在钛合金表面制备减摩抗磨F‑DLC薄膜的方法与流程

文档序号:12110069阅读:368来源:国知局
在钛合金表面制备减摩抗磨F‑DLC薄膜的方法与流程

本发明属于生物医用材料技术领域,涉及一种F-DLC薄膜的制备方法,具体涉及一种在钛合金表面制备减摩抗磨F-DLC薄膜的方法。



背景技术:

钛及钛合金由于具有比重小、耐腐蚀性强、生物相容性优异等特点,在生物医学领域有着广泛的应用,尤其是用作人工关节、人工牙种植体、骨创伤产品等硬组织替代或修复医疗器械产品材料。与此同时,随着钛及钛合金材料的广泛使用,其并发症也日益显露。其中,无菌松动被认为是最危险、发病率最高的一种。而导致无菌松动的重要因素是人工关节在摩擦磨损过程中产生的磨屑。因此,改善钛合金的摩擦学性能,减少人工关节摩擦磨损,是减少无菌松动并发症发病率的关键。为了改善医用钛合金的摩擦学性能,进一步提高其临床使用性能,可采用表面处理的方法对其进行表面改性。

等离子体增强化学气相沉积(plasma enhanced chemical vapor deposition,PECVD),在沉积室利用辉光放电使其电离后在衬底上进行化学反应沉积的半导体薄膜材料制备和其他材料薄膜的制备方法。等离子体增强化学气相沉积是:在化学气相沉积中,激发气体,使其产生低温等离子体,增强反应物质的化学活性,从而进行外延的一种方法。该方法可在较低温度下形成固体膜。例如在一个反应室内将基体材料置于阴极上,通入反应气体至较低气压(1~600Pa),基体保持一定温度,以某种方式产生辉光放电,基体表面附近气体电离,反应气体得到活化,同时基体表面产生阴极溅射,从而提高了表面活性。在表面上不仅存在着通常的热化学反应,还存在着复杂的等离子体化学反应。沉积膜就是在这两种化学反应的共同作用下形成的。激发辉光放电的方法主要有:射频激发,直流高压激发,脉冲激发和微波激发。

类金刚石(Diamond like carbon films,DLC)薄膜由于具有硬度高、摩擦系数低及生物相容性优异等特点作为耐磨涂层用于金属材料的表面改性已有广泛研究。DLC薄膜是一种介于金刚石与石墨的材料,是一种生物惰性材料。研究表明,在钛合金基体上沉积DLC薄膜,既可保留医用钛合金原有的优良性能,表面又具有DLC薄膜的耐磨损性好、生物相容性优异等特点。但是在医用钛合金表面获得在生物环境中具有减摩抗磨的类金刚石薄膜仍然是一个很大的挑战。



技术实现要素:

本发明的目的是针对以上问题提供一种在钛合金表面制备减摩抗磨F-DLC薄膜的方法,该方法在钛合金表面沉积的F-DLC薄膜在生物环境中具有减摩抗磨功能,能够提高医用钛合金在人体环境中的摩擦学性能,解决钛合金作为人工关节等医疗器械在生物体内由于摩擦磨损所引起的无菌松动并发症等问题。

为实现上述目的所采用的技术方案是:一种在钛合金表面制备减摩抗磨F-DLC薄膜的方法,采用平板空心阴极等离子体增强化学气相沉积方法(HP-PECVD),所述平板空心阴极等离子体增强化学气相沉积方法为:在传统等离子体化学气相沉积法的基础上,将现有沉积系统反应室中放置样品的样品盘改进成两块平行的平板,将基体放置在两块平板之间,在两块平板间施加负偏压形成空心阴极效应;具体包括如下步骤:

1)预处理:对钛合金基体表面进行抛光处理,然后将钛合金基体依次浸入丙酮、酒精溶剂中超声清洗,吹干;

2)溅射清洗:将吹干后的钛合金基体置于HP-PECVD沉积系统反应室中两块平行设置的平板的中间,对反应室进行抽真空,然后通入氩气并保持反应室气压为1.3~2.5Pa,在平板上施加脉冲偏压为-8~-15kV,控制占空比为15~35%,脉冲频率为1200~1500Hz,对反应室内的钛合金基体进行溅射清洗;

3)沉积Si过渡层:溅射清洗结束后,向反应室通入SiH4,控制气体流量为40~60sccm,调节偏压至-1500~-1800V,控制占空比为20~30%,脉冲频率为1200~1500Hz,气压保持恒压1.2-2.0Pa,沉积时间为20~30min,形成硅薄膜过渡层;

4)沉积F-DLC薄膜:硅薄膜过渡层沉积结束后,向反应室通入C2H2、Ar和CF4,控制流量比为3:4~6:1~2,调节偏压至-600~-1000V,控制占空比为20~30%,脉冲频率为1200~1500Hz,保持气压为4~6Pa,沉积时间为30~40min,在钛合金基体表面获得F-DLC薄膜。

在上述技术方案中,所述的两块平行的平板水平平行设置或者竖立平行设置。

所述的钛合金基体为Ti-6Al-4V基体。

F-DLC薄膜为含氟类金刚石(fluorinated diamond like carbon,F-DLC)薄膜。

本发明的有益效果是:利用在现有技术PECVD基础上改进后的HP-PECVD,具有离子注入和等离子密度高的优点,首先在钛合金表面预沉积硅薄膜过渡层,硅薄膜过渡层的加入可以大幅度减低薄膜内应力,提高DLC薄膜与钛合金基体间的结合强度,克服常规DLC薄膜制备技术引起的薄膜内应力高、附着力差等缺点,有效提高薄膜的稳定性。通过控制HP-PECVD制备F-DLC薄膜的工艺参数,使得F-DLC薄膜具有高附着力、高硬度、低应力,并在生理盐水,Hank’s环境中呈现了低摩擦系数,有效提高了钛合金抗磨损性能。采用本发明方法所制备的薄膜具有以下良好的物理化学性能:膜基结合临界载荷达28~36N,薄膜内应力、硬度及杨氏模量分别为-0.30~0.40,16~19,126~140GPa,在生理盐水和Hank’s环境中的摩擦系数分别为0.06~0.08和0.10~0.12,磨损率分别为1.1×10-7~1.5×10-7mm3/Nm和2.6×10-7~3.4×10-7mm3/Nm,有效地提高了钛合金基体的摩擦学性能,解决了钛合金表面高抗磨损性能DLC薄膜的制备难题,在生物医学领域具有极大的应用价值。

附图说明

图1为本发明实施例1所制备的F-DLC薄膜的Raman谱。

图2为本发明实施例2所制备的F-DLC薄膜的XPS C1s谱。

图3为本发明实施例2Ti-6Al-4V及Ti-6Al-4V/F-DLC生理盐水及Hank’s摩擦系数;Ti-6Al-4V/F-DLC为沉积有F-DLC薄膜的Ti-6Al-4V基体。

图4为本发明实施例3Ti-6Al-4V及Ti-6Al-4V/F-DLC生理盐水及Hank’s磨损率;Ti-6Al-4V/F-DLC为沉积有F-DLC薄膜的Ti-6Al-4V基体。

具体实施方式

以下实施例均是采用的平板空心阴极等离子体增强化学气相沉积方法(HP-PECVD),平板空心阴极等离子体增强化学气相沉积方法为:在传统等离子体化学气相沉积法的基础上,将现有沉积系统反应室中放置样品的样品盘(一般只有一个样品盘)改进成两块平行的平板,将基体放置在两块平板之间,在两块平板间施加负偏压形成空心阴极效应。两块平行的平板可以水平设置,在上下两块平板之间设置支撑柱支撑上平板。两块平板也可以竖立平行设置,只要能在平板间施加负偏压能形成空心阴极效应即可。

实施例1:

在钛合金Ti-6Al-4V基体表面制备减摩抗磨F-DLC薄膜,按照如下步骤操作:

1)预处理:将Ti-6Al-4V表面进行抛光处理,使其表面粗糙度降至10nm以下,之后将其依次浸入丙酮、酒精溶剂中进行超声清洗15min以除去合金表面污物,使用氮气吹干备用。

2)溅射清洗:将吹干后的Ti-6Al-4V放入HP-PECVD沉积系统反应室中两块水平平行的平板的中间,对反应室进行抽真空,当反应室气压低于10-4Pa时,通入氩气并保持反应室气压为1.3Pa,在平板上施加脉冲偏压-8kV,控制占空比为15%,脉冲频率为1200Hz,对反应室内的Ti-6Al-4V进行溅射清洗20min。

3)沉积Si过渡层:溅射清洗结束后,向反应室通入SiH4,控制气体流量为40sccm,调节偏压至-1500V,控制占空比为20%,脉冲频率为1500Hz,气压保持恒压1.2Pa,沉积时间为20min,在Ti-6Al-4V表面形成硅薄膜过渡层。

4)沉积F-DLC薄膜:硅过渡层沉积结束后,关闭SiH4,向反应室通入C2H2、Ar和CF4,气体比例控制为3:4:1,调节偏压至-600V,控制占空比为20%,脉冲频率为1500Hz,保持气压为5Pa,沉积时间为30min。

本实施例制备得到的F-DLC薄膜F含量约为2.6at.%,薄膜主要以sp3键位主,具有高附着力、低应力、高硬度、高杨氏模量,其值分别为28N,0.36,18,132GPa。在生理盐水、Hank’s液中呈现低摩擦系数,分别为0.06和0.11,有效提高了钛合金抗磨损性能,磨损率分别为1.1×10-7mm3/Nm和2.8×10-7mm3/Nm。图1为实施例1所制备的F-DLC薄膜的Raman谱。

实施例2:

在钛合金Ti-6Al-4V基体表面制备减摩抗磨F-DLC薄膜,按照如下步骤操作:

1)预处理:将Ti-6Al-4V表面进行抛光处理,使其表面粗糙度降至10nm以下,之后将其依次浸入丙酮、酒精溶剂中进行超声清洗20min以除去合金表面污物,后使用氮气吹干备用。

2)溅射清洗:将吹干后的Ti-6Al-4V放入HP-PECVD沉积系统反应室中两块水平平行的平板的中间,对反应室进行抽真空,当反应室气压低于10-4Pa时,通入氩气并保持反应室气压为2.0Pa,在平板上施加脉冲偏压-13kV,控制占空比为25%,脉冲频率为1500Hz,对反应室内的Ti-6Al-4V进行溅射清洗30min。

3)沉积Si过渡层:溅射清洗结束后,向反应室通入SiH4,控制气体流量为45sccm,调节偏压至-1800V,控制占空比为30%,脉冲频率为1200Hz,气压保持恒压2.0Pa,沉积时间为22min,在钛合金基体表面形成硅薄膜过渡层。

4)沉积F-DLC薄膜:硅过渡层沉积结束后,关闭SiH4,向反应室通入C2H2、Ar和CF4,气体比例控制为3:5:1.5,调节偏压至-900V,控制占空比为30%,脉冲频率为1400Hz,保持气压为4.0Pa,沉积时间为35min。

本实施例制备得到的F-DLC薄膜F含量约为3.1at.%,薄膜主要以sp3键位主,具有高附着力、低应力、高硬度、高杨氏模量,其值分别为30N,0.35,17,138GPa。在生理盐水、Hank’s液中呈现低摩擦系数,分别为0.07和0.12,有效提高了钛合金抗磨损性能,磨损率分别为1.3×10-7mm3/Nm和3.0×10-7mm3/Nm。图2为实施例2所制备的F-DLC薄膜的XPS C1s谱。图3为实施例2Ti-6Al-4V及Ti-6Al-4V/F-DLC生理盐水及Hank’s摩擦系数;Ti-6Al-4V/F-DLC为沉积有F-DLC薄膜的Ti-6Al-4V基体。

实施例3:

在钛合金Ti-6Al-4V基体表面制备减摩抗磨F-DLC薄膜,按照如下步骤操作:

1)预处理:将Ti-6Al-4V表面进行抛光处理,使其表面粗糙度降至10nm以下,之后将其依次浸入丙酮、酒精溶剂中进行超声清洗30min以除去合金表面污物,后使用氮气吹干备用。

2)溅射清洗:将吹干后的Ti-6Al-4V放入HP-PECVD沉积系统反应室中两块水平平行的平板的中间,对反应室进行抽真空,当反应室气压低于10-4Pa时,通入氩气并保持反应室气压为2.5Pa,在平板上施加脉冲偏压-15kV,控制占空比为35%,脉冲频率为1500Hz,对反应室内的Ti-6Al-4V进行溅射清洗28min。

3)沉积Si过渡层:溅射清洗结束后,向反应室通入SiH4,控制气体流量为60sccm,调节偏压至-1700V,控制占空比为25%,脉冲频率为1400Hz,气压保持恒压1.6Pa,沉积时间为30min,在钛合金基体表面形成硅薄膜过渡层。

4)沉积F-DLC薄膜:硅过渡层沉积结束后,关闭SiH4,向反应室通入C2H2、Ar和CF4,气体比例控制为3:6:2,调节偏压至-1000V,控制占空比为23%,脉冲频率为1200Hz,保持气压为6.0Pa,沉积时间为40min。

本实施例制备得到的F-DLC薄膜F含量约为3.6at.%,薄膜主要以sp3键位主,具有高附着力、低应力、高硬度、高杨氏模量,其值分别为36N,0.38,16,129GPa。在生理盐水、Hank’s液中呈现低摩擦系数,分别为0.07和0.11,有效提高了钛合金抗磨损性能,磨损率分别为1.4×10-7mm3/Nm和2.9×10-7mm3/Nm。

图4为实施例3Ti-6Al-4V及Ti-6Al-4V/F-DLC生理盐水及Hank’s磨损率;Ti-6Al-4V/F-DLC为沉积有F-DLC薄膜的Ti-6Al-4V基体。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1