一种高纯低氯电镀级氧化铜的制备方法

文档序号:3460401阅读:345来源:国知局
专利名称:一种高纯低氯电镀级氧化铜的制备方法
技术领域
本发明属于氧化铜生产领域,特别涉及一种高纯低氯电镀级氧化铜的制备方法。
背景技术
在PCB制造工艺中,传统的电镀工艺是采用铜板做阳极板并补充铜源,因电子元件形状复杂,有孔、有凹凸面等形状,在洞孔中,因电镀液渗透不进去,因而镀不到铜,凸出部分因电流密度大,镀层较厚,凹陷部分电流密度小,镀层较薄,导致产品不合格。目前市场上PCB制造业普遍水平电镀工艺,该工艺克服了传统工艺的缺点,但该工艺必须在电镀液中补加高纯低氯氧化铜,以保证电镀液铜离子浓度,水平电镀工艺所用的氧化铜除高纯度要求外,还要保证氧化铜在电镀液中有足够快的溶解速度,确保氧化铜在电镀液中30秒以内溶解完。关于氧化铜的生产工艺,在目前公开的一些发明专利中也有涉及,申请号为01127175.2公开的以硫酸铜及铜料为原料,经80-85°C的低温氧化,经结晶得到硫酸铜,然后与氢氧化钠反应,再经球磨、压滤、洗涤、烘干、粉碎制得活性氧化铜的工艺在制氧化铜过程溶液会出现粘稠状态,要经过多次洗涤工序,因此会产生大量的洗涤废水;申请号为200710076208.1公开的以碱性蚀刻废液经蒸氨生产氧化铜的工艺,由于是用碱性蚀刻废液在高温、强碱状态下长时间蒸氨制得,因此氧化铜活性较低;申请号为200710071896.2公开的用硝酸铜与氢氧化钠反应经压滤、干燥、焙烧制氧化铜工艺,会产生二氧化氮或一氧化氮废气,对环境造成一定的污染;申请号为200810067243.1以合成碱式氯化铜为前驱体,再经过与氢氧化钠反应生产单斜晶系氧化铜的生产工艺,但其活性尚未实验验证。目前水平电镀用氧化铜也有以碱式碳酸铜为原料制备的,但碱式碳酸铜多由传统工艺得到,铁、铅等杂质含量高,纯度低,活性不够。综上,开发一种生产成本低、污染小、品质好,活性高的水平电镀用氧化铜的制备方法已成为PCB制造业的迫切需求。

发明内容
本发明克服了现有工艺的缺陷,提供了一种产品纯度高、含氯量少、生产容易洗涤、污染小、成本低并能保证产品活性的高纯低氯电镀级氧化铜的制备方法。为达到上述目的,本发明采用的技术方案如下:
一种高纯低氯电镀级氧化铜的制备方法,包括以下步骤:
(1)将液氨通入水中制得浓度为85 135g/L的浓氨水,然后向浓氨水中通入高纯二氧化碳制备碳化氨水;
(2)将步骤(I)制备的碳化 氨水加入铜料中反应,并在反应过程中鼓入空气,制得含铜氨化合物的料液;
(3)向含铜氨化合物的料液中加入双氧水充分反应后将料液过滤;
(4)将过滤后的滤液加热分解并将反应所得的含有碱式碳酸铜的混合料液进行分离、洗涤、烘干、过筛后制得重质高纯碱式碳酸铜;(5)将步骤(4)制得的重质高纯碱式碳酸铜加热煅烧制得氧化铜粉并进一步冷却得到高纯低氯电镀级氧化铜。所述步骤(I)中制浓氨水时通入液氨的压力为0.05 0.2MPa ;所述向浓氨水中通入二氧化碳的压力为0.05 0.2MPa,碳化度不低于80% ;所述向浓氨水中通入二氧化碳的同时向位于浓氨水中的冷却盘管通入温度小于15°C的冷却水冷却。所述步骤(2)中铜料的铜含量彡99.5%,所述反应在空气压力为1.01 X IO5Pa IOXlO5Pa的密闭条件下进行,反应时鼓入空气的时间为5 12小时,反应终点为反应后的含铜氨化合物的料液中铜离子含量达到85 120g/L。所述步骤(3)中含铜氨化合物的料液中加入的双氧水的质量与含铜氨化合物的料液的体积比为I 10 kg /立方米,加入双氧水后的反应时间为2 6小时;所述过滤设备为精密袋式过滤器。所述步骤(4)中滤液加热的温度为70 98°C ;所述分解在常压 0.8X IO5Pa的压力下进行;所述分解的终点为反应所得的含有碱式碳酸铜的混合料液中铜离子含量小于15g/L;所述分解产生的氨气、二氧化碳及原滤液中的部分水、液氨经冷凝、回收后重新制备浓氨水。所述步骤(4)中分离、洗涤为将反应所得的含有碱式碳酸铜的混合料液分离出原有液体后再用去离子水洗涤至洗涤液中氯离子质量浓度< 60ppm。所述步骤(4 )中烘干温度为60 100°C ;所述过筛为100目过筛。所述步骤(5)中重质高纯碱式碳酸铜加热煅烧的温度为500 800°C,加热煅烧的时间为0.5 5 h ;所述煅烧得到的氧化铜粉进一步冷却的温度为3(T40°C。采用上述技术方案后,本发明达到的有益效果是:
(1)本发明不使用农用或者食品级碳酸氢铵,直接应用高纯二氧化碳,通入制备好的浓氨水中,并与铜反应制得高纯碱式碳酸铜,再以高纯碱式碳酸铜为原料制取氧化铜,避免了重金属离子和氯离子的带入,能保证氧化铜产品纯度,避免了以硫酸铜和氢氧化钠为原料的含氯高和难以洗涤的缺陷;
(2)本发明同时增加了双氧水除铁,产品中铁含量大大降低,活性提高,产品应用更加广泛;
(3)本发明生产过程实现密闭,氨吸收效率可达到98%,现场操作环境大为改善,减少了氨的浪费,提高了铜的利用率,节省了能源,在更加符合环保要求的同时也降低了生产成本;
(4)本方法较传统方法生产过程更加可控,产品质量更为稳定,生产能够实现连续化,在稳定提高产品质量的同时也提高了生产效率,降低了生产成本,同时对生产过程中的副产物进行回收、利用,避免了含铜氨化合物的蒸汽直接排放,降低了产品的不合格率,避免了不合格品再处置的程序,提高了氧化铜的收得率,得到了高活性的电镀用氧化铜,同时也降低了其生产成本。综上,本发明较传统的方法工艺流程短,反应时间短,杂质含量低,活性高,损耗少,污染小,成本低。
具体实施方式
实施例1
(1)将液氨以0.2MPa的压力通入水中,通氨6小时制得浓度为135g/L的浓氨水,然后向浓氨水中通入纯度> 99.9%的二氧化碳制备碳化氨水,同时打开冷却水,向设置于浓氨水中但不与浓氨水相连通的冷却盘管中通入温度小于15°C的冷却水冷却,控制通入二氧化碳的压力为0.2MPa,使碳化度为160% ;
(2)在密闭容器中先装入62.5 X 103moI铜含量彡99.95%的标准阴极铜,然后向容器中注入3 m3步骤(I)所制备的碳化氨水反应,同时向容器中鼓入空气,使容器中的空气压力为IOX IO5Pa,鼓入空气的时间为12小时,当反应后的料液中铜离子浓度为120g/L时停止鼓空气,反应结束,得到3 m3含有铜氨化合物的料液;
(3)向3m3含铜氨化合物的料液中加入15 kg双氧水进行反应,反应时间为6小时,然后将与双氧水反应后的含铜氨化合物的料液通过精密袋式过滤器过滤掉化铜时产生的铜屑和含铁化合物杂质得含有铜氨化合物的滤液;
(4)将过滤后的含有铜氨化合物的滤液在常压下加热至98°C,使铜氨化合物发生分解反应生成碱式碳酸铜,当检测到分解反应后的含有碱式碳酸铜的混合料液中铜离子浓度小于15g/L时,分解反应结束,得到含有碱式碳酸铜的混合料液;同时分解反应产生的氨气、二氧化碳及原滤液中的部分水、液氨通入冷凝器冷凝、回收后重新制备浓氨水;
(5)将分解反应得到的含有碱式碳酸铜的混合料液装入离心机,先将含有碱式碳酸铜的混合料液中的母液甩尽,然后用去离子水进行五次洗涤,第五次洗涤后的洗衣涤液中氯离子质量浓度为40ppm,结束洗涤,从离心机出料,得到含有少量水分的碱式碳酸铜;并将含有碱式碳酸铜的混合料液中甩出的母液和前三次洗涤的洗涤液合并加入装铜料的容器中作为化铜反应的原料,最后两次洗涤的洗涤液用于制备碳化氨水;
(6)将从离心机所出的含有少量水分的碱式碳酸铜在100°C的温度下烘干至含水<2%后粉碎、100目过筛、分 析、称重、包装,得到重质高纯碱式碳酸铜;
(7)将重质高纯碱式碳酸铜装入回转窑中煅烧,煅烧温度为500°C,煅烧时间为5小时,得到氧化铜粉;
(8)氧化铜粉用不锈钢盘收集后,在3(T40°C的温度下冷却,再经100目过筛得氧化铜成品,产品经检测收率为99.51%,活性25S,杂质元素质量浓度为FeS 11 ppm, Pb ^ 2 ppm,Ni ^ 5 ppm, Zn ^ 5 ppm,达到技术标准规定的要求。实施例2
(1)将液氨以0.1MPa的压力通入水中,通氨I小时制得浓度为120g/L的浓氨水,然后向浓氨水中通入纯度> 99.9%的二氧化碳制备碳化氨水,同时打开冷却水,向设置于浓氨水中但不与浓氨水相连通的冷却盘管中通入温度小于15°C的冷却水冷却,控制通入二氧化碳的压力为0.1MPa,使碳化度为140% ;
(2)在密闭容器中先装入62.5 X 103moI铜含量彡99.95%的标准阴极铜,然后向容器中注入3.5 m3步骤(I)所制备的碳化氨水反应,同时向容器中鼓入空气,使容器中的空气压力为5X IO5Pa,鼓入空气的时间为8小时,当反应后的料液中铜离子浓度为95g/L时停止鼓空气,反应结束,得到3.5 m3含有铜氨化合物的料液;
(3)向3.5 m3含铜氨化合物的料液中加入25 kg双氧水进行反应,反应时间为4小时,然后将与双氧水反应后的含铜氨化合物的料液通过精密袋式过滤器过滤掉化铜时产生的铜屑和含铁化合物杂质得含有铜氨化合物的滤液;
(4)将过滤后的含有铜氨化合物的滤液在0.9X IO5Pa的压力下加热至90°C,使铜氨化合物发生分解反应生成碱式碳酸铜,当检测到分解反应后的含有碱式碳酸铜的混合料液中铜离子浓度小于15g/L时,分解反应结束,得到含有碱式碳酸铜的混合料液;同时分解反应产生的氨气、二氧化碳及原滤液中的部分水、液氨通入冷凝器冷凝、回收后重新制备浓氨水;
(5)将分解反应得到的含有碱式碳酸铜的混合料液装入离心机,先将固液混合物料中的母液甩尽,然后用去离子水进行五次洗涤,第五次洗涤后的洗衣涤液中氯离子质量浓度为30ppm,结束洗涤,从离心机出料,得到含有少量水分的碱式碳酸铜;并将含有碱式碳酸铜的混合料液中甩出的母液和前三次洗涤的洗涤液合并加入装铜料的容器中作为化铜反应的原料,最后两次洗涤的洗涤液用于制备碳化氨水;
(6)将从离心机所出的含有少量水分的碱式碳酸铜在80°C的温度下烘干至含水<2%后粉碎、100目过筛、分析、称重、包装,得到重质高纯碱式碳酸铜;
(7)将重质高纯碱式碳酸铜装入回转窑中煅烧,煅烧温度为600°C,煅烧时间为3小时,得到氧化铜粉;
(8)氧化铜粉用不锈钢盘收集后,在3(T40°C的温度下冷却,再经100目过筛得氧化铜成品,产品经检测收率为99.55%,活性26S,杂质元素质量浓度为Fe ( IOppm, Pb ( 2ppm,Ni ( 5ppm, Zn ( 5ppm,达到技术标准规定的要求。 实施例3
(1)将液氨以0.05MPa的压力通入水中,通氨5小时制得浓度为85g/L的浓氨水,然后向浓氨水中通入纯度> 99.9%的二氧化碳制备碳化氨水,同时打开冷却水,向设置于浓氨水中但不与浓氨水相连通 的冷却盘管中通入温度小于15°C的冷却水冷却,控制通入二氧化碳的压力为0.05MPa,使碳化度为80% ;
(2)在密闭容器中先装入62.5 X 103moI铜含量彡99.95%的标准阴极铜,然后向容器中注入3.2m3步骤(I)所制备的碳化氨水反应,同时向容器中鼓入空气,使容器中的空气压力为1.01 X IO5Pa,鼓入空气的时间为5小时,当反应后的料液中铜离子浓度为85g/L时停止鼓空气,反应结束,得到3.2 m3含有铜氨化合物的料液;
(3)向3.2m3含铜氨化合物的料液中加入32 kg双氧水进行反应,反应时间为2小时,然后将与双氧水反应后的含铜氨化合物的料液通过精密袋式过滤器过滤掉化铜时产生的铜屑和含铁化合物杂质得含有铜氨化合物的滤液;
(4)将过滤后的含有铜氨化合物的滤液在0.8X IO5Pa的压力下加热至70°C,使铜氨化合物发生分解反应生成碱式碳酸铜,当检测到分解反应后的含有碱式碳酸铜的混合料液中铜离子浓度小于15g/L时,分解反应结束,得到含有碱式碳酸铜的混合料液;同时分解反应产生的氨气、二氧化碳及原滤液中的部分水、液氨通入冷凝器冷凝、回收后重新制备浓氨水;
(5)将分解反应得到的含有碱式碳酸铜的混合料液装入离心机,先将含有碱式碳酸铜的混合料液中的母液甩尽,然后用去离子水进行五次洗涤,第五次洗涤后的洗衣涤液中氯离子质量浓度为50ppm,结束洗涤,从离心机出料,得到含有少量水分的碱式碳酸铜;并将含有碱式碳酸铜的混合料液中甩出的母液和前三次洗涤的洗涤液合并加入装铜料的容器中作为化铜反应的原料,最后两次洗涤的洗涤液用于制备碳化氨水;
(6)将从离心机所出的含有少量水分的碱式碳酸铜在60°C的温度下烘干至含水<2%后粉碎、100目过筛、分析、称重、包装,得到高纯碱式碳酸铜;
(7)将重质高纯碱式碳酸铜装入回转窑中煅烧,煅烧温度为680°C,煅烧时间为1.5小时,得到氧化铜粉;
(8)氧化铜粉用不锈钢盘收集后,在3(T40°C的温度下冷却,再经100目过筛得氧化铜成品,产品经检测收率为99.5%,活性26S,杂质元素质量浓度为Fe ( 15 ppm,Pb ( 2 ppm,Ni ( 8ppm, Zn ( 33 ppm,达到技术标准规定的要求。实施例4
(1)将液氨以0.1MPa的压力通入水中,通氨5小时制得浓度为120g/L的浓氨水,然后向浓氨水中通入纯度> 99.9%的二氧化碳制备碳化氨水,同时打开冷却水,向设置于浓氨水中但不与浓氨水相连通的冷却盘管中通入温度小于15°C的冷却水冷却,控制通入二氧化碳的压力为0.15MPa,使碳化度为100% ;
(2)在密闭容器中先装入62.5 X 103moI铜含量彡99.95%的标准阴极铜,然后向容器中注入3m3步骤(I)所制备的碳化氨水反应,同时向容器中鼓入空气,使容器中的空气压力为
1.0lX IO5Pa,鼓入空气的时间为9小时,当反应后的料液中铜离子浓度为100g/L时停止鼓空气,反应结束,得到3m3含有铜氨化合物的料液;
(3)向3m3含铜氨化合物的料液中加入3kg双氧水进行反应,反应时间为6小时,然后将与双氧水反应后的含铜 氨化合物的料液通过精密袋式过滤器过滤掉化铜时产生的铜屑和含铁化合物杂质得含有铜氨化合物的滤液;
(4)将过滤后的含有铜氨化合物的滤液在常压下加热至95°C,使铜氨化合物发生分解反应生成碱式碳酸铜,当检测到分解反应后的物料中铜离子浓度小于15g/L时,分解反应结束,得到含有碱式碳酸铜的混合料液;同时分解反应产生的氨气、二氧化碳及原滤液中的部分水、液氨通入冷凝器冷凝、回收后重新制备浓氨水;
(5)将分解反应得到的含有碱式碳酸铜的混合料液装入离心机,先将含有碱式碳酸铜的混合料液中的母液甩尽,然后用去离子水进行五次洗涤,第五次洗涤后的洗衣涤液中氯离子质量浓度为60ppm,结束洗涤,从离心机出料,得到含有少量水分的碱式碳酸铜;并将含有碱式碳酸铜的混合料液中甩出的母液和前三次洗涤的洗涤液合并加入装铜料的容器中作为化铜反应的原料,最后两次洗涤的洗涤液用于制备碳化氨水;
(6)将从离心机所出的含有少量水分的碱式碳酸铜在80°C的温度下烘干至含水<2%后粉碎、100目过筛、分析、称重、包装,得到重质高纯碱式碳酸铜;
(7)将重质高纯碱式碳酸铜装入回转窑中煅烧,煅烧温度为800°C,煅烧时间为0.5小时,得到氧化铜粉;
(8)氧化铜粉用不锈钢盘收集后,在3(T40°C的温度下冷却,再经100目过筛得氧化铜成品,产品经检测收率为99.53%,活性26S,杂质元素质量浓度为Fe ( 10 ppm,Pb ( 6 ppm,Ni ^ 6 ppm, Zn ^ 7 ppm,达到技术标准规定的要求。以上实施例均是本发明的较佳实施例,对于本领域的技术人员来说,在上述实施例的基础上作出简单的替换均属于本发明权利要求的保护范围。
权利要求
1.一种高纯低氯电镀级氧化铜的制备方法,其特征在于:包括以下步骤: (1)将液氨通入水中制得浓度为85 135g/L的浓氨水,然后向浓氨水中通入高纯二氧化碳制备碳化氨水; (2)将步骤(I)制备的碳化氨水加入铜料中反应,并在反应过程中鼓入空气,制得含铜氨化合物的料液; (3)向含铜氨化合物的料液中加入双氧水充分反应后将料液过滤; (4)将过滤后的滤液加热分解并将反应所得的含有碱式碳酸铜的混合料液进行分离、洗涤、烘干、过筛后制得重质高纯碱式碳酸铜; (5)将步骤(4)制得的重质高纯碱式碳酸铜加热煅烧制得氧化铜粉并进一步冷却、过筛得到高纯低氯电镀级氧化铜。
2.根据权利要求1所述的一种高纯低氯电镀级氧化铜的制备方法,其特征在于:所述步骤(I)中制浓氨水时通入液氨的压力为0.05 0.2MPa ;所述向浓氨水中通入二氧化碳的压力为0.05 0.2MPa,碳化度不低于80% ;所述向浓氨水中通入二氧化碳的同时向位于浓氨水中的冷却盘管通入温度小于15°C的冷却水冷却。
3.根据权利要求1所述的一种高纯低氯电镀级氧化铜的制备方法,其特征在于:所述步骤(2)中铜料的铜含量> 99.5%,所述反应在空气压力为1.0lX IO5Pa IOX IO5Pa的密闭条件下进行,反应时鼓入空气的时间为5 12小时,反应终点为反应后的含铜氨化合物的料液中铜离子含量达到85 120g/L。
4.根据权利要求1所述的一种高纯低氯电镀级氧化铜的制备方法,其特征在于:所述步骤(3 )中含铜氨化合物的料液中加入的双氧水的质量与含铜氨化合物的料液的体积比为I 10 kg /立方米,加入双氧水`后的反应时间为2 6小时;所述过滤设备为精密袋式过滤器。`
5.根据权利要求1所述的一种高纯低氯电镀级氧化铜的制备方法,其特征在于:所述步骤(4)中滤液加热的温度为70 98°C;所述分解在常压 0.8 X IO5Pa的压力下进行;所述分解的终点为反应所得的含有碱式碳酸铜的混合料液中铜离子含量小于15g/L ;所述分解产生的氨气、二氧化碳及原滤液中的部分水、液氨经冷凝、回收后重新制备浓氨水。
6.根据权利要求1所述的一种高纯低氯电镀级氧化铜的制备方法,其特征在于:所述步骤(4)中分离、洗涤为将反应所得的含有碱式碳酸铜的混合料液分离出原有液体后再用去离子水洗涤至洗涤液中氯离子质量浓度< 60ppm。
7.根据权利要求1所述的一种高纯低氯电镀级氧化铜的制备方法,其特征在于:所述步骤(4)中烘干温度为60 100°C ;所述过筛为100目过筛。
8.根据权利要求1所述的一种高纯低氯电镀级氧化铜的制备方法,其特征在于:所述步骤(5)中重质高纯碱式碳酸铜加热煅烧的温度为500 800°C,加热煅烧的时间为0.5 `5 h ;所述煅烧得到的氧化铜粉进一步冷却的温度为3(T40°C。
全文摘要
本发明公开了一种高纯低氯电镀级氧化铜的制备方法,该方法以铜、液氨、高纯二氧化碳为原料,先制备浓氨水,然后向浓氨水中通入高纯二氧化碳制备得到碳化氨水,此碳化氨水在一定空气压力下与铜反应得到铜氨络合溶液,再通过加热、蒸氨、分离、洗涤、烘干、过筛制取重质高纯碱式碳酸铜,重质碱式碳酸铜再通过加热煅烧、分解制得高纯低氯电镀级氧化铜。本发明直接使用二氧化碳作为原料,避免了传统方法生产碱式碳酸铜所采用的原料带入重金属离子和氯离子等杂质等问题,提高了反应速度,缩短了生产周期,生产效率大大提高,产品杂质含量低,纯度高,活性高,产品应用更加广泛,同时本方法收得率高,能耗低,污染小,成本低。
文档编号C01G3/02GK103101960SQ20121055922
公开日2013年5月15日 申请日期2012年12月21日 优先权日2012年12月21日
发明者徐金章, 刘后传, 许明才 申请人:泰兴冶炼厂有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1