一种金属基高温组合绝缘层及其制备方法与流程

文档序号:12415714阅读:480来源:国知局
一种金属基高温组合绝缘层及其制备方法与流程

本发明属于高温薄膜材料技术领域,涉及适用于超导、核电、航空航天等领域中的薄膜传感器与金属基底在高温环境下的电绝缘层,特别是航空发动机叶片等高温部件上的薄膜应变计、热电偶、流量计等传感器与以镍基合金为基底的金属材料之间的电绝缘层。



背景技术:

最近二三十年,随着真空技术的发展,传感技术界的研究重点放在了发展能替代传统传感器的薄膜传感器,比如薄膜气敏传感器、薄膜应变计、薄膜热电偶、薄膜流量计。由于其由真空蒸发、溅射、化学气相沉积或者离子气相沉积等工艺直接沉积在试样表面,而具有较好的附着性;其结构、功能具有一体化的特点,因此灵敏度较高、响应较快;厚度在微米级别,适用于高温、高动态的环境;而且,利用金属掩模或者光刻技术可以制备出小型化、高精度可适用于不同曲面、不同区域的传感测量。

而针对工作在高温、高压、高气流流速、强振动等恶劣环境中的航空发动机涡轮叶片,监测其力学状态的主要有薄膜应变计;监测其所处环境的传感器主要有薄膜热电偶、薄膜流量计;这些薄膜传感器都是将测量参数转换为敏感元的电信号;为了保证薄膜传感器的正常工作,就需要金属基底与薄膜传感器之间进行电绝缘。

目前,单一结构的薄膜绝缘层主要有Al2O3、YSZ、HfO2、Si3N4、SiO2,但HfO2和SiO2在600K的环境下会因为薄膜中的缺陷及位错等导通,而且可以明显观察到有脱落现象;3μm厚的Si3N4可以满足600K的使用要求,但是Si3N4在保存一段时间后,可以明显的观察到其边缘存在自然脱落现象;Al2O3可以使用到900K,但是容易硬化变脆而开裂、脱落。而复合结构的绝缘层主要有SiO2/Ta2O5、YSZ/Al2O3等,如杨晓东,张洁,蒋书文等,“YSZ/Al2O3复合薄膜高温绝缘层的研究”中采用“晶态YSZ-非晶态YSZ-Al2O3”复合结构作为绝缘层,但是在长时间高温使用时发现非晶态YSZ会结晶,绝缘性变差;其主要原因是在高温环境下,晶态YSZ层为非晶态YSZ层提供转化为晶态YSZ所需晶核,加速了非晶YZS向晶态转变;同时,晶态的YSZ在高温环境中,因为Y3+取代了Zr4+而产生氧空位,使晶态YSZ转变为良好的离子导体。

基于此,本发明提供一种金属基高温组合绝缘层及其制备方法,用于高温环境中薄膜传感器与金属基之间的电绝缘。



技术实现要素:

本发明的目的在于针对上述问题,提供一种金属基高温组合绝缘层及其制备方法;本发明绝缘层采用多层组合结构,以提高金属基底与薄膜敏感层之间的绝缘性,确保薄膜传感器在高温环境下使用的可靠性、准确性和使用寿命,并且能够根据多层组合结构满足不同绝缘性能要求。

为了实现上述目的,本发明采用的技术方案为:

一种金属基高温组合绝缘层,包括:从下往上依次设置的金属基底、NiCrAlY合金过渡层、α-Al2O3层,以及α-Al2O3层上依次层叠的n个复合绝缘层;其特征在于,其中n≥2,每个复合绝缘层由从下往上设置的非晶态YSZ层和Al2O3层构成。

进一步的,所述非晶态YSZ层的厚度为0.4~1μm;Al2O3层的厚度为3~5μm。

进一步的,所述NiCrAlY合金过渡层采用磁控溅射制备,厚度为12~18μm;α-Al2O3层是由NiCrAlY合金过渡层热氧化得到,厚度为0.5μm~1μm。

更进一步的,上述金属基高温组合绝缘层的制备方法,包括以下步骤:

A.金属基底的表面处理:将金属基底表面机械为镜面,再依次采用弱碱、丙酮、乙醇、去离子水超声清洗后用氮气吹干备用;

B.NiCrAlY合金过渡层的制备:将步骤A处理后的金属基底固定至夹具后,采用射频磁控溅射法在金属基底上沉积NiCrAlY合金过渡层;

C.α-Al2O3层的制备:将步骤B中制备有NiCrAlY合金过渡层的金属基底放入石英舟并放置于真空石英管式炉中,在真空度5.0×10-4Pa的环境下,将温度升至1050℃后真空热处理6.5小时,使NiCrAlY合金过渡层中Al析出到表面,形成富Al层;然后,继续保持炉温为1050℃,向真空石英管式炉中持续通入6.5小时氧气,使富Al层在高温痒氛围下下氧化为α-Al2O3

D.复合过渡层的制备:将步骤C得到的样品放置于500~800℃的真空环境中并以恒定速率降至室温过程中采用直流反应溅射制备得到厚为0.4~1μm的非晶态YSZ层;再将金属基底温度升至500~800℃,采用直流反应溅射沉积得到厚度为3~5μm Al2O3层;

E.重复步骤D,直至制备得所需复合过渡层数后冷却至室温;

F.最后于800℃的大气环境中退火处理2小时,得到所述金属基高温组合绝缘层。

其中,步骤B中所述NiCrAlY合金过渡层的制备是以质量百分比不低于99.9%NiCrAlY合金作为靶材,体积百分比不低于99.99%的氩气作为溅射介质,溅射参数为:在本底真空为10-3~10-4Pa、溅射气压为0.29~0.35Pa、溅射功率为300~500W、金属基板温度为300~600℃。步骤C中所述氧气为体积百分比不低于99.99%的氧气。步骤D所制备的非晶态YSZ均以质量百分比不低于99.9%YZr合金作为靶材,体积百分比不低于99.99%的氧气和氩气作为溅射介质,采用直流反应溅射制备得到,溅射参数为:在本底真空为10-3~10-4Pa、溅射气压为0.29~1Pa、溅射功率为70~150W、金属基底温度为800℃~室温。步骤D所述Al2O3是以质量百分比不低于99.9%AlZr合金作为靶材,体积百分比不低于99.99%的氧气和氩气作为溅射介质,采用直流反应溅射制备得到,溅射参数为:在本底真空为10-3~10-4Pa、溅射气压为0.29~1Pa、溅射功率为70~150W、金属基板温度为500~800℃。

本发明的有益效果为:

1、本发明采用多层复合绝缘层组合结构,每个复合绝缘层采用非晶态YSZ层-Al2O3层复合结构,有效避免高温环境下晶态YSZ作为非晶态YSZ向晶态转变所需的晶核,减缓非晶YSZ在高温环境下向晶态转变,提高了非晶态YSZ的高温稳定性;同时,单个复合绝缘层结构厚度较小,能够根据实际应用使用温度和绝缘性能要求设定复合绝缘层数量,使用温度或高温绝缘性能与复合绝缘层数量呈正比。

2、非晶态YSZ-Al2O3构成的复合绝缘层结构界面,非晶YSZ结构致密且无晶界,可阻断Al2O3层中晶界形成的导电通道,从而提高绝缘性能;本发明采用多层复合绝缘层组合结构,形成“非晶态YSZ-Al2O3-非晶态YSZ”的三明治结构,利用“界面叠加效应”进一步提高绝缘性能。

附图说明

图1为本发明金属基高温组合绝缘层结构示意图。

图2为本发明中复合绝缘层单元结构示意图。

具体实施方式

下面结合实施例及附图对本发明做进一步的说明。

实施例

本实施例提供一种金属基高温组合绝缘层,其结构如图1所示,包括:从下往上依次设置的金属基底、NiCrAlY合金过渡层、α-Al2O3层,以及α-Al2O3层上依次层叠的n个复合绝缘层;每个复合绝缘层由从下往上设置的非晶态YSZ层和Al2O3层构成。

上述金属基高温组合绝缘层的制作方法,包括以下步骤:

A.金属基底的表面处理:选用(长×宽×厚)50×30×3mm的镍基合金作为被测样品基底。首先,对样品基底表面进行抛光处理,使抛光表面为镜面,无肉眼可见刮痕,并在依次采用弱碱、丙酮、乙醇、去离子水进行超声清洗后用氮气吹干,放入氮气柜中备用;

B.NiCrAlY合金过渡层的制备:将步骤A处理后的金属基底固定至夹具后放置于本底真空优于5×10-3Pa的真空中,以以质量百分比不低于99.9%的NiCrAlY合金靶材作为源,体积百分比不低于99.99%的氩气作为溅射介质,溅射参数为:在本底真空为5×10-3Pa、溅射气压为0.31Pa、溅射功率为500W、金属基板以5℃/min的升温速率升温至450℃,采用射频磁控溅射法在金属基底上沉积15μm的NiCrAlY合金过渡层;

C.α-Al2O3层的制备:将在步骤B中制备有NiCrAlY合金过渡层的金属基底放入石英舟并放置于真空石英管式炉中,在真空度优于5.0×10-4Pa的环境下,将温度以5℃/min的升温速率升温至1050℃后真空热处理6.5小时,使NiCrAlY合金过渡层中Al析出并富集到表面;然后,继续保持炉温为1050℃,向真空石英管式炉中持续通入6.5小时纯度为99.99%的氧气,使Al在高温下氧化得到厚度为1μm的α-Al2O3层;

D.复合绝缘层的制备:接着步骤C得到的样品放置于500~800℃的真空环境中,采用直流反应溅射的方法,将金属基底温度由700℃以恒定速率降至室温的过程中制备。以质量百分比不低于99.9%YZr合金作为靶材,体积百分比不低于99.99%的氧气和氩气作为溅射介质,采用直流反应溅射制备得到的,溅射参数为:在本底真空为10-3Pa、溅射气压为0.41Pa、溅射功率为100W、氧气和氩气的流量比为1.4:49,合金基底温度为700℃。采用直流反应溅射的方法,溅射沉积得到厚为1μm的非晶态YSZ层。再将金属基板温度升至700℃,以质量百分比不低于99.9%AlZr合金作为靶材,体积百分比不低于99.99%的氧气和氩气作为溅射介质,具体溅射参数为:在本底真空为10-3Pa、溅射气压为0.42Pa、溅射功率为110W、氧气和氩气的流量比为1.55:49、金属基板温度为700℃。采用直流反应溅射的方法,溅射得到厚度为4μm Al2O3层;

E.复合绝缘层的制备同步骤D;

最后,在真空度为5×10-4Pa、温度为800℃的真空环境中退火处理2小时,就得到所述金属基高温组合绝缘层。

以上所述,仅为本发明的具体实施方式,本说明书中所公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换;所公开的所有特征、或所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以任何方式组合。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1