或Mn或其组合的分散颗粒214,并且纳米基质216包含烧结的双层涂覆层16的蜂窝状网络,如图3中所示,所述双层涂覆层16包含设置在分散颗粒214上的第一层22和设置在第一层22上的第二层24。第一层22包括Al或Ni或其组合,第二层24包括六1、211、]\111、]\%、]\10、胃、01、卩6、51、0&、&)、1&、1^或祖或其组合。在这些配置中,选择分散颗粒214与用于形成纳米基质216的多层涂覆层16的材料,以便相邻材料的化学组成不同(例如,分散颗粒/第一层和第一层/第二层)。
[0092]在使用具有多层涂覆层16的粉末颗粒12制造粉末压块200的另一个示例性实施方案中,该压块包括如本文中所述的包含Mg、Al、Zn或Mn或其组合的分散颗粒214,并且纳米基质216包含烧结的三层金属涂覆层16的蜂窝状网络,如图4中所示,所示三层金属涂覆层包含设置在分散颗粒214上的第一层22、设置在第一层22上的第二层24和设置在第二层24上的第三层26。第一层22包括Al或Ni或其组合;第二层24包括Al、Zn、Mn、Mg、Mo、W、Cu、Fe、S1、Ca、Co、Ta、Re或Ni,或其氧化物、氮化物、碳化物、金属间化合物或金属陶瓷,或任何前述第二层材料的组合;并且第三层包括Al、Zn、Mn、Mg、Mo、W、Cu、Fe、S1、Ca、Co、Ta、Re或Ni或其组合。材料的选择类似于对使用两层涂覆层粉末制得的粉末压块200在本文中描述的选择考虑,但是必须扩展到包括用于第三涂覆层的材料。
[0093]在使用具有多层涂覆层16的粉末颗粒12制造粉末压块200的再一个示例性实施方案中,该压块包括如本文中所述的包含Mg、Al、Zn或Mn或其组合的分散颗粒214,并且纳米基质216包含烧结的四层金属涂覆层16的蜂窝状网络,所示四层涂覆层16包含设置在分散颗粒214上的第一层22 ;设置在第一层22上的第二层24 ;设置在第二层24上的第三层26和设置在第三层26上的第四层28。第一层22包括Al或Ni或其组合;第二层24包括Al、Zn、Mn、Mg、Mo、W、`Cu、Fe、S1、Ca、Co、Ta、Re或Ni,或其氧化物、氮化物、碳化物、金属间化合物或金属陶瓷,或任何前述第二层材料的组合;第三层包括Al、Zn、Mn、Mg、Mo、W、Cu、Fe、S1、Ca、Co、Ta、Re或Ni,或其氧化物、氮化物、碳化物、金属间化合物或金属陶瓷,或任何前述第三层材料的组合;并且第四层包括Al、Mn、Fe、Co或Ni或其组合。材料的选择类似于对使用两层涂覆层粉末制得的粉末压块200在本文中描述的选择考虑,但是必须扩展到包括用于第三和第四涂覆层的材料。
[0094]在粉末压块200的另一个示例性实施方案,分散颗粒214包含标准氧化电位低于Zn的金属或非金属材料或其组合的金属,如本文中所述,并且纳米基质216包含烧结的金属涂覆层16的蜂窝状网络。合适的非金属材料包括各种陶瓷、玻璃或各种形式的碳或其组合。此外,在包括包含这些金属或非金属材料的分散颗粒214的粉末压块200中,纳米基质216 可以包括 Al、Zn、Mn、Mg、Mo、W、Cu、Fe、S1、Ca、Co、Ta、Re 或 Ni,或其氧化物、碳化物、氮化物、金属间化合物或金属陶瓷,或任何前述材料的组合作为纳米基质材料220。
[0095]参照图16,如本文中所述,烧结的粉末压块200可以包含烧结的前体粉末压块100,其包括多个变形的、机械结合的粉末颗粒。可以通过以下方法形成前体粉末压块100:压实粉末10至粉末颗粒12压入彼此的点,由此使它们变形并形成与这种变形相关的颗粒间的机械结合或其它结合110,所述结合足以导致变形的粉末颗粒12彼此粘合并形成生坯状态的粉末压块,所述生坯状态的粉末压块具有小于粉末10的完全致密压块的理论密度的生坯密度,这部分是由于颗粒间空隙15。例如可以通过在室温下等静压粉末10以提供形成前体粉末压块100所需的粉末颗粒12的变形与颗粒间结合来进行压实。
[0096]如本文中所述,包括包含Mg的分散颗粒214和包含各种纳米基质材料的纳米基质216的烧结和锻制的粉末压块200已经展现了机械强度和低密度的优异组合,这例示了本文中公开的轻重量、高强度材料。粉末压块200的实例具有纯Mg分散颗粒214和由粉末10形成的各种纳米基质216,所述粉末10具有纯Mg颗粒芯14和包括Al、N1、W或Al2O3或其组合并已经使用本文中公开的方法400制得的单层和多层金属涂覆层16,所述金属涂覆层16包括Al、Ni+Al、W+Al和A1+A1203+A1。已经对这些粉末压块200施以各种机械测试和其它测试,包括密度测试,并且如本文中公开的那样已经表征了它们的溶解和机械性质劣化行为。结果表明,可以配置这些材料以提供由极低的腐蚀速率到极高的腐蚀速率的宽范围的可选和可控的腐蚀或溶解行为,特别是低于和高于未混入蜂窝状纳米基质的粉末压块的那些腐蚀速率,所述未混入蜂窝状纳米基质的粉末压块例如通过与本文中所述在各蜂窝状纳米基质中包括纯Mg分散颗粒的压块相比相同的压实和烧结过程由纯Mg粉末形成的压块。还可以配置这些粉末压块200以提供相对于由不包括本文中所述的纳米级涂层的纯Mg颗粒形成的粉末压块显著提高的性质。例如,如本文中所述的包括包含Mg的分散颗粒214和包含各种纳米基质材料220的纳米基质216的粉末压块200已经展示了至少约37ksi的室温压缩强度,并进一步展示了在干燥时和在200下浸没在3%KC1溶液中均超过约50ksi的室温压缩强度。与之相比,由纯Mg粉末形成的粉末压块具有约20ksi或更低的压缩强度。可以通过优化粉末10,特别是用于形成蜂窝状纳米基质216的纳米级金属涂覆层16的重量百分比来进一步改善纳米基质粉末金属压块200的强度。例如,改变氧化铝涂层的重量百分比(重量%),即厚度,影响由涂覆的粉末颗粒12形成的蜂窝状纳米基质216的粉末压块200的室温压缩强度,所述涂覆的粉末颗粒包括在纯Mg颗粒芯14上的多层(A1/A1203/A1)金属涂覆层16。在该例子中,在4重量%的氧化铝下实现了最佳强度,这代表着与O重量%的氧化招相比提闻了 21%。
[0097]如本文中所述的包含包括Mg的分散颗粒214和包括各种纳米基质材料的纳米基质216的粉末压块200已经展示了至少约20ksi的室温剪切强度。这与由纯Mg粉末形成的粉末压块形成对比——其提供约Sksi的室温剪切强度。
[0098]本文中公开的类型的粉末压块200能够实现与基于粉末10的组成的压块材料预定理论密度基本相等的实际密度,该粉末10包括相对量的颗粒芯14和金属涂覆层16的成分,并且在本文中将其描述为完全致密的粉末压块。本文中所述的包含包括Mg的分散颗粒和包括各种纳米基质材料的纳米基质216的粉末压块200已经展示了约1.738g/cm3至约2.50g/cm3的实际密度,这基本上等于预定的理论密度,与预定理论密度相差至多4%。
[0099]本文中公开的粉末压块200可以配置为响应于井眼中变化的条件而可选且可控地可溶于井眼流体。可用于提供可选和可控的溶解性的变化的条件的实例包括井眼流体的温度变化、压力变化、流速变化、PH变化或化学组成变化、或其组合。包括温度变化的变动条件的一个实例包括井眼流体温度变化。例如,取决于不同的纳米级涂覆层16,本文中所述的包含包括Mg的分散颗粒214和包括各种纳米基质材料的蜂窝状纳米基质216的粉末压块200在室温下在3%KC1溶液中具有约O至约llmg/cm2/hr的相对低的腐蚀速率,与之相比在200下则具有约I至约246mg/cm2/hr的相对高的腐蚀速率。包括化学组成变化的变动条件的一个实例包括井眼流体的氯离子浓度和/或PH值的变化。例如,包含包括Mg的分散颗粒214和包括各种纳米级涂层的纳米基质216的粉末压块200在15%的HCl中展示出约
4750mg/cm2/hr至约7432mg/cm2/hr的腐蚀速率。因此,响应于井眼中的变动条件-即井
眼流体化学组成由KCl变为HCl的可选且可控的溶解性可用于实现特征响应,使得在所选的预定临界使用时间(CST)下,可以在粉末压块200用于给定应用,如井眼环境时对其施加变动条件,这导致粉末压块200的性质响应于应用其的环境中的变动条件的可控变化。例如,在预定CST下,将与粉末压块200接触的井眼流体由提供第一腐蚀速率和随时间变化的相关重量损失或强度的第一流体(例如KCl)变化为提供第二腐蚀速率和随时间变化的相关重量损失与强度的第二井眼流体(例如HC1),其中与第一流体相关的腐蚀速率远低于与第二流体相关的腐蚀速率。这种对井眼流体条件变化的特征响应可以用于例如关联临界使用时间与特定用途所需的尺寸损失极限或最低强度相关联,使得当由本文中公开的粉末压块200形成的井眼工具或部件不再需要在井眼中使用(例如CST)时,可以改变井眼中的条件(例如井眼流体的氯离子浓度)以导致粉末压块200的快速溶解并将其从井眼中除去。在上述实施例中,粉末压块200以约O至约7000mg/cm2/hr的速率可选地可溶。该响应范围提供了例如在不到I小时内通过改变井眼流体而从井眼中除去由该材料形成的3英寸直径的球的能力。上述可选和可控的溶解性行为与本文中所述优异的强度与低密度性质结合,定义了一种新型工程分散颗粒-纳米基质材料,该材料配置成与流体接触,并配置为提供随着接触流体时间的改变而由第一强度条件向低于功能强度阈值的第二强度条件、或由第一重量损失量向高于重量损失极限的第二重量损失量的可选且可控的转变。分散颗粒-纳米基质复合材料是本文中所述的粉末压块200的特征,并包括纳米基质材料220的蜂窝状纳米基质216、包括分散在基质中的颗粒芯材料218的多个分散颗粒214。纳米基质216的特征在于遍及纳米基质的固态结合层219。上述与流体接触的时间可以包括上述CST。该CST可以包括溶解与流体接触的粉末压块200的预定部分所需要或必需的预定时间。该CST还可以包括对应于该工程材料或该流体或其组合的性质变化的时间。在改变工程材料的性质的情况下,该改变可以包括工程材料的温度变化。在其中存在流体性质变化的情况下,该变化可以包括流体温度、压力、流速、化学组成或PH或其组合的变化。可以调节工程材料及该工程材料或该流体或其组合的性质变化以提供所需的CST响应特性,包括在CST之前(例如阶段I)和CST之后(例如阶段2)特定性质(例如重量损失、强度损失)的变化速率。
[0100]参考图17,制造粉末压块200的方法400。方法400包括形成410包含粉末颗粒12的涂覆的金属粉末10,所述粉末颗粒12具有颗粒芯14与设置于其上的纳米级金属涂覆层16,其中该金属涂覆层16具有化学组成,颗粒芯14具有不同于该金属涂覆材料16的化学组成的化学组成。方法400还包括通过向涂覆的粉末颗粒施加足以通过固相烧结多个涂覆颗粒粉末12的涂覆层烧结它们的预定温度和预定压力来形成420粉末压块,从而形成本文中所述的纳米基质材料220的基本连续的蜂窝状纳米基质216与分散在纳米基质216中的多个分散颗粒214。
[0101]包含粉末颗粒12的涂覆的金属粉末10的形成410可以通过任何合适的方法进行,所述粉末颗粒12具有颗粒芯14与设置于其上的纳米级金属涂覆层16。在一个示例性实施方案中,形成410包括使用本文中所述的流化床化学气相沉积(FBCVD)向本文中所述的颗粒芯14施加本文中所述的金属涂覆层16。施加金属涂覆层16可以包括施加本文中所述的单层金属涂覆层16或多层金属涂覆层16。施加金属涂覆层16还可以包括在施加层时控制单个层的厚度,以及控制金属涂覆层16的总体厚度。可以如本文中所述形成颗粒芯14。
[0102]粉末压块200的成形420可以包括形成粉末10的完全致密的压块的任何合适方法。在一个示例性实施方案中,形成420包括动态锻制生坯密度的前体粉末压块100以施加足以使粉末颗粒烧结和变形的预定温度与预定压力,并形成本文中所述的完全致密的纳米基质216和分散颗粒214。本文中所用的动态锻制指的是动态施加载荷,其温度和时间足以促进相邻粉末颗粒12的金属涂覆层16的烧结,并可以优选包括在一定温度下以预定负载率施加动态锻制负载一段时间,所述温度和时间足以形成烧结的和完全致密的粉末压块200。在一个示例性实施方案中,动态锻制包括:I)将前体或生坯状态的粉末压块100加热至预定固相烧结温度,例如足以促进相邻粉末颗粒12的金属涂覆层16之间的相互扩散的温度;2)将该前体粉末压块100保持在该烧结温度下一段预定的保持时间,例如足以确保遍及前体压块100的烧结温度的基本均匀性的时间;3)例如通过根据足以快速实现完全密度的预定压力制度或斜率施加预定锻制压力并同时将该压块保持在预定烧结温度下,将前体粉末压块100锻制为完全密度;和4)将该压块冷却至室温。在形成420的过程中施加的预定压力和预定温度包括确保粉末颗粒12的固态烧结与变形以形成完全致密的粉末压块200 (包括固态结合217和结合层219)的本文中所述的烧结温度Ts和锻制压力PF。将前体粉末压块100加热至预定烧结温度并在此温度下保持预定时间的步骤可以包括温度与时间的任何合适的组合,并例如将取决于所选择的粉末10,包括用于颗粒芯14和金属涂覆层16的材料、前体粉末压块100的尺寸、所用的加热方法和影响达到所需温度所需要的时间和前体粉末压块100中的温度均匀性的其它因素。在锻制步骤中,预定压力可以包括足以实现完全致密的粉末压块200的任何合适的压力和压力施加制度或压力斜率,并例如将取决于选择的粉末颗粒12的材料性质,包括温度依赖性应力/应变特性(例如应力/应变率特性)、相互扩散和金相热动力学和相平衡特性、位错动力学和其它材料性质。例如,动态锻制的最大锻制压力和锻制制度(即对应于施加的应变率的压力斜率)可用于调节粉末压块的机械强度与韧性。最大锻制压力和锻制斜率(即应变率)是仅低于压块破裂压力的压力,即其中动态恢复过程不能释放压块显微结构中的应变能量而并未在压块中形成裂纹。例如,对于需要粉末压块具有相对较高的强度和较低的韧性的应用而言,可以使用相对更高的锻制压力和斜率。如果需要粉末压块的相对较高的韧性,可以使用相对较低的锻制压力和斜率。
[0103]对本文中所述的粉末10和尺寸足以形成许多井眼工具和部件的前体压块100的某些示例性实施方案,可以使用约I至约5小时的预定保持时间。优选如本文中所述选择预定烧结温度Ts以避免颗粒芯14或金属涂覆层16熔融,因为它们在方法400过程中转化以提供分散颗粒214和纳米基质216。对于这些实施方案,动态锻制可以包括施加锻制压力,如通过在约0.5至约2ksi/秒的压力斜率下动态压制至约80ksi的最大值。
[0104]在其中颗粒芯14包括Mg和金属涂覆层16包括本文中所述的各种单层或多层涂覆层(如包含铝的各种单层和多层涂层)的示例性实施方案中,通过以下方法进行动态锻制:在约450°C至约470°C的温度Ts下烧结至多约I小时而不施加锻制压力,接着通过以约0.5至约2ksi/秒的斜率施加等静压至约30ksi至约60ksi的最大压力Ps进行动态锻制,这导致15秒至约120秒的锻制循环。锻制循环的短持续时间是显著的优点,因为这将相互扩散,包括在所给金属涂覆层16中的相互扩散、在相邻的金属涂覆层16之间的相互扩散以及在金属涂覆层16与颗粒芯14之间的相互扩散限制为形成金相结合217和结合层219所需的相互扩散,同时还保持了合意的等轴分散颗粒214形状与蜂窝状纳米基质216强化相的完整性。动态锻制周期的持续时间比常规粉末压块形成法,如热等静压(HIP)、压力辅助烧结或扩散烧结法所需的形成循环和烧结时间要短得多。
[0105]方法400还可以任选包括通过以下方法形成430前体粉末压块:将多个涂覆的粉末颗粒12压实至足以使颗粒变形并形成彼此的颗粒间结合,并在形成420该粉末压块之前形成前体粉末压块100。压实可以包括在室温下压制,如等静压多个粉末颗粒12以形成前体粉末压块100。压实430可以在室温下进行。在一个示例性实施方案中,粉末10可以包括包含Mg的颗粒芯14,并且形成430该前体粉末压块可以在约IOksi至约60ksi的等静压下在室温下进行。
[0106]方法400还可以任选包括在形成420粉末压块、或形成430前体粉末压块之前将第二粉末30混入440到本文中所述的粉末10中。
[0107]不被理论束缚,粉末压块200由涂覆的粉末颗粒12形成,所述涂覆的粉末颗粒12包括颗粒芯14与相关芯材料18以及金属涂覆层16与相关金属涂覆材料20以形成基本连续的、三维的、蜂窝状纳米基质216,所述蜂窝状纳米基质216包括通过烧结和相关扩散结合包括颗粒芯材料218的多个分散颗粒214的各自的涂覆层16形成的纳米基质材料220。这种独特的结构可以包括极难或不可能由具有相同的相对量成分材料的熔体通过凝固形成的材料的亚稳组合。可以选择涂覆层和相关涂层材料以提供在预定流体环境,如井眼环境中的可选和可控的溶解,其中预定流体可以是注入到井眼中或从井眼中抽取的通常使用的井眼流体。如由本文中的描述进一步理解的那样,纳米基质的受控溶解暴露了芯材料的分散颗粒。还可以选择该颗粒芯材料以提供在井眼流体中的可选和可控的溶解。或者,还可以选择它们从而对粉末压块200提供特定的机械性质,如压缩强度或剪切强度,而不必提供芯材料本身的可选和受控溶解,因为包围这些颗粒的纳米基质材料的可选和受控溶解必然会释放它们,以使它们被井眼流体带走。具有可选择以提供等轴分散颗粒214的分散颗粒214的可以选择以提供强化相材料的基本连续的、蜂窝状纳米基质216的显微结构形貌赋予这些粉末压块提高的机械性质,包括压缩强度和剪切强度,因为可以控制纳米基质/分散颗粒的所得形貌从而通过类似于传统强化机制的方法提供强化,所述传统强化机制例如晶粒尺寸降低、通过使用杂质原子的固溶硬化、析出或时效硬化以及强度/加工硬化机制。由于大量颗粒纳米基质界面,以及本文中所述的纳米基质材料中离散层之间的界面,这种纳米基质/分散颗粒结构倾向于限制位错移动。这例示在这些材料的断裂行为中。使用未涂覆的纯Mg粉末制得并施以足以引发失效的剪切应力的粉末压块200表现出晶间断裂。与之相比,使用形成分散颗粒214的具有纯Mg粉末颗粒芯14的粉末颗粒12和形成纳米基质216的包括Al的金属涂覆层16制得并施以足以引发失效的剪切应力的粉末压块200表现出穿晶断裂和如本文中所述的显著更高的断裂应力。因为这些材料具有高强度特性,所以可以选择该芯材料与涂覆材料以利用低密度材料或其它低密度材料,如低密度金属、陶瓷、玻璃或碳,否则将不能提供用于所需应用,包括井眼工具与部件的必要的强度特性。[0108]参照图18,公开了由本文中所述的材料制造可选性可腐蚀制品502的方法500,所述材料包括粉末10、前体粉末压块100和粉末压块200。方法500包括形成510包含多个金属粉末颗粒12的粉末10,各金属粉末颗粒包含本文中所述的设置在颗粒芯14上的纳米级金属涂覆层16。方法500还包括形成520该粉末颗粒10的粉末压块522,其中粉末压块522的粉末颗粒512在预定方向524上显著伸长以形成显著伸长的粉末颗粒512。在一个实施方案中,显著伸长的颗粒512的涂覆层516在预定方向524上是基本不连续的。基本不连续指的是伸长的涂覆层516和伸长的颗粒芯514可以伸长,包括减薄至伸长的涂覆层516(较亮的颗粒相)、伸长的颗粒芯514 (较暗的相)或其组合在预定方向524或伸长方向上变得分离或破裂或以其它方式不连续的地步,如图19中所示,图19是平行于预定方向524的粉末压块522的横截面的显微照片。图19显示了沿着预定方向524的涂覆层516的基本不连续性质。或者,具有基本该不连续的涂覆层16结构的制品502的这种显微结构还可以描述为包含具有分散在其中的均匀分散的涂覆层16的颗粒的颗粒芯材料18的基质的挤压结构。该涂覆层516还可以保留一定的连续性,以使它们可以垂直于预定方向524是基本连续的,类似于图9中显示的显微结构。但是,图20 (其为大致垂直于或横切预定方向524的粉末压块522的横截面的显微照片)显示了该涂覆层516垂直于预定方向524还可以是基本不连续的。伸长的金属层516的性质,包括它们在预定方向524上或在与之横切的方向上是基本连续还是不连续的,通常由赋予该粉末压块522的变形或伸长量来决定,包括使用的压缩比,采用更高的伸长率导致更多变形,并导致在预定方向上和/或与之横切的方向上更不连续的伸长的金属层516。
[0109]要理解的是,虽然已经参照显著伸长的颗粒512描述了上述结构,但该粉末压块522包含如本文中所述彼此连接的多个显著伸长的颗粒512以形成相互连接的显著伸长的颗粒512的网络,该网络限定了显著伸长的蜂窝状纳米基质616,所述蜂窝状纳米基质616包含具有设置在该晶胞中的芯材料618的多个显著伸长的分散颗粒芯614的纳米基质材料616的相互连接的伸长晶胞的网络。取决于形成伸长颗粒512所赋予的变形量,伸长的涂覆层和该纳米基质可以如图21中所示在预定方向524上基本连续,或如图22中所示基本不连续。
[0110]再次参照图18和23,粉末颗粒12的粉末压块522的形成520可以通过直接挤压530包含多个粉末颗粒12的粉末10来进行。挤压530可以通过以下方法进行:迫使粉末10和粉末颗粒12穿过如图23中示意性所示的挤压模526以导致伸长颗粒512的固结与伸长并形成粉末压块522。粉末压块522可以固结至基于所用粉末10的组成的基本完全的理论密度,或低于完全理论密度,包括理论密度的任何预定百分比,包括理论密度的约40%至约100%,更特别为理论密度的约60%至约98%,更特别为理论密度的约75%至约95%。此外,粉末压块522可以是烧结的,以使得伸长颗粒512经金属或化学键彼此结合,并且特征在于相邻颗粒512之间,包括它们相邻的伸长金属层516的之间的相互扩散,或者可以是未烧结的,以使得在环境温度下进行挤压,并且伸长颗粒512经机械结合和与伸长颗粒512的机械变形与伸长相关的相关混合来彼此结合。
[0111]可以通过加热挤压物来进行烧结。在一个实施方案中,可以通过使用加热装置536在挤压前预热颗粒和/或在挤压过程中加热它们而在挤压过程中进行加热。在另一实施方案中,可以通过使用任何合适的加热装置在挤压后加热挤压物来进行烧结。在再一实施方案中,可以通过在挤压前加热颗粒、或在挤压过程中或在挤压后加热挤压物,或上述任意组合来实现烧结。加热可以在任何温度下进行,并通常选择该温度以低于伸长颗粒512的临界再结晶温度,更特别低于动态再结晶温度,从而保持冷加工和避免变形的显微结构中的回复和晶粒生长。但是,在某些实施方案中,加热可以在高于具有成分的相同总体成分组成的熔体形成合金的动态再结晶温度的温度下进行,只要不会导致包含显著伸长的晶粒的显微结构的实际再结晶。不被理论束缚,这可能与颗粒芯/纳米基质结构有关,其中涂覆层成分以具有分散颗粒的纳米基质的形式分布,而不是以熔体形成合金显微结构的形式,在熔体形成合金显微结构中,由于涂覆层材料在颗粒芯材料中的溶解性,包含涂覆层的成分可以非常不同地分布。其还可能是由于与动态再结晶相比更快地发生动态变形硬化过程,使得材料强度升高而非降低,即使在高于具有相同成分量的熔体形成合金的再结晶温度时进行形成520。临界再结晶温度取决于引入的变形量和其它因素。在某些实施方案中,包括由包含各种Mg或Mg合金颗粒芯14的粉末颗粒12形成粉末压块522,在形成520过程中的加热可以在约300至约1000 、更特别为约300至约800 、甚至更特别为约500至约800的形成温度下进行。在某些其它实施方案中,可以在低于粉末压块(如挤压物)的熔融温度的温度下进行形成,该温度可以包括低于本文中所述的TC、TP、TM或Tdp的温度。在其它实施方案中,成形可以在比粉末压块熔融温度低约20°C至约300°C的温度下进行。
[0112]在一个实施方案中,挤压530可以根据预定压缩比进行。可以使用任何合适的预定压缩比,其在一个实施方案中可以包括颗粒的初始厚度(\ )对最终厚度(tf)的比,或
tf,在另一实施方案中可以包括颗粒的初始程度(Ii)对最终长度(If)的比,或IiZlft5在一个实施方案中,该比值可以为约5至约2000,更特别可以为约50至约2000,再更特别为约50至约1000。或者,在其它实施方案中,压缩比可以表示为挤压模腔的初始厚度Ui)对最终厚度(tf)的比,或ti/tf,在另一实施方案中,可以包括模腔的初始横截面积Ui)对最终横截面积(af)的比,或ai/af。
[0113]参照图18和24,虽然粉末压块522的形成520可以通过如上所述直接挤压530粉末10来进行,但在其它实施方案中,形成520粉末压块522可以包括将粉末10和粉末颗粒12压实540成坯料542,并使坯料542变形550以提供本文中所述的具有伸长粉末颗粒512的粉末压块522。该坯料542可以包括本文中所述的前体粉末压块100或粉末压块200,其可以通过根据本文中所述方法压实540来形成,包括冷压(单轴压制)、热等静压、冷等静压、挤压、冷轧成形、热轧成形或锻制来形成坯料542。在一个实施方案中,通过挤压进行压实540可以包括本文中所述的足够的压缩比以固结该粉末颗粒12并形成坯料542,而不形成显著伸长的粉末颗粒512。这可以包括以小于有效形成伸长颗粒512的那些压缩比的压缩比挤压,如小于约50的压缩比,在其它实施方案中小于约5。在另一实施方案中,通过挤压进行压实540以形成坯料542可以足以部分形成该显著伸长的粉末颗粒512。这可以包括以大于或等于有效形成伸长颗粒512的那些压缩比的压缩比挤压,如大于或等于约50的压缩比,在其它实施方案中大于或等于约5,其中在与压实540相关的变形后进行与坯料542的变形550相关的进一步变形。
[0114]坯料542的变形550可以通过任何合适的变形方法进行。合适的变形方法包括例如挤压、热轧、冷轧、拉伸或锻压或其组合。坯料542的成形550也可以根据预定压缩比进行,包括本文中所述的预定压缩比。[0115]在某些实施方案中,根据本文中所述方法500形成的具有显著伸长的粉末颗粒512的粉末压块522具有一定强度,特别是极限压缩强度,其大于使用相同粉末颗粒形成的前体粉末压块100或粉末压块200。例如,具有纯Mg颗粒芯14和涂覆层16的+100目球形粉末颗粒12表现出大于包含本文中所述前体粉末压块100和粉末压块200的坯料542的极限压缩强度,其中所述涂覆层16按该颗粒重量计包含设置在颗粒芯上的9%的纯Al层,接着包含设置在纯Al上的4%的氧化铝层,和设置在氧化铝上的4%的Al层,所述坯料包括通过本文中所述的动态锻制形成的那些,其通常具有蜂窝状纳米基质216和分散颗粒214的等轴排列。在一个实施方案中,具有所述Mg/Al/Al203/Al的显著伸长粉末颗粒512的粉末压块522具有如图25中所示的至多约5.1XlO6Psi的弹性模量和大于约50ks1、更特别大于约60ks1、且再更特别至多约76ksi的极限压缩强度,以及至多约46ksi的压缩屈服强度。这些粉末压块522还表现出与包含本文中所述前体粉末压块100和粉末压块200的坯料542相比更高的在预定井眼流体中的腐蚀速率。在一个实施方案中,具有所述Mg/Al/Al2O3Al的显著伸长粉末颗粒512的粉末压块522具有至多约2.lmg/cm2/hr的在200下在水中在3%氯化钾水溶液中的腐蚀速率,与之相比,相同粉末的粉末压块200的腐蚀速率为约0.2mg/cm2/hr。在另一实施方案中,具有所述Mg/Al/Al203/Al的显著伸长粉末颗粒512的粉末压块522具有大于约7,000mg/cm2/hr的在5_15体积%HC1中的腐蚀速率,包括在15%的HCl中的大于约11,000的腐蚀速率。
[0116]所述方法500可以用于形成各种形式的本文中所述的各种合金,包括锭、条、棒、板材、管材、片材、线材和其它库存形式,其进而可用于形成多种制品502,特别是多种井下制品580,更特别为各种井下工具和部件。如图26和27中所不,不例性实施方案包括各种球体582,包括各种转向器球;塞子584,包括各种圆柱形和碟型塞;管586 ;套筒588,包括用于提供各种座590的套筒588,如球座592和用于井下用途和在井眼中的应用的类似物594。该制品580可以设计为在井下任何地方使用,包括在管状金属外壳596中或在水泥内衬598中或在井眼600中,并可以永久使用,或可以设计为响应于预定井眼条件(如暴露于预定温度或预定井眼流体)如本文所述可选地可去除。
[0117]虽然已经显示和描述了一个或多个实施方案,但是可以对其进行修改和替换,而不背离本发明的精神和范围。因此,要理解的是,通过说明而非限制的方式描述了本发明。
【权利要求】
1.粉末金属压块,包含: 包含纳米基质材料的显著伸长的蜂窝状纳米基质; 分散在蜂窝状纳米基质中的包含颗粒芯材料的多个显著伸长的分散颗粒,所述颗粒芯材料包含Mg、Al、Zn或Mn或其组合;和 延伸遍及在分散颗粒之间的蜂窝状纳米基质的结合层,其中该蜂窝状纳米基质和该分散颗粒在预定方向上显著伸长。
2.权利要求1的粉末金属压块,其中该纳米基质和该分散颗粒是基本连续的。
3.权利要求1的粉末金属压块,其中该纳米基质和该分散颗粒是基本不连续的。
4.权利要求3的粉末金属压块,其中该基本不连续的纳米基质和分散颗粒分别包含在预定方向上取向的纳米基质材料和颗粒芯材料的基本不连续的带。
5.权利要求1的粉末金属压块,其中该显著伸长的纳米基质和分散颗粒表现出预定的伸长比。
6.权利要求5的粉末金属压块,其中预定压缩比为约5至约2000。
7.权利要求6的粉末金属压块,其中预定压缩比为约50至约1000。
8.权利要求1的粉末金属压块,其中该颗粒芯材料包含Mg-Zn、Mg-Zn,Mg-Al, Mg-Mn,Mg-Zn-Y或Mg-Al-X合金,其中X包含Zn、Mn、S1、Ca或Y或其组合。
9.权利要求1的粉末金属压块,其中该分散颗粒进一步包含稀土元素。
10.权利要求1的粉末金属压块,其中该粉末压块由具有平均粒度为约50纳米至约500微米的分散颗粒的前体压块形成。
11.权利要求1的粉末金属压块,其中分散颗粒的分散包括在该蜂窝状纳米基质中的基本均匀的分散。
12.权利要求1的粉末金属压块,其中分散颗粒的分散包括在该蜂窝状纳米基质中的多峰粒度分布。
13.权利要求1的粉末金属压块,进一步包含多个显著伸长的分散的第二颗粒,其中该分散的第二颗粒也分散在该蜂窝状纳米基质中并相对于该分散颗粒分散,并且其中分散的第二颗粒包含Fe、N1、Co或Cu、或其氧化物、氮化物、碳化物、金属间化合物或金属陶瓷,或任何前述材料的组合。
14.权利要求1的粉末金属压块,其中该纳米基质材料包含Al、Zn、Mn、Mg、Mo、W、Cu、Fe、S1、Ca、Co、Ta、Re或N1、或其氧化物、氮化物、碳化物、金属间化合物或金属陶瓷,或任何前述材料的组合,并且其中该纳米基质材料具有化学组成,且该颗粒芯材料具有不同于该纳米基质材料的化学组成的化学组成。
15.权利要求1的粉末金属压块,其中该颗粒芯材料包含纯Mg并具有至少约50ksi的极限压缩强度。
16.权利要求1的粉末金属压块,其中该压块由包含多个粉末颗粒的烧结粉末形成,各粉末颗粒具有颗粒芯,所述颗粒芯在烧结时包含分散颗粒和设置在其上的单一金属涂覆层,并且其中在多个分散颗粒的相邻颗粒之间的蜂窝状纳米基质包含一粉末颗粒的单一金属涂覆层、该结合层和另一粉末颗粒的单一金属涂覆层。
17.权利要求16的粉末金属压块,其中该分散颗粒包含Mg且该蜂窝状纳米基质包含Al或Ni或其组合。
18.权利要求1的粉末金属压块,其中该压块由包含多个粉末颗粒的烧结粉末形成,各粉末颗粒具有颗粒芯,所述颗粒芯在烧结时包含分散的颗粒和多个设置在其上的金属涂覆层,并且其中在多个分散颗粒的相邻颗粒之间的蜂窝状纳米基质包含一粉末颗粒的多个金属涂覆层、该结合层和另一粉末颗粒的多个金属涂覆层,并且其中多个金属涂覆层的相邻涂覆层具有不同的化学组成。
19.权利要求18的粉末金属压块,其中多个层包含设置在颗粒芯上的第一层和设置在该第一层上的第二层。
20.权利要求19的粉末金属压块,其中该分散颗粒包含Mg,并且该第一层包含Al或Ni或其组合,并且该第二层包含Al、Zn、Mn、Mg、Mo、W、Cu、Fe、S1、Ca、Co、Ta、Re或Ni或其组合,其中该第一层具有不同于该第二层的化学组成的化学组成。
21.权利要求20的粉末金属压块,权利要求18的金属粉末,进一步包含设置在该第二层上的第三层。
22.权利要求21的粉末金属压块,其中该第一层包含Al或Ni或其组合,该第二层包含Al、Zn、Mn、Mg、Mo、W、Cu、Fe、S1、Ca、Co、Ta、Re或N1、或其氧化物、氮化物、碳化物、金属间化合物或金属陶瓷、或任何上述第二层材料的组合,并且该第三层包含Al、Zn、Mn、Mg、Mo、W、Cu、Fe、S1、Ca、Co、Ta、Re或Ni或其组合,其中该第二层具有不同于该第三层的化学组成的化学组成。
23.权利要求22的粉末金属压块,进一步包含设置在该第三层上的第四层。
24.权利要求23的粉末金属压块,其中该第一层包含Al或Ni或其组合,该第二层包含Al、Zn、Mn、Mg、Mo、W、Cu、Fe、S1、Ca、Co、Ta、Re或N1、或其氧化物、氮化物、碳化物、金属间化合物或金属陶瓷、或任何上述第`二层材料的组合,该第三层包含Al、Zn、Mn、Mg、Mo、W、Cu、Fe、S1、Ca、Co、Ta、Re或N1、或其氧化物、氮化物、碳化物、金属间化合物或金属陶瓷、或任何上述第三层材料的组合,并且该第四层包含Al、Mn、Fe、Co或Ni或其组合,其中该第二层具有不同于该第三层的化学组成的化学组成,该第三层具有不同于该第三层的化学组成的化学组成。
25.粉末金属压块,包含: 包含纳米基质材料的显著伸长的蜂窝状纳米基质; 分散在蜂窝状纳米基质中的包含颗粒芯材料的多个显著伸长的分散颗粒,所述颗粒芯材料包含具有低于Zn的标准氧化电位的金属、陶瓷、玻璃、或碳、或其组合;和 延伸遍及在分散颗粒之间的蜂窝状纳米基质的结合层,其中该蜂窝状纳米基质和该分散颗粒在预定方向上显著伸长。
26.权利要求25的粉末压块,其中该纳米基质材料包含Al、Zn、Mn、Mg、Mo、W、Cu、Fe、S1、Ca、Co、Ta、Re或N1、或其氧化物、碳化物、氮化物、金属间化合物或金属陶瓷、或任何前述材料的组合,并且其中该纳米基质材料具有一化学组成,并且该芯材料具有不同于该纳米基质材料的化学组成的化学组成。
27.权利要求25的粉末金属压块,其中该纳米基质和该分散颗粒是基本连续的。
28.权利要求25的粉末金属压块,其中该纳米基质和该分散颗粒是基本不连续的。
29.权利要求28的粉末金属压块,其中该基本不连续的纳米基质和分散颗粒分别包含在预定方向上取向的纳米基质材料和颗粒芯材料的基本不连续的带。
【文档编号】B22F5/00GK103688012SQ201280036260
【公开日】2014年3月26日 申请日期:2012年7月19日 优先权日:2011年7月29日
【发明者】徐志跃 申请人:贝克休斯公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1