透明扩散性OLED基板和制造这样的基板的方法与流程

文档序号:12184877阅读:433来源:国知局
透明扩散性OLED基板和制造这样的基板的方法与流程
OLED是包含夹在两个电极之间的具有荧光或磷光染料的有机层堆叠的光电元件,所述电极中的至少一个是半透明的。当将电压施加到电极时,从阴极注入的电子和从阳极注入的空穴在有机层内结合,导致来自荧光/磷光层的光发射。通常已知的是,常规OLED的光提取是相当差的,大多数光被高折射率有机层和透明导电层(TCL)中的全内反射捕获。全内反射不仅发生在高折射率TCL和下面的玻璃基板(折射率大约1.5)之间的边界处,还发生在玻璃和空气之间的边界处。根据估计,在不包含任何额外提取层的常规OLED中,从有机层发射的光的大约60%在TCL/玻璃边界处被捕获,额外的20%部分在玻璃/空气表面被捕获,和仅大约20%离开OLED进入空气中。已知借助于TCL和玻璃基板之间的光散射层来减少该光截留(entrapment)。这样的光散射层具有接近TCL折射率的高折射率的透明基质,并且含有多个具有不同于该基质的折射率的光散射元件。这样的高折射率基质通常可通过熔化高折射率玻璃料从而获得在低折射率玻璃基板上的薄的高折射率搪瓷层来获得。光散射元件可以是在熔化步骤之前添加到玻璃料的固体颗粒、在熔化步骤期间形成的晶体或在熔化步骤期间形成的气泡。还已知通过使界面纹理化来增加光的外耦合,即在OLED的玻璃和高折射率层之间的界面处产生浮雕,例如通过在施加和熔化高折射率玻璃料之前蚀刻或研磨低折射率透明基板。这两种提取装置通常被称为“内部提取层”(IEL),因为它们位于OLED基板和TCL之间。也是本领域中通常已知的外部提取层(EEL)以相似的方式工作,但是其位于玻璃/空气边界处。本发明涉及具有透明高折射率玻璃基质的内部提取层(IEL)的领域,所述内部提取层含有气泡作为低折射率扩散元件。这样的具有光扩散气泡的IEL优于具有固体颗粒的类似IEL,因为不存在大尺寸颗粒从基质突出并且在最终OLED产品中产生短路和/或电极间漏电流的风险。尽管不存在固体颗粒,然而不容易通过简单地在低折射率基板上熔化高折射率玻璃料来获得具有完美表面品质的扩散搪瓷。事实上,在熔化步骤期间在熔融基质中形成并截留的气泡上升至表面,在所述表面它们破裂并弄平(levelout)。然而,在完全弄平之前在IEL表面处凝固的开口或部分开口气泡产生可能具有相当尖锐边缘的火山口状表面不规则并导致最终OLED中的电极间漏电流和针孔。EP2178343B1公开了用于具有内部提取层(散射层)的OLED的半透明玻璃基板,所述内部提取层包含高折射率玻璃基质和气泡散射元件。根据该文献,所述散射层的表面没有由于开口气泡火山口而导致的表面缺陷(参见[0026]至[0028],和图55)。然而,对该文献和特别是[0202]的彻底分析表明,该结果仅仅是由于对下表面层中的散射元件计数的不当方法而导致的假象(artifact)。本申请人最近提交了韩国专利申请第10-2013-0084314号(2013年7月17日)(未在本申请的申请日公开),其公开了用于发光器件的具有高度互连空隙的系统的层压基板,所述空隙位于低折射率玻璃基板和高折射率搪瓷之间的界面处。这样的散射层具有非常高的表面品质,其中开口气泡密度小于0.1/cm2,但是其经受的不便在于,进入与层压基板的边缘接触的水或其它流体可以渗透通过层压体的大面积上的互连空隙,并通过针孔渗入具有荧光或磷光染料的有机层堆叠中,导致所述层的破坏。因此,有利的是提供类似于在Saint-GobainGlassFrance名下在2013年7月17日提交的韩国申请第10-2013-0084314号中描述的用于OLED的层压基板,其中在高折射率搪瓷/玻璃基板层处的互连空隙系统被多个彼此不连接的单独气泡替代,并且所述气泡粘附于所述界面,而基本不会上升至熔融高折射率玻璃料的表面。本申请人令人惊讶地发现,当不直接与玻璃基板接触而是在预先涂布在所述玻璃表面上的薄金属氧化物层上施加并熔化玻璃料时,在熔融高折射率玻璃料的下层中形成的大量的单独气泡粘附于下面的玻璃基板而基本不会上升至表面。本申请的主题是用于制备发光器件的层压基板的方法,所述方法包括至少以下4个步骤:(a)提供具有1.45至1.65的折射率(在λ=550nm下)的玻璃基板,(b)将金属氧化物层涂布在所述玻璃基板的一面上,(c)将具有至少1.7的折射率(在λ=550nm下)的玻璃料涂布在所述金属氧化物层上,(d)在高于所述玻璃料的Littleton温度下烧制所得经涂布的玻璃基板,从而使金属氧化物与熔融玻璃料反应并形成具有多个球形空隙的高折射率搪瓷层,所述空隙嵌入在玻璃基板的界面附近的搪瓷层的下部中。本申请的另一个主题是可通过上面的方法获得的层压基板,所述层压体包含:(i)具有1.45至1.65的折射率的玻璃基板,(ii)具有至少1.7的折射率(在550nm下)的高折射率玻璃搪瓷层,其特征在于,多个球形空隙嵌入在搪瓷层与下面的玻璃基板的界面附近的高折射率搪瓷层中,至少95%、优选至少99%和更优选基本所有的球形空隙具有显著小于所述搪瓷层的一半厚度的直径,且位于在下面的玻璃基板的界面附近的高折射率搪瓷层的下半部分中。步骤(a)中提供的玻璃基板是无机玻璃,例如钠钙玻璃的平坦的半透明或透明基板,其通常具有0.1至5mm,优选0.3至1.6mm的厚度。其透光率(ISO9050标准,在考虑如由ISO/IEC10527定义的标准比色观察者CIE1931时,如由ISO/IEC10526标准定义的光源D65(TLD))优选尽可能高,并且通常高于80%,优选高于85%或甚至高于90%。在本发明的方法的步骤(b)中,通过任何合适的方法将金属氧化物的薄层涂布在平整的玻璃基板的一面上,优选通过反应性或非反应性磁控溅射、原子层沉积(ALD)或溶胶-凝胶湿涂布。所述金属氧化物层可以覆盖所述玻璃基板的一面的全部表面。在替代的实施方案中,仅一部分所述基板的表面涂布有金属氧化物层。特别有意义的是,用图案化的金属氧化物层涂布所述基板以制备具有非均匀提取图案的最终层压基板。在不希望被任何理论束缚的情况下,本申请人认为,光散射球形空隙在烧制步骤(d)期间通过金属氧化物与上覆的高折射率玻璃料的组分的反应来产生。所述反应的具体性质尚未完全阐明。据认为,O2气体可能作为反应产物释出。大部分球形空隙不仅是如EP2178343B1中所述在熔化-凝固步骤期间在玻璃料中截留的气泡,还有在烧制步骤期间产生的气泡。事实上,本申请人观察到,在将玻璃料层涂布在金属氧化物层上的区域中的球形空隙密度远高于在直接涂布在裸玻璃基板上的区域中的球形空隙密度。不存在对金属氧化物层的厚度的特别限制,只要其提供足够的反应性组分以在所得搪瓷层的下半部分中产生大量的球形空隙。仅几纳米的金属氧化物层已经证明能够触发期望的球形空隙的形成。所述金属氧化物层优选具有5至80nm,更优选10至40nm和甚至更优选15至30nm的厚度。在本申请提交时,本申请人已经实验地显示出,至少三种金属氧化物,即TiO2、Al2O3和ZrO2导致在玻璃料界面附近的球形空隙的形成。在不偏离本发明的精神的情况下,技术人员可以容易地用不同金属氧化物,如Nb2O5、HfO2、Ta2O5、WO3、Ga2O3、In2O3和SnO2或其混合物替代这些金属氧化物,以完成本申请人的实验工作和发现施用于本发明的方法的额外金属氧化物。因此,所述金属氧化物优选选自TiO2、Al2O3、ZrO2、Nb2O5、HfO2、Ta2O5、WO3、Ga2O3、In2O3、SnO2及其混合物。然后,用高折射率玻璃料涂布带有图案化或非图案化的薄金属氧化层的金属基板的一面。所述玻璃料的折射率优选为1.70至2.20,更优选1.80至2.10。所述高折射率玻璃料有利地包含至少30重量%,优选至少50重量%和更优选至少60重量%的Bi2O3。应选择玻璃料以具有450℃至570℃的熔点(Littleton点),并且应导致具有1.8至2.1的折射率的搪瓷。优选的玻璃料具有以下组成:Bi2O3:55–75重量%BaO:0–20重量%ZnO:0–20重量%Al2O3:1–7重量%SiO2:5–15重量%B2O3:5–20重量%Na2O:0.1–1重量%CeO2:0–0.1重量%。在典型的实施方案中,将玻璃料颗粒(70–80重量%)与20–30重量%的有机载体(乙基纤维素和有机溶剂)混合。然后通过丝网印刷或狭缝模具式涂布将所得玻璃料糊状物施加到经金属氧化物涂布的玻璃基板上。通过在120–200℃的温度下加热将所得层干燥。有机粘合剂(乙基纤维素)在350–440℃的温度下烧尽,并且得到最终搪瓷的烧制步骤,即熔化高折射率玻璃料,在530℃至620℃,优选540℃至600℃的温度下进行。所得搪瓷已经显示出,在通过AFM在10µmx10µm的面积上测量时具有小于3nm的算术平均偏差Ra(ISO4287)的表面粗糙度。涂布在所述金属氧化物层上的高折射率玻璃料的量通常为20至200g/m2,优选25至150g/m2,更优选30至100g/m2和最优选35至70g/m2。在烧制步骤(d)中,将玻璃料加热至高于所述玻璃料的Littleton温度的温度,导致玻璃料的熔化、玻璃料的组分与下面的金属氧化物的组分的反应和在该反应区中的球形空隙的形成。在最终凝固的搪瓷涂层中,通常不可能清楚地区分原始金属氧化物层与玻璃料层。最可能的是,所述金属氧化物层被所述玻璃料消耗,局部产生具有轻微不同组成的玻璃料。因此可以指定这两层中的每一个的厚度。下文成为“高折射率搪瓷层”的包含多个球形空隙(散射元件)嵌入其中的凝固搪瓷层的总厚度优选为3µm至25µm,更优选4µm至20µm和最优选5µm至15µm。本发明的一个最令人惊讶的方面是观察到,在烧制步骤期间在玻璃料层的底部(与金属氧化物的反应区)形成的气泡在熔融玻璃相中不上升至其表面,而是控制在与所得搪瓷和下面的玻璃基板之间的界面相当接近的位置上。所述“控制”散射元件得到凝固高折射率搪瓷的优异表面品质,而没有由于凝固的开口气泡所导致得火山口状凹陷。为了有效地将球形空隙保持在高折射率搪瓷层的底部附近并阻止它们上升至表面,步骤(d)的烧制温度然而不应过高,并且烧制步骤的持续时间不应过长。烧制步骤(d)的持续时间优选为3至30分钟,更优选5至20分钟。不用说,本发明中使用的高折射率玻璃料和由此所得的搪瓷应优选基本不含固体散射颗粒,例如结晶SiO2或TiO2颗粒。这样的颗粒通常用作内部提取层中的散射元件,但需要额外的平坦化层,从而不期望地增加提取层的总厚度。如上已经解释的,在烧制步骤期间形成的球形空隙不是随进分布在高折射率搪瓷层的整个厚度上,而是主要位于“下”半部分,即接近所述搪瓷层与下面的玻璃基板的界面。为了完全嵌入所述搪瓷层,所述球形空隙当然必须显著小于所述搪瓷层的厚度。至少95%,优选至少99%和更优选基本所有的球形空气空隙具有小于所述搪瓷层的一半厚度并且位于在下面的玻璃基板的界面附近的高折射率搪瓷层的下半部分中。表述“位于高折射率搪瓷层的下半部分中”是指至少80%的空隙体积位于所述搪瓷层的中间平面以下。所述球形空隙具有0.2µm至8µm,更优选0.4µm至4µm和最优选0.5µm至3µm的平均当量球径。球形空隙随机分布在对应于先前涂布有金属氧化物层的玻璃基板的表面的整个区域上。为了有效地散射从含有荧光或磷光染料的有机层堆叠发射的光,所述球形空隙的密度优选为104至25.106/mm2,更优选105至5.106/mm2。在从垂直于基板的一般平面的方向(投影视图)观察时,球形空隙优选占据至少20%,更优选至少25%的先前被金属氧化物覆盖的基板表面,并且至多80%,更优选至多70%的先前被金属氧化物覆盖的基板表面。如图2(示出根据本发明的层压基板的截面)可以看出,几乎所有的球形空隙与下面的玻璃基板接触,从而形成与所述玻璃基板接触的单独空隙的单层。所述空隙可以彼此非常接近或甚至彼此接触,但不彼此连接。因此,有效地阻止从本发明的层压基板的周边进入的流体,例如水或以液体或气体形式的其它溶剂的渗透。由本发明的层压基板制成的OLED因此比由韩国专利申请第10-2013-0084314号中所述的层压基板制成的那些对水或溶剂更不敏感。本发明的层压基板意在用作生产底部发射的OLED的半透明基板。底部发射的OLED包含带有半透明电极(通常为阳极)和光反射电极(通常为阴极)的半透明基板。从发光有机层的堆叠发射的光直接经由半透明阳极和基板发射,或首先通过阴极朝向并穿过半透明阳极和基板反射。在层压发光有机层堆叠之前,因此必须将透明导电层(电极层)涂布在内部提取层的顶部上。在优选的实施方案中,本发明的层压基板因此还包含在高折射率搪瓷层上的透明导电层,该导电层优选直接与所述搪瓷层接触或涂布在中间层,例如阻隔层或保护层上。在优选的实施方案中,本发明的方法因此还包括将透明导电层(TCL)涂布在高折射率搪瓷层上的额外步骤。该层优选是透明导电氧化物,例如ITO(氧化铟锡)。可以根据本领域技术人员熟悉的常规方法,例如磁控溅射来进行这样的TCL的形成。图1是示出制备本发明的层压基板的方法的流程图。图2是示出根据本发明的层压基板的横截面视图的扫描电子显微镜(SEM)照片。在图1中,首先在步骤(a)中提供平坦的透明玻璃基板1。在步骤(b)中,然后通过磁控溅射将金属氧化物层2涂布在该基板的一面上。在下一步骤(步骤(c))中,例如通过丝网印刷包含玻璃料和有机介质(聚合物和有机溶剂)的糊状物来施加高折射率玻璃料的层3。然后使带有金属氧化物层2和玻璃糊状物层3的所得基板进行步骤(d),其中逐步加热以首先蒸发所述有机溶剂,然后烧尽所述有机聚合物并最终熔化所述玻璃料粉末以获得高折射率搪瓷层4。在该最终加热步骤期间,球形空隙5由所述金属氧化物与玻璃料之间的反应在玻璃料层的底部形成。所述球形空隙粘附于所述高折射率搪瓷4的界面,并且不上升至所述搪瓷层的表面。然后在步骤(e)中,将透明导电层6涂布在所述高折射率搪瓷4的平滑表面上。在图2的SEM照片上,深灰色玻璃基板被较浅灰色的高折射率搪瓷层覆盖。球形空隙的单层完全嵌入其中,并且位于与所述玻璃基板和上覆的搪瓷之间的界面接触。显示出的层压基板还不包含透明导电层。可以看出,所述高折射率搪瓷层的表面完美平滑,并且没有火山口状的表面不规则。实施例用TiO2前体的溶液旋涂0.7mm的钠钙玻璃片材。然后将经涂布的玻璃片材在150℃的温度下进行溶剂蒸发10分钟,然后在400℃的温度下1小时以有效使TiO2层致密化。所得涂布TiO2的玻璃片材用包含75重量%的高折射率玻璃料(Bi2O3-B2O3-ZnO-SiO2)和25重量%的有机介质(乙基纤维素和有机溶剂)的糊状物来丝网印刷,并且使其进行干燥步骤(在150℃下10分钟)。然后在570℃下将所述基板烧制大约10分钟,得到含有多个球形空隙的高折射率搪瓷层(12µm)。所述球形空隙的平均尺寸和覆盖率(涂布TiO2的表面被球形空隙所占据的面积)通过对具有增加的TiO2层厚度的三个不同样品进行图像分析来测量。下表示出了对于增加的TiO2量的所得基板的球形空隙的平均尺寸、覆盖率和雾度比,相比于通过将高折射率玻璃料直接涂布在钠钙玻璃上制成的阴性对照物。阴性对照物实施例1实施例2实施例3在致密化后的TiO2层的厚度026nm32nm39nm球形空隙的平均尺寸-1.1µm1.4µm3.6µm覆盖率-49.9%65%73.1%IEL雾度比12.9%56.0%74.1%75.2阴性对照物的高折射率搪瓷层没有位于所述搪瓷层底部的球形空隙。增加金属氧化物的量导致增加在玻璃/搪瓷界面处形成的球形空隙的平均尺寸,增加由所述空隙占据的面积并且增加所得IEL层的雾度比。这些实验数据清楚显示出,在搪瓷层底部的球形空隙由金属氧化物与上覆的高折射率玻璃料的相互作用所得。图3显示出根据本发明的以上实施例1、2和3中的每一个的投影视图(左)和横截面视图(右)。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1