一种煤气旋流与空气分级冲击混合蓄热体燃烧的热风炉的制作方法

文档序号:3302733阅读:144来源:国知局
一种煤气旋流与空气分级冲击混合蓄热体燃烧的热风炉的制作方法
【专利摘要】本实用新型涉及煤气旋流与空气分级冲击混合蓄热体燃烧的热风炉,有效解决燃烧强度低和燃烧器结构复杂问题,其结构是,预燃室墙体内为预燃室,预燃室墙体上有煤气进气管与空气进气管,煤气分配环道与空气分配环道顶部分别对应周向均布的煤气喷嘴通道和空气喷嘴通道,煤气喷嘴通道向下而空气喷嘴通道向上,预燃室墙体有垂直其轴线的热风出口管,预燃室墙体的下部与燃烧室墙体的上部经第一迷宫密封连接相互套接在一起,燃烧室墙体下部与蓄热室墙体的内层环墙由第二迷宫套接在一起,蓄热室墙体下部与冷风室墙体上部连接成一体,蓄热室内有自炉箅子向上至燃烧室顶端的蓄热体,冷风室墙体上连通烟气出口管和冷风进口管,其费用低,结构稳定,寿命长。
【专利说明】一种煤气旋流与空气分级冲击混合蓄热体燃烧的热风炉
【技术领域】
[0001]本实用新型涉及热风炉,特别是为高炉提供高温鼓风的一种煤气旋流与空气分级冲击混合蓄热体燃烧的热风炉。
【背景技术】
[0002]当前,高炉热风炉从节能降耗上考虑要求在燃烧低热值高炉煤气下获得高性能和高效益,而最终达到高效、节能、环保、增产的目的。为此,在热风炉中必须实现优化的燃烧过程与强化的传热过程相结合的炉内过程。这就涉及到燃烧装置的结构、蓄热体结构与布置、以及气流流场的组织。纵观目前使用的各种热风炉,其气体燃烧装置均以煤气与空气在燃烧空间中混合、预热、着火燃烧模式为主,这种模式总是存在混合不均、燃烧不完全、燃烧室空间大、燃烧器结构复杂等问题;而燃烧室与蓄热室中的气流组织安排不当(流速选择、气流分配与控制、旋流与回流状态的应用等),导致燃烧室中燃烧气流的特征变化大、气流不稳定、燃烧强度低,进而引起蓄热室中气流分布不均,降低传热效果与蓄热体的利用率;由于蓄热体的结构与布置均难以按照流场结构和负荷状态选取,从而整体影响热风炉的性能和实际使用效果。因此,热风炉的改进和创新是必需认真解决的技术问题。

【发明内容】

[0003]针对上述情况,为克服现有技术的缺陷,本实用新型之目的就是提供一种煤气旋流与空气分级冲击混合蓄热体燃烧的热风炉,可有效改进煤气与空气混合速率低、混合无序与不均、燃烧强度低、燃烧不完全、燃烧室空间大和燃烧器结构复杂等问题。
[0004]本实用新型解决的技术方案是,包括预燃室墙体、煤气进气管、空气进气管、煤气分配管道、空气分配管道、煤气喷嘴通道和空气喷嘴通道,预燃室墙体为半球面拱顶的圆筒体,其内为预燃室,预燃室墙体上垂直其轴线,上下对应布置有煤气进气管与空气进气管,煤气进气管和空气进气管分别垂直或倾斜连接砌筑在预燃室墙体内的煤气分配环道与空气分配环道,煤气分配环道内侧环墙的底部与空气分配环道内侧环墙的顶部分别对应周向均布的多个矩形截面的煤气喷嘴通道和空气喷嘴通道,煤气喷嘴通道向下而空气喷嘴通道向上,最后汇合成径向的混合喷嘴接入预燃室内侧环墙上;煤气分配环道内侧环墙的中部沿水平方向环状均布矩形截面的与径向有一定倾角的煤气喷嘴连通预燃室;预燃室墙体上在煤气分配环道所在高度位置的一部分墙体上设有垂直其轴线的热风出口管,煤气分配环道为有缺口的圆环;预燃室墙体的下部圆筒体内侧与锥筒状的燃烧室墙体的上部内层圆筒墙体外侧经阶梯缝式的第一迷宫密封连接结构相互呈可滑移状套接在一起,锥筒状的燃烧室墙体的下部筒体的内侧与筒形的蓄热室墙体的内层环墙由第二迷宫密封连接结构套接在一起,预燃室墙体和燃烧室墙体分别支撑在炉壳的对应托圈上;蓄热室墙体下部与冷风室墙体上部连接成一体,其连接处内部水平设置有多孔板状的炉箅子,炉箅子置于炉底上的多根支撑柱上;蓄热室墙体内的蓄热室内有自炉箅子向上堆砌至燃烧室顶端的多孔状的蓄热体,冷风室墙体内为冷风室,冷风室墙体上垂直连通烟气出口管和冷风进口管,冷风室墙体固定在炉底上。
[0005]本实用新型能有效改善热风炉的热工性能,使得热风炉能在燃烧低热值煤气的条件下,具备了高强度燃烧、高效传热与节能环保的功能。此外,结构的进一步紧凑与合理,不仅会带来了投资费用的节省,也使得热风炉的结构更加稳定,延长使用寿命,经济和社会效
益显著。
【专利附图】

【附图说明】
[0006]图1为本实用新型的剖面主视图。
[0007]图2为本实用新型图1中A-A部截面图。
[0008]图3为本实用新型图1中B-B部截面图。
【具体实施方式】
[0009]以下结合附图对本实用新型的【具体实施方式】作详细说明。
[0010]如图1-图3所示,本实用新型的结构是,包括预燃室墙体、煤气进气管、空气进气管、煤气分配管道、空气分配管道、煤气喷嘴通道和空气喷嘴通道,预燃室墙体Ia为半球面拱顶的圆筒体,其内为预燃室2a,预燃室墙体Ia上垂直其轴线,上下对应布置有煤气进气管3与空气进气管4,煤气进气管3和空气进气管4分别垂直或倾斜连接砌筑在预燃室墙体内的煤气分配环道5与空气分配环道6,煤气分配环道5内侧环墙的底部与空气分配环道6内侧环墙的顶部分别对应周向均布的多个矩形截面的煤气喷嘴通道7和空气喷嘴通道8,煤气喷嘴通道7向下而空气喷嘴通道8向上,最后汇合成径向的混合喷嘴9接入预燃室2a内侧环墙上;煤气分配环道5内侧环墙的中部沿水平方向环状均布矩形截面的与径向有一定倾角的煤气喷嘴10连通预燃室2a ;预燃室墙体Ia上在煤气分配环道5所在高度位置的一部分墙体上设有垂直其轴线的热风出口管17,煤气分配环道5为有缺口的圆环;预燃室墙体Ia的下部圆筒体内侧与锥筒状的燃烧室墙体Ib的上部内层圆筒墙体外侧经阶梯缝式的第一迷宫密封连接结构18相互呈可滑移状套接在一起,锥筒状的燃烧室墙体的下部筒体的内侧与筒形的蓄热室墙体Ic的内层环墙由第二迷宫密封连接结构19套接在一起,预燃室墙体Ia和燃烧室墙体Ib分别支撑在炉壳的对应托圈上;蓄热室墙体Ic下部与冷风室墙体上部连接成一体,其连接处内部水平设置有多孔板状的炉箅子13,炉箅子置于炉底上的多根支撑柱上;蓄热室墙体Ic内的蓄热室11内有自炉箅子向上堆砌至燃烧室2b顶端的多孔状的蓄热体12,冷风室墙体内为冷风室14,冷风室墙体上垂直连通烟气出口管16和冷风进口管15,冷风室墙体固定在炉底Id上。
[0011]所述的预燃室墙体Ia和燃烧室墙体Ib均为金属外壳内壁上砌筑耐温1300°C?1500°C的耐火材料层构成,耐火材料层由重质耐材的低蠕变高铝砖或红柱石高铝砖内层、轻质耐材的高铝聚轻砖外层,以及外层外面的陶瓷纤维棉与喷涂层依次组合在一起构成,燃烧室2b内部堆放的助燃陶瓷多孔体12a,是由高温热震性能强、防粘附的格子砖自下向上堆砌成圆锥台形状,与下部的多孔蓄热体12b、12g、12d的通孔按相同排列方式构成互通结构。
[0012]所述的煤气进气管3和空气进气管4是在金属管内壁上砌筑高铝砖或粘土砖构成的圆形通道,煤气进气管3置于空气进气管4的上方,煤气进气管3和空气进气管4均以O?30°的角度分别连接煤气分配环道5和空气分配环道6。
[0013]所述的煤气分配环道5、煤气喷嘴通道7、空气分配环道6、空气喷嘴通道8、混合喷嘴9、以及煤气喷嘴10,均用耐高温且抗热震的堇青石-莫来石砖砌筑而成。
[0014]所述的热风出口管17是用耐高温且性能稳定的红柱石高铝砖或红柱石-莫来石砖砌筑构成的圆筒形。
[0015]所述的蓄热室墙体Ic是在金属外壳内壁上自上向下分别由硅质砖或红柱石质砖、高招质砖、粘土质砖砌筑构成的圆筒体。
[0016]所述的多孔蓄热体12由从上到下依次排列的燃烧室中的由抗风冷性强的硅质格子砖组成的助燃陶瓷多孔体12a、蓄热室中硅质格子砖组成的第一蓄热体12b、红柱石高铝格子砖组成的第二蓄热体12c和红柱石粘土格子砖组成的第三蓄热体12d构成,助燃陶瓷多孔体12a、第一蓄热体12b、第二蓄热体12c、第三蓄热体12d格子砖的格孔均为圆锥形,通孔之间有互通的沟槽。
[0017]所述的炉箅子13是由耐热铸铁制成的多孔体,置于耐热铸铁制成的支撑柱上。
[0018]所述的烟气出口管16和冷风进口管15为金属管内壁上砌筑粘土砖构成的与冷风室墙体相联的一体结构,冷风室墙体与圆盘形的炉底固定在一起,炉底内有由工字型槽钢叠铺成井字形的稳定性加强体。
[0019]使用时,在预燃室墙体中从煤气管3进入的煤气通过煤气分配环道5内侧的中部和下部分别引出均布的煤气喷嘴通道7和10进入预燃室,而从空气进气管的助燃空气通过空气分配环道6内侧的上部引出均布的空气喷嘴通道8进入预燃室,从煤气喷嘴10出来的煤气旋流射流在预燃室形成旋流向下的煤气气流,再与从煤气喷嘴7和空气喷嘴8喷射气流在相互交汇处混合并进入煤气与空气预混合口 9而进入预燃室混合气流相遇,相互间进一步完成混合后向下进入燃烧室;混合后的预混气流(或半预混气流)在此过程逐步预热而燃烧,并进入堆放在燃烧室中锥台形堆放的助燃陶瓷多孔体12a中完成燃烧过程,燃烧后的大部分高温烟气向下依次进入蓄热体12b、12c、12d中;因为蓄热体的锥台形堆放与格子砖通孔间的互通所导致的调压均流作用,使得整个向下的烟气气流流场变得较为均匀。热风炉采用这种流动燃烧方式后,就有效解决了低热值煤气燃烧不稳定、燃烧强度弱、燃烧温度低等关键问题;这种煤气旋流与空气分级冲击混合蓄热体助燃的混合燃烧方式,既提高了燃烧的完全程度又缩小了燃烧室空间,且能实现燃烧过程的稳定又能达到强化燃烧过程而提高局部燃烧温度的目的。由于燃烧过程在助燃陶瓷多孔体12a中完成,因而能有效提高助燃蓄热体12a和第一蓄热体12b的温度(几乎等于燃烧温度),为提供高风温创造了极为有利的条件。由于在蓄热室中的蓄热体采用格子砖通孔之间互通的结构,因其对气流的调压均流作用比较强,能有效提高了蓄热体的利用率和增强热交换过程,蓄热室的空间高度也会因此而降低。尤其是在热风炉的送风阶段,蓄热体的调压均流作用对于改善冷风气流分布的均匀性效果更为明显。
[0020]由上述结构可以看出,本实用新型热风炉是一种保龄球状外形的筒(壳)体结构,从上到下分别是预燃室、燃烧室、蓄热室及冷风室,在预燃室中周向布置的上部煤气喷嘴以一定水平倾角接入预燃室,而周向布置的下部煤气喷嘴与空气喷嘴分别对应在轴向倾斜交汇后径向接入预燃室,在蓄热室整个空间以及燃烧室部分空间中堆放蓄热体(格子砖或耐火球),在冷风室中设置堆放蓄热体的炉箅子及其支撑,在热风炉适当部位有各种气流管路的接出与接入;在预燃室中上部旋流向下的煤气与下部径向喷射的煤气与空气汇合而成的预混气流相遇,从而实现煤气与空气间的快速预混,并向下进入燃烧室中锥形堆砌的助燃蓄热体内完成预热与高强度燃烧,随之进入具有调压均流功能的堆放在蓄热室内的蓄热体中,在完成气流与蓄热体之间的热量传递之后进入冷风室。能有效改善热风炉的热工性能,使得热风炉能在燃烧低热值煤气的条件下,具备了高强度燃烧、高效传热与节能环保的功能。此外,结构的进一步紧凑与合理,不仅会带来了投资费用的节省,也使得热风炉的结构更加稳定,延长使用寿命。
[0021]总之,相对于采用其他气体燃烧装置的热风炉而言,本实用新型通过这种煤气旋流与空气分级冲击混合蓄热体助燃的混合燃烧方式,喷嘴上下交叉预混与预燃室旋流冲击混合而实现快速预混与预热,随后进入堆放于燃烧室中的锥台形的助燃陶瓷多孔体中完成燃烧过程。由于助燃陶瓷多孔体和其下的蓄热室中的蓄热体均采用小直径大孔间距且格孔与格孔互通的宽堆砌边缝的格子砖,能进一步调整气流分布和增强气流与之的热交换过程。使用这种结构的热风炉能够有效实现热风炉的高效、高温、均速、高热强度、且安全与稳定地运行,继而达到节省燃料、节约投资、降低废气温度与有害气体的排放量、减少环境污染的良好效果,是热风炉上的创新,有良好的经济和社会效益。
【权利要求】
1.一种煤气旋流与空气分级冲击混合蓄热体燃烧的热风炉,包括预燃室墙体、煤气进气管、空气进气管、煤气分配管道、空气分配管道、煤气喷嘴通道和空气喷嘴通道,其特征在于,预燃室墙体(Ia)为半球面拱顶的圆筒体,其内为预燃室(2a),预燃室墙体(Ia)上垂直其轴线,上下对应布置有煤气进气管(3)与空气进气管(4),煤气进气管(3)和空气进气管(4)分别垂直或倾斜连接砌筑在预燃室墙体内的煤气分配环道(5)与空气分配环道(6),煤气分配环道(5)内侧环墙的底部与空气分配环道(6)内侧环墙的顶部分别对应周向均布的多个矩形截面的煤气喷嘴通道(7)和空气喷嘴通道(8),煤气喷嘴通道(7)向下而空气喷嘴通道(8)向上,最后汇合成径向的混合喷嘴(9)接入预燃室(2a)内侧环墙上;煤气分配环道 (5)内侧环墙的中部沿水平方向环状均布矩形截面的与径向有一定倾角的煤气喷嘴(10)连通预燃室(2a);预燃室墙体(Ia)上在煤气分配环道(5)所在高度位置的一部分墙体上设有垂直其轴线的热风出口管(17),煤气分配环道(5)为有缺口的圆环;预燃室墙体(Ia)的下部圆筒体内侧与锥筒状的燃烧室墙体(Ib)的上部内层圆筒墙体外侧经阶梯缝式的第一迷宫密封连接结构(18)相互呈可滑移状套接在一起,锥筒状的燃烧室墙体的下部筒体的内侧与筒形的蓄热室墙体(Ic)的内层环墙由第二迷宫密封连接结构(19)套接在一起,预燃室墙体(Ia)和燃烧室墙体(Ib)分别支撑在炉壳的对应托圈上;蓄热室墙体(Ic)下部与冷风室墙体上部连接成一体,其连接处内部水平设置有多孔板状的炉箅子(13),炉箅子置于炉底上的多根支撑柱上;蓄热室墙体(Ic)内的蓄热室(11)内有自炉箅子向上堆砌至燃烧室(2b)顶端的多孔状的蓄热体(12),冷风室墙体内为冷风室(14),冷风室墙体上垂直连通烟气出口管(16)和冷风进口管(15),冷风室墙体固定在炉底(Id)上。
2.根据权利要求1所述的煤气旋流与空气分级冲击混合蓄热体燃烧的热风炉,其特征在于所述的预燃室墙体(Ia)和燃烧室墙体(Ib)均为金属外壳内壁上砌筑耐温1300°C~1500°C的耐火材料层构成,耐火材料层由重质耐材的低蠕变高铝砖或红柱石高铝砖内层、轻质耐材的高铝聚轻砖外层,以及外层外面的陶瓷纤维棉与喷涂层依次组合在一起构成,燃烧室(2b)内部堆放的助燃陶瓷多孔体(12a),是由高温热震性能强、防粘附的格子砖自下向上堆砌成圆锥台形状,与下部的多孔蓄热体(12b、12g、12d)的通孔按相同排列方式构成互通结构。
3.根据权利要求1所述的煤气旋流与空气分级冲击混合蓄热体燃烧的热风炉,其特征在于所述的煤气进气管(3)和空气进气管(4)是在金属管内壁上砌筑高铝砖或粘土砖构成的圆形通道,煤气进气管(3)置于空气进气管(4)的上方,煤气进气管(3)和空气进气管(4)均以O~30°的角度分别连接煤气分配环道(5)和空气分配环道(6)。
4.据权利要求1所述的煤气旋流与空气分级冲击混合蓄热体燃烧的热风炉,其特征在于所述的热风出口管(17)是用耐高温且性能稳定的红柱石高铝砖或红柱石-莫来石砖砌筑构成的圆筒形。
5.根据权利要求1所述的煤气旋流与空气分级冲击混合蓄热体燃烧的热风炉,其特征在于所述的蓄热室墙体(Ic)是在金属外壳内壁上自上向下分别由硅质砖或红柱石质砖、高招质砖、粘土质砖砌筑构成的圆筒体。
6.根据权利要求1所述的煤气旋流与空气分级冲击混合蓄热体燃烧的热风炉,其特征在于所述的多孔蓄热体(12)由从上到下依次排列的燃烧室中的由抗风冷性强的硅质格子砖组成的助燃陶瓷多孔体(12a)、蓄热室中硅质格子砖组成的第一蓄热体(12b)、红柱石高铝格子砖组成的第二蓄热体(12c)和红柱石粘土格子砖组成的第三蓄热体(12d)构成,助燃陶瓷多孔体(12a)、第一蓄热体(12b)、第二蓄热体(12c)、第三蓄热体(12d)格子砖的格孔均为圆锥形,通孔之间有互通的沟槽。
7.根据权利要求1所述的煤气旋流与空气分级冲击混合蓄热体燃烧的热风炉,其特征在于所述的炉箅子(13)是由耐热铸铁制成的多孔体。
8.根据权利要求1所述的煤气旋流与空气分级冲击混合蓄热体燃烧的热风炉,其特征在于所述的烟气出口管(16)和冷风进口管(15)为金属管内壁上砌筑粘土砖构成的与冷风室墙体相联的一体结构,冷风室墙体与圆盘形的炉底固定在一起,炉底内有由工字型槽钢叠铺成井字形的稳定性 加强体。
【文档编号】C21B9/02GK203487169SQ201320565453
【公开日】2014年3月19日 申请日期:2013年9月12日 优先权日:2013年9月12日
【发明者】陈维汉, 杨海涛, 陈云鹤 申请人:郑州市奥龙耐材有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1