专利名称:生产金属和陶瓷烧结体和涂层的方法
技术领域:
本发明提供应用表面改性的毫微米大小金属或陶瓷颗粒的悬浮液由金属或陶瓷粉末生产烧结体或涂层的方法。
所谓“毫微颗粒”是如下定义的颗粒(包括粉末),其平均大小不大于100nm,特别是不大于50nm,最好不大于30nm。“毫微分散物”是指分散于载体介质中的毫微级颗粒,所说的载体介质可以是粘合剂并可包括分散助剂。
在毫微分散物的加工中有如下两个问题(a)在这些物料的加工中颗粒凝聚的调整,和(b)高固体物含量的可加工陶瓷物料的生产。
关于问题(a),在从亚微米级向毫微级粉末过渡时,凝聚作用的增加是明显的。这是由于随着颗粒大小降低,弱的相互作用力如范德华力的重要性增加甚至占支配地位。另外,颗粒表面总是被官能团占据,就是说,这些官能团是会发生缩合(凝聚)作用的。在常规的亚微米级颗粒中,这些官能团仅仅重要到这样程度,即它们可被用作所需的有机加工助剂(分散助剂、粘合剂等)相互作用中心。不过,由于毫微分散物的表面积对体积之比很大,从另一观点讲,表面官能团也有大的重要性。一方面,它们类似地起到有机加工助剂的反应中心的作用;另一方面,作为单个的颗粒间缩合(凝聚)反应的结果,它们也可导致硬凝聚体的形成。然后通过所谓的烧结桥把颗粒彼此连接在一起。因此,需要开发可以某种方式控制凝聚的方法,从而得到以调节的方式凝聚的粉末。另外,用这样的方法,反应表面可被向外屏蔽并因此可阻止颗粒间的凝聚(缩合)。
关于上面所说的问题(b),值得注意的是,具有高固体含量和适应成形加工的加工性质的陶瓷化合物的生产有着严重的困难。为了避免会导致生坯和烧结体严重缺陷的凝聚物,一般以悬浮液形式使用这些物料。为了悬浮液的稳定,一般加入分散助剂。分散助剂具有阻止凝聚的作用并提供具有必要加工性质的悬浮液。为了悬浮液的稳定,一般有两种主要方法,即静电稳定和立体稳定。
静电稳定有如下的缺点,由于悬浮的毫微级颗粒的水力学半径较大,只有低的固体含量是可行的。立体稳定则不同,由于水力学颗粒半径小得多,从毫微级物料生产具有高固体含量的悬浮液原则上是可能的。
立体稳定的优点可参考SiO2的实例而指明。在此情形下,一般使用非离子有机聚合物(例如聚甲基丙烯酸甲酯)作为分散助剂,它被吸附于颗粒表面。这类稳定作用的缺点是,在此情形中最高仅仅约20-30%(体积)的固体含量是可行的,并且只能将它应用于不同于SiO2的物料体系,并有诸多限制。这特别是因为通常不能考虑到一种物料特有的表面化学性质(例如酸/碱性)。
因此,希望提供一种方法,它能通过适宜的化合物使颗粒表面改性,于是得到最佳的分散程度和高固体含量的分散液。
例如,氮化钛(TiN)属于硬质的金属物质并具有立方晶体结构。由于高比例的共价键,TiN具有高熔点,高硬度和好的抗氧化和抗腐蚀性。这些性质正是把TiN用作金属磨损保护涂层和作为多相陶瓷中例如Al2O3/TiN或Si3N4/TiN的组分之一的原因。
目前,通过气相法生产出了纯的TiN涂层或混合有TiC的TiN涂层。这些包括CVD(化学汽相淀积法)和PVD(物理汽相淀积法)。相应的设备和工业生产工艺的部件是市场上可买到的。这些涂层在以下场合使用-在磨擦和摩擦应用中金属的磨损保护,
-用于切削、钻孔和铣削刀具,提高机加工能力,-化学反应器的防腐涂层,-表壳和珠宝的涂层。
由例如CVD和PVD法生产的TiN涂层的缺点是对基材的粘着力不足,致使涂层常常剥落和所涂的刀具过早变得不合用。可用的基材是高耐热金属,硬质金属例如WC/Co或其它的陶瓷刀片。
毫微结晶体(毫微米级晶体)、陶瓷粉末如TiN,TiC,SiC的另一应用是在复合陶瓷例如Al2O3/TiC或Si3N4/TiN中的应用。这样的粉末加到基体材料中可改进其机械性质,例如硬度、韧性或抗压强度。以类似的方法,整块的陶瓷和由粉末冶金法生产的金属材料的机械性质可通过应用毫微法结晶体粉末而大大改进。
例如,由于其高共价键特性,纯的TiN仅有很低的烧结活性。因此,压实成型时通常需要使用烧结添加剂。在最简单的情况下,这可以是在水存在下在空气中在TiN表面上形成的TiO2。例如,已报道,平均粒径0.1μm的TiN粉末可以在不加压和约1500℃烧结至相对密度95%。这一烧结特性归因于扩散机制的活动化,导致位于TiN颗粒表面上TiO2的分解而压实。
许多出版物涉及在加压和/或烧结添加剂存在下TiN的烧结。d50值为1μm的TiN粉末在2100℃温度和14MPa的烧结压力进行热压,仅仅达到TiN理论密度93%的密度,见M.Morijama等人的“Mechanical and Electrical Properties of Hot-Pressed TiN-Ceramic without Additives”,J.Jap.Ceram.Soc.,22(1991),pp275-281。在M.Morijama等人的“The Mechanieal properties of Hot-Pressed TiN Ceramics with Various Additives”,J.Jap.Ceram.Soc.,101(1993),pp271-276中,叙述了热压时在烧结添加剂存在下,TiN的压实特性。已报道,Al2O3,Y2O3和B4C总量为10%(重量)的样品,于1950℃和14MPa热压后,产生理论值的97%左右的密度,于1800℃和5.0GPa热压后,压实到95%。
本发明的目的是提供一种生产金属和陶瓷烧结体和涂层的方法,致使能够调节颗粒凝聚作用和使用有足够高的固体含量的颗粒悬浮液,并可在较低的烧结温度进行。
本发明通过一种生产金属和陶瓷烧结体或涂层的方法达到了目的,其特征是将其中偏离平均粒径40%以上的单个颗粒少于1%和没有偏离平均粒径60%以上的单个颗粒的毫微结晶体金属或陶瓷粉末,在可与粉末颗粒表面的官能团反应和/或相互作用的、有至少一个官能团的至少一种低分子量有化合物存在下,分散于作为分散介质的水和/或极性有机溶剂中,将该分散介质除去,并且将在除去分散介质之前或之后加工成形为生坯或涂层的表面改性的金属或陶瓷粉末进行烧结。
按照本发明的方法,能够调节毫微级金属和陶瓷粉末的凝聚作用,其结果,具有高固体含量的这种颗粒的分散体可通过满意的方式生产出来。
适合于本发明方法的原料具体是原颗粒大小最好小于100nm的毫微结晶体金属或陶瓷粉末。这种粉末以高凝聚态提供。特别优选的金属和陶瓷粉末公开于德国专利申请P4214719.0,P4214722.0,P4214729.9,P4214724.7和P4214725.5中。作为德国专利申请P4214719.0所述方法的应用,用德国专利申请P4214725.5提供的CVR设备,这些粉末可由该CVR方法得到。这些专利申请的内容合并于本申请中作参考。相应的申请文本编为附录A(719.0),B(122.0),C(724.7),D(725.5),E(729.9)提供。
德国专利申请P4214719.0(美国申请号为08/050,590)公开了由相应的金属化合物和相应的共反应剂在气相-CRV-中反应,生产细颗粒状金属和/或陶瓷粉末的方法,在反应器中和气相中使该金属化合物和另外的共反应剂发生反应,在排除任何器壁反应情况下从气相中直接地均匀地凝聚出来,接着从反应介质中分离出来。该方法的特征是,金属化合物和共反应剂于至少反应温度分开导入反应器。在用多种金属化合物和/或共反应剂导入的情形下,要相应地选择在加热期间不发生导致固体反应产物的反应的气体混合物。在管状反应器中特别有利于该方法的进行。如果金属化合物、共反应剂和产物颗粒流过反应器是层流形式则更好。特别可取的是,将金属化合物和共反应剂以同轴层流物料流方式导入反应器。然而,为了确保两个同轴物料流充分混合,通过对本来是严格的层流情况安装一个扰动元件来产生有规定强度和扩张度的Karman涡流径。
因此,该方法的优选实施方案在于,利用Karman涡流径,使金属化合物和共反应剂的同轴层流以规定方式进行混合。
为了防止共反应剂沉淀于反应器壁上从而是大大优选的,反应介质最好用惰性气体层遮护。这可以通过反应器壁的特殊形状的环状间隙导入惰性气体。由于Coanda效应,该惰性气体流紧贴反应器壁。在典型的10-300msec滞留时间内,在反应器中由于从气相均匀沉淀的结果产生的金属或陶瓷粉末颗粒与气态反应剂和惰性气体一起离开反应器,该惰性气体作为载体气体、吹扫气体和为了减少HCl的吸附。
金属或陶瓷粉末最好在高于所用金属化合物、共反应剂和/或反应期间不可避免地形成的产物的沸点或升华温度分离出。这里的分离,可通过回吹过滤器有利地进行。如果回吹过滤器在例如600℃的高温操作,气体的吸附,特别是非惰性气体如HCl,NH3,TiCl4等的吸附,在很大的陶瓷或金属粉末表面可以保持较低。特别是在生产氮化物时避免NH4Cl(350℃以上)的形成。仍然吸附在粉末表面的干扰物质,可以在下游的真空容器中进一步除去,优选的温度也是大约600℃。制成的粉末然后在隔绝空气情况下从设备中出料。
优选的金属化合物是选自BCl3,硼酸酯,硼烷,SiCl4,其它氯硅烷,硅烷,金属卤化物,部分氢化的金属卤化物,金属氢化物,金属醇盐,金属烷基化物,金属氨化物,金属叠氮化物,金属硼氢化物和羰基金属化合物的一种或多种。
优选的共反应剂是选自H2,NH3,肼,胺,CH4,其它烷烃,烯烃,炔烃,芳烃,O2,空气,BCl3,硼酸酯,硼烷,SiCl4,其它氯硅烷和硅烷的一种或多种。
毫微-或微分散的(结晶型或非晶型)金属和/或陶瓷粉末可以通过本法生产,优选的金属和/或陶瓷粉末是元素B、Al、Si、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、La、Y、Fe、Co、Ni的碳化物,氮化物,硼化物,硅化物,磷化物(phosphites),硫化物,氧化物和/或其组合,或者这些元素中的一种或彼此的组合。
通过这一方法可以生产颗粒大小为1-3000nm(3μm)可调节和颗粒大小分布极窄的金属和陶瓷粉末。这样生产的颗粒的一项特征是没有比平均粒径大得多的颗粒。以本方法生产的粉末一般含有小于1%的比平均颗径大20%以上的单个粉末。没有与平均颗径偏差大于50%的颗粒存在。
非氧化物的粉末的氧含量极低(小于1000ppm)。这些粉末的进一步特征是其高纯度、高表面纯度和好的再现性。
按本发明的方法,可以在很低的温度烧结该等金属或陶瓷粉末。在这种情形下,烧结温度最好是它们的熔点或分解点的0.4-0.6。这开拓了相应陶瓷应用的新领域。降低了金属烧结温度范围也是非常有益的。
为使在分散介质中的金属和陶瓷原料的凝聚体解凝聚成为其原来的颗粒和产生稳定的毫微分散悬浮体,按照本发明需使用表面改性剂,即使用具有至少一个(也是优选的)可与金属和陶瓷颗粒表面的官能团反应和/或(至少)相互作用的官能团的使表面改性的低分子量有机(含碳)化合物。适合这一要求的化合物具体是分子量小于1000,优选不大于500特别是不大于350的化合物。这些化合物在标准条件下最好是液体,并且在分散介质中是可溶的,或至少是可乳化的。
这样的化合物总共有不超30个碳原子为好,碳原子数不超过20更好,不超过15个碳原子最好。这些化合物必须带有的官能团主要取决于所用颗粒原料的表面官能团,也取决于所要求的相互作用。特别优选的是在表面改性的化合物的官能团和颗粒表面的基团之间能按照Bronsted或Lewis发生酸/碱反应(包括配合物形成和加成物形成)。另一种相互作用的例子是偶极-偶极相互作用。因此,优选的官能团的例子是羧酸基,(伯、仲或叔)氨基和C-H酸基团。在一个分子甜菜碱,氨基酸,EDTA等中也可存在若干这些基团。
特别优选的表面改性剂的例子是有1-12个碳原子的饱和的或不饱和的一元和多元羧酸(优选是一元羧酸)例如,甲酸、乙酸、丙酸、丁酸、戊酸、己酸、丙烯酸、甲基丙烯酸、巴豆酸、柠檬酸、己二酸、丁二酸、戊二酸、草酸、马来酸和富马酸)。在不饱和羧酸的情形中,也可以借助烯类不饱和双键进行交联。
其它适合的表面改性剂的例子是一元和多元胺,特别是通式为R3-nNHn的胺,其中N=NHn的胺,其中n=0,1或2,R各自为有1-12,较好为1-6和最好为1-4个碳原子的烷基(例如,甲基、乙基、正丙基、异丙基和丁基)和亚乙基多胺(例如,乙二胺、二乙三胺等);有4-12个,最好是5-8个碳原子的β-二羧基化合物,例如乙酰丙酮,2,4-己二酮,3,5-庚二酮,乙酰乙酸,和C1-C4烷基的乙酰乙酸酯,有机烷氧基硅烷,例如胶体硅酸(例如通式为R4-mSi(OR′) 其中R和R′各自独立地为C1-C4烷基和m是1,2,3或4)表面改性所用的那些以及改性的醇盐,其中一些OR基(R的定义同上)被惰性有机基团取代并通过这些基团发生仍然存在的(即,余下的)OR基团键合(缩合)到颗粒表面,而该等有机基团起屏蔽作用。醇盐的例子是锆和钛的醇盐M(OR)4(M=Ti,Zr),其中一些OR基已被配位剂例的β-二羧基化合物或一元羧酸所取代。如果以烯类不饱化合物(如甲基丙烯酸)作为配位剂,还会发生交联作用(见上述)。
在TiN的情形下,特别优选的表面改性剂是碳酸胍和丙酸胍。
水和/或极性有机溶剂用作分散介质。优选的极性有机溶剂是可与水混溶的有机溶剂。可用的极性有机溶剂的例子有醇类,例如有1-6个碳原子的脂族醇(特别是甲醇,乙醇,丙醇,异丙醇和丁醇),酮类如丙酮和丁酮,酯类如乙酸乙酯,醚类如乙醚,四氢呋喃和四氢吡喃,酰胺类如二甲基乙酰胺和二甲基甲酰胺,亚砜和砜类如四氢噻吩砜和二甲基亚砜,还有卤代脂族烃。当然,也可使用这些溶剂的混合物。
所用分散介质最好具有便于经蒸馏移除的沸点(可选择在减压条件)。沸点在200℃以下,特别是在150℃以下的溶剂最好。
在实施本发明的方法时,分散介质的含量一般是20-90%,较好是30-80%,最好是35-75%(重量)。分散液的其余部分是陶瓷或金属原料粉末和低分子量有机化合物(表面改性剂)。在此情形下,陶瓷或金属原料粉末/表面改性剂的重量比一般是1000∶1-4∶1,较好为500∶1-8∶1,最好是250∶1-10∶1。
本发明的方法最好在室温(大约20℃)至分散介质的沸点之间的温度进行。分散液温度最好在50-100℃。在优选的实施方案中,采取分散介质回流条件下进行。
分散时间具体取决于所用物料类型,但是,一般是若干分钟至几小时,例如1-24小时。
为了增进解凝聚作用,该分散液(悬浮液)可任选以超声、强力混合机或陶瓷业中传统的研磨法如搅拌球磨机进行处理。
表面改性完成后,所得分散液(悬浮液)可以就此进一步加工(即生产生坯或将基材涂层)或者在进一步加工之前全部或部分移除分散介质(例如,直至达到要求的固体物浓度)。移除分散介质的特别优选方法是冷冻干燥或冷冻喷雾干燥。
干燥后,表面改性的金属或陶瓷粉末可任选再分散于不同的分散介质中,该介质包括水和/或有机溶剂。为了完全再分散,首先应以表面改性剂使粉末改性,然后,将其再分散于有机溶剂中、有机溶剂和水的混合物中或纯水中。
按照本发明方法所得的金属或陶瓷悬浮液或干燥的表面改性的毫微结晶体金属或陶瓷粉末具有100nm以下的颗粒大小分布。它们可进一步以各种方法加工,生产生坯或烧结体或涂层。例如,可以生产出挤压用混合料,挤压后可将之烧结,生产成品模压体。在该方法中,每100份重的挤压混合料通常使用20-80份重,较好是30-70份重和最好是40-60份重的表面改性的金属或陶瓷粉末(或者为其本身或者是分散液形式,如上所述),10-70份重,较好为20-60份重和最好是30-50份重的分散介质,以及0.5-20份重,较好为2-15份重和最好为5-10份重的添加剂。所述添加剂选自粘合剂、增塑剂及其混合物。
上述粘合剂和增塑剂优选为改性的纤维素(如甲基纤维素,乙基纤维素,丙基纤维素和羧基改性的纤维素),聚亚烷基二醇(特别是平均分子量优选为400-50000的聚乙二醇和聚丙二醇),邻苯二甲酸二烷基酯(如邻苯二甲酸二甲酯,邻苯二甲酸二乙酯,邻苯二甲酸二丙酯和邻苯二甲酸二丁酯)及这些物质的混合物。其它的粘合剂和增塑剂如聚乙烯醇等等也可使用。
需要上述粘合剂和增塑剂是为确保该混合料可以挤压和成型后有足够的尺寸稳定性。
上述各组分充分混合后(如在常规混合设备中),分散介质可被移除一部分(最好在减压条件下)直至挤压混合料达到所要求的固体物含量。挤压混合料的优选固体物含量为至少30%(体积),最好为至少40%(体积)。
其它优选的成型方法是电泳,粉浆浇铸,粉浆压铸和压滤;也可采用电泳、粉浆浇铸、粉浆压铸或压滤的组合;也可以用注模,纤维纺丝,凝胶浇铸和离心法。通过这些成型方法,可以得到具有高的生坯密度的压实的模制体。该悬浮液可用于涂覆目的。适合的涂覆方法是例如,浸涂,旋转涂覆,刮刀施涂,抹涂和电泳。可考虑的基材例如是,金属,陶瓷,硬质金属,玻璃和陶瓷合金。可以单层或多层施涂成涂层。
然后所得生坯或涂层可以干燥和烧结处理。在此方法中意外地发现,甚至在较低的温度也可以发生所希望的压实作用。另外,意想不到的是不需要烧结添加剂。烧结温度通常为其熔点或分解点的0.4-0.6,比先有技术低得多。在先有技术中,烧结温度要接近熔点或分解点,并且需要烧结添加剂,可能还需要加压。
所得陶瓷和金属烧结体或涂层的特征是,具有毫微结构,粒径在100nm以下,密度大于理论值的95%,以及高硬度。
以本发明生产的金属和陶瓷烧结体的用途例如散料陶瓷,例如磨料粉金属、陶瓷和玻璃涂层,用于装饰,磨损保护,摩擦应用,腐蚀保护,特别是切削刀具涂层和研磨剂或研磨粉;
陶瓷/陶瓷复合体的组分。具体有Al2O3,TiC,SiC和Si3N4可考虑作为基体相;
毫微复合材料的组分;
用于较粗陶瓷的烧结;
硬质金属/陶瓷复合体;
陶瓷合金;
过滤用微孔涂层,例如微-超-毫微过滤和反渗透。
以下实施例可进一步阐明本发明,但并不限制本发明。
实施例1毫微级TiN的表面改性将1g丙酸胍溶解于200ml水和乙醇(1∶1体积比)的混合物中。在不断搅拌下,将10g由德国专利申请P4214719.0(美国申请No.08/050,590)的实施例2制得的TiN粉末加到该溶液中。接着,在100℃回流加热该混合物5小时。反应完成后,分出悬浮液并用乙醇洗涤过滤的残留物。所得湿粉末在70℃干燥8小时。
实施例2TiN粉末的再分散和粉浆的形成将60g由实施例1所得的表面改性的TiN粉末在不断搅拌和间断超声处理下加到100ml水中。在此过程中,通过加氢氧化四丁铵保持悬浮液的pH值为大约9。得到固体物含量为37.5%(重量)的稳定的粉浆。颗粒大小为20-50nm。
实施例3重复实施例2的方法,不过,用甲醇代替水作为再分散介质。
实施例4重复实施例2的方法,不过,用乙醇代替水作再分散介质。
实施例5由TiN粉浆生产生坯(粉浆浇铸)将50ml实施例2所得的37.5%(重量)TiN粉浆倾倒于一个圆形PMM模中(直径40mm,高50mm,孔径1μm)制造生坯。放置6小时后,得到一生坯,直径为40mm,高3mm,生坯密度为理论值的40-50%。
实施例6
按实施例5生产生坯,但是为了缩短浇铸时间而施加压力(5巴)。
实施例7生坯的烧结将按实施例5生产的生坯在一个人造气候室中在规定的温度和温度条件下干燥。干燥后,在1100-1300℃(即TiN熔点…%至…%和氩气氛中烧结。加热速率是3K/分钟直至T=600℃,600℃至保持等温温度间为20K/分钟。烧结处理的结果,所得样品密度达到理论值的95%以上,平均粒径为100nm以下。
实施例8Al2O3基材的涂层按实施例1的方法,生产20%(重量)表面改性的TiN粉末的水悬浮液。通过浸渍在该悬浮液中涂覆密集烧结的Al2O3板。该涂覆板经板经干燥并在氩气氛中于1300℃烧结。用此法得到厚度约为5μm的固体TiN外面涂层。
权利要求
1.生产金属和陶瓷烧结体或涂层的方法,其中包括(a)毫微级陶瓷或金属粉末颗粒,其中偏离平均粒径40%以上的单个颗粒少于1%,基本上没有偏离平均粒径60%以上的单个颗粒,和(b)至少一种具有至少一个能与粉末颗粒表面的基团反应和/或相互作用的官能团的低分子量有机化合物,将物料(a)和(b)分散于作为分散介质的水和/或极性有机溶剂中,该方法还包括,移除该分散介质,在移除该分散介质之前或之后将表面改性的陶瓷或金属粉末成形为生坯或涂层,以及烧结这些生坯或涂层。
2.权利要求1的方法,其特征在于偏离平均粒径20%以上的单个颗粒少于1%,没有偏离平均粒径50%以上的单个颗粒。
3.权利要求1或2的方法,其特征在于偏离平均粒径10%以上的单个颗粒少于1%,没有偏离平均粒径40%以上的单个颗粒。
4.权利要求1或2的方法,其特征在于所述金属和/或陶瓷粉末选自元素B、Al、Si、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、La、Y、Fe、Co、Ni的碳化物,氮化物,硼化物,硅化物,磷化物,硫化物,氧化物和/或其组合,或者这些元素之一种或其相互组合。
5.权利要求1或2的方法,其特征在于细粒金属粉末选自粒径在1.0nm和小于100nm之间的Fe、Co、Ni、W和Mo的金属粉末。
6.权利要求1或2的方法,其特征在于将粒径限定为1.0nm-3μm之间的选自B、Al、Si、Ti、Zr、Hf、V、Nb、Ta和Cr金属的细颗粒粉末用作为所述的金属粉末。
7.权利要求1或2的方法,其特征在于将细颗粒非氧化物陶瓷粉末MeX,其中Me选自B、Al、Si、Ti、Zr、Hf、V、Nb、Ta、Mo、W、La、Fe、Co、Ni和Cr或其组合,和X选自C、N、B、Si及其组合用作为所述的陶瓷粉末,但大于100nm的Si3N4和大于200nm的AlN除外。
8.权利要求5的方法,其特征在于,该陶瓷粉末的氧含量小于5,000ppm。
9.权利要求8的方法,其特征在于,该陶瓷粉末的氧含量小于1,000ppm。
10.权利要求8的方法,其特征在于,该陶瓷粉末的氧含量小于50ppm。
11.权利要求1或2的方法,其特征在于,其中应用金属粉末并且其氧含量小于5000ppm。
12.权利要求9的方法,其特征在于,所述氧含量小于1000ppm。
13.权利要求11的方法,其特征在于,所述氧含量小于50ppm。
14.权利要求1的方法,其特征在于使用细粒金属氧化物的氧化物陶瓷粉末,其中金属选自Al、Si、Zr、Hf、Ta、Nb、Mo、W、V、La、Y及其组合,Al2O3以α-相存在,SiO2以结晶体形式存在。
15.权利要求14的方法,其特征在于,陶瓷粉末的杂质总量,除氧化物杂质外,小于5000ppm。
16.权利要求15的方法,其特征在于,陶瓷粉末的杂质总量,除氧化物杂质外,小于1000ppm。
17.权利要求15的方法,其特征在于,陶瓷粉末的杂质总量,除氧化物杂质外,小于200ppm。
18.权利要求17的方法,其特征在于,该表面改性的金属或陶瓷粉末的烧结温度是其熔点或分解点的0.4至0.6。
19.权利要求1的方法,其特征在于,该低分子量有机化合物的分子量不大于1000,特别是不大于500。
20.权利要求1或19的方法,其特征在于,该低分子量有机化合物选自脂族化合物;饱和的或不饱和的C1-C12一元羧酸和多元羧酸;通式为R3-nNHn的胺,其中n=0,1或2,R各自为1-12个碳原子的烷基;有1-12个碳原子的β-羰基化合物;钛酸酯;醇盐以及有机烷氧基硅烷。
21.权利要求20的方法,其中R是有1-6碳原子的AlYl基团。
22.权利要求20的方法,其中所述二羰基化合物有5-8个碳原子。
23.权利要求20的方法,其特征在于该分散介质包括水和极性有机溶剂的混合物。
24.权利要求20的方法,其特征在于该分散介质的用量为分散介质、陶瓷或金属粉末和低分子量有机化合物总重量的20-90%。
25.权利要求24的方法,其中分散介质的量为30-80%(重量)。
26.权利要求20的方法,其特征在于,陶瓷或金属粉末/低分子量有机化合物的重量比为1000∶1-4∶1。
27.权利要求26的方法,其中粉末/有机化合物的重量比为500∶1-8∶1。
28.权利要求1的方法,其特征在于,分散作用是在20℃至分散介质沸点间的温度进行的。
29.权利要求28的方法,其中将分散介质进行回流。
30.权利要求1的方法,其特征在于,该分散介质经冷冻干燥或冷冻喷雾干燥法除去。
31.权利要求1的方法,其特征在于,该表面改性的陶瓷或金属粉末在将之从分散介质中分离出后,再分散于另一种介质中。
32.用权利要求1的方法制得的金属或陶瓷烧结体。
33.用权利要求1的方法制得的金属或陶瓷烧结体涂层。
34.权利要求33的涂层,该涂层是与基体结合的。
35.按权利要求32或33或34的金属或陶瓷烧结体或涂层,它们具有毫微级平均粒径(100nm),并且密度大于理论值的95%。
全文摘要
应用如下的组合生产金属和陶瓷烧结体和涂层(a)毫微结晶体金属或陶瓷粉末,其中偏离平均粒径40%以上的单个颗粒少于1%,没有偏离平均粒径60%以上的单个颗粒,和(b)至少一种低分子量有机化合物,它具有至少一个可与粉末颗粒表面上的基团反应和/或相互作用的官能团,物料(a)和(b)分散于作为分散介质的水和/或极性有机溶剂中。
文档编号C23C24/00GK1105918SQ94113669
公开日1995年8月2日 申请日期1994年10月27日 优先权日1993年10月27日
发明者H·施米特, R·纳斯, M·阿斯兰, S·阿尔贝拉克, E·阿帕克, T·柯尼格, D·菲斯特 申请人:H·C·施塔克公司