一种GdSrMnCo共掺铁酸铋多铁薄膜及其制备方法与流程

文档序号:11568552阅读:311来源:国知局
一种GdSrMnCo共掺铁酸铋多铁薄膜及其制备方法与流程

本发明属于功能材料领域,涉及在功能化的fto/glass基板表面制备gdsrmnco共掺铁酸铋多铁薄膜,具体为bi0.97-xgdxsr0.03fe0.94mn0.04co0.02o3多铁薄膜,x=0.03~0.15。



背景技术:

随着科学技术的快速发展,器件的微型化及多样化的要求也就越来越高,这就迫切需要发展同时具有多种功能的新材料来取代单一功能的材料,以满足研制多功能新型器件的需求,这就促使多铁纳米材料成为当代新型材料科学研究的热点。铁酸铋(bifeo3),简称bfo,是目前唯一在室温下同时存在铁电性与反铁磁性的单相多铁材料,并具有较高的居里温度、尼尔温度和较大的剩余极化强度,在铁电随机存储器、自旋电子器件、磁电存储单元、光电器件等领域有着很好的应用前景。

然而,bifeo3薄膜中铋元素的易挥发以及部分fe3+向fe2+的转变,使薄膜中产生较多的氧空位,从而导致bifeo3薄膜存在着严重的漏电现象和较大的矫顽场,难以极化,很难获得较高的剩余极化值,因此在实际应用中受到限制。此外,bifeo3薄膜中存在弱铁磁性,使其难以满足新一代存储器件和其它多功能器件所需要的强磁电耦合。为改善bifeo3薄膜的多铁性能,最为常见的办法就是离子掺杂。

目前,还没有关于bi0.97-xgdxsr0.03fe0.94mn0.04co0.02o3多铁薄膜及其制备方法的相关报道。



技术实现要素:

本发明的目的在于提供一种gdsrmnco共掺铁酸铋多铁薄膜及其制备方法,该方法设备要求简单,实验条件容易达到,掺杂量容易控制,制得的gdsrmnco共掺铁酸铋多铁薄膜为bi0.97-xgdxsr0.03fe0.94mn0.04co0.02o3多铁薄膜,可改善bifeo3基薄膜的多铁性能。

为了实现上述目的,本发明采用如下技术方案:

一种gdsrmnco共掺铁酸铋多铁薄膜,所述gdsrmnco共掺铁酸铋多铁薄膜为bi0.97-xgdxsr0.03fe0.94mn0.04co0.02o3薄膜,x=0.03~0.15,其结构为三方结构,空间群为r3c:h和r3m:r共存。

所述gdsrmnco共掺铁酸铋多铁薄膜在700kv/cm电场下的剩余极化值为109μc/cm2,矫顽场为253kv/cm,正反转电流为1.395ma;

所述gdsrmnco共掺铁酸铋多铁薄膜在1khz频率下的介电常数为416。

所述gdsrmnco共掺铁酸铋多铁薄膜在25~40v的外加电压下具有剩余极化值为84~120μc/cm2的对称矩形电滞回线,具有对电压变化的铁电稳定性。

所述的gdsrmnco共掺铁酸铋多铁薄膜的制备方法,包括以下步骤:

步骤1:按摩尔比为(1.02-x):x:0.03:0.94:0.04:0.02将硝酸铋、硝酸钆、硝酸锶、硝酸铁、醋酸锰和硝酸钴溶于乙二醇甲醚中,搅拌均匀后加入醋酸酐,继续搅拌均匀,得到前驱液;其中x=0.03~0.15;

步骤2:将前驱液旋涂在fto/glass基片上,得到湿膜,湿膜经匀胶后在190~210℃下烘烤得干膜,再于540~560℃下在空气中退火,得到晶态bi0.97-xgdxsr0.03fe0.94mn0.04co0.02o3薄膜;

步骤3:将晶态bi0.97-xgdxsr0.03fe0.94mn0.04co0.02o3薄膜冷却至室温,重复步骤2直到达到所需厚度,即得到gdsrmnco共掺铁酸铋多铁薄膜。

所述步骤1中前驱液中金属离子的总浓度为0.2~0.4mol/l。

所述前驱液中乙二醇甲醚和醋酸酐的体积比为(2.5~3.5):1。

所述步骤2进行前先将fto/glass基片清洗干净,然后在紫外光下照射,使fto/glass基片表面达到原子清洁度。

所述步骤2中匀胶时的匀胶转速为3500~4000r/min,匀胶时间为12~18s。

所述步骤2中匀胶后的烘烤时间为6~8min。

所述步骤2中的退火时间为20~25min。

相对于现有技术,本发明具有以下有益效果:

本发明提供的gdsrmnco共掺铁酸铋多铁薄膜的制备方法,采用溶胶-凝胶法,以硝酸铋、硝酸钆、硝酸锶、硝酸铁、醋酸锰和硝酸钴为原料(硝酸铋过量5%),以乙二醇甲醚和乙酸酐为溶剂,配制前驱液,再用旋涂法和层层退火的工艺制备了bi0.97-xgdxsr0.03fe0.94mn0.04co0.02o3薄膜,即gdsrmnco共掺铁酸铋多铁薄膜。本发明选择稀土元素gd和碱土金属sr掺杂a位,过渡金属mn和co掺杂b位,通过a、b位共掺杂的方式,使薄膜具有良好的介电和铁电性能。在a位上掺杂稀土元素可以抑制bi的挥发,减少氧空位,进而减小漏电流,有效提高薄膜的铁电性能;二价碱金属离子可以补偿氧空位造成的电荷不平衡,有效地抑制fe3+离子的价态波动;在b位上掺杂过渡金属离子可以抑制fe3+向fe2+转换,减少氧空位的产生,磁性离子的掺杂能够提高薄膜的磁性能。通过a、b位共掺杂可以有效的抑制bi的挥发,减少薄膜中fe2+、氧空位的含量和缺陷的产生,获得对称矩形电滞回线,有效改善了薄膜的铁电稳定性。本发明采用溶胶-凝胶工艺,相比于其他制备薄膜的方法,该方法设备要求简单,实验条件易于实现,成本低廉,反应容易进行,工艺过程温度低,制备过程及掺杂量容易控制,化学组分精确可控,适宜在大的表面和形状不规则的表面上制备薄膜,很容易均匀定量地掺入一些微量元素,可以在短时间内获得原子或分子水平的均匀性,本发明制备的gdsrmnco共掺铁酸铋多铁薄膜均匀性较好,具有随外加电压变化的铁电稳定性。

本发明制得的gdsrmnco共掺铁酸铋多铁薄膜的致密度高、晶粒尺寸均匀,其化学结构式为bi0.97-xgdxsr0.03fe0.94mn0.04co0.02o3,x=0.03~0.15,该薄膜属于三方结构,空间群为r3c:h(17.79%)和r3m:r(82.21%)共存,该薄膜表现出了高铁电稳定性,铁电性能优异,能够改善bifeo3基薄膜的多铁性能。

进一步的,本发明制得的gdsrmnco共掺铁酸铋多铁薄膜,当x=0.09时,在1khz频率下其介电常数为416;在700kv/cm电场下其剩余极化值为109μc/cm2,矫顽场为253kv/cm,正反转电流为1.395ma,说明其铁电性能优异;在25~40v的外加电压下具有剩余极化值为84~120μc/cm2的对称矩形电滞回线,说明该薄膜表现出随外加电压变化的良好的铁电稳定性。

附图说明

图1是本发明实施例3制备的gdsrmnco共掺铁酸铋多铁薄膜的xrd精修图;

图2是本发明实施例3制备的gdsrmnco共掺铁酸铋多铁薄膜的电滞回线;

图3是本发明实施例3制备的gdsrmnco共掺铁酸铋多铁薄膜在不同测试电压下的电滞回线。

具体实施方式

下面结合附图和本发明优选的具体实施例对本发明做进一步描述,原料均为分析纯。

实施例1

步骤1:将fto/glass基片分别用洗洁精、丙酮、无水乙醇清洗干净封存在无水乙醇中备用;

步骤2:以硝酸铋、硝酸钆、硝酸锶、硝酸铁、醋酸锰和硝酸钴为原料(硝酸铋过量5%),按摩尔比为0.99:0.03:0.03:0.94:0.04:0.02(x=0.03)溶于乙二醇甲醚中,搅拌30min,再加入醋酸酐,搅拌90min,得到金属离子总浓度为0.2mol/l的稳定的前驱液;其中乙二醇甲醚和醋酸酐的体积比为3.2:1;

步骤3:将fto/glass基片用去离子水洗净后用n2吹干,再用紫外光照射仪照射洁净的fto/glass基片40min,使fto/glass基片表面达到原子清洁度,然后将前驱液旋涂在fto/glass基片上,其匀胶转速为4000r/min,匀胶时间为14s,得到湿膜,湿膜在210℃下烘烤6min得干膜,再在555℃下在空气中退火20min,即得晶态bi0.94gd0.03sr0.03fe0.94mn0.04co0.02o3薄膜;

步骤4:将晶态bi0.94gd0.03sr0.03fe0.94mn0.04co0.02o3薄膜冷却至室温,重复步骤2直到达到所需厚度,即得到gdsrmnco共掺铁酸铋多铁薄膜。

实施例2

步骤1:将fto/glass基片分别用洗洁精、丙酮、无水乙醇清洗干净封存在无水乙醇中备用;

步骤2:以硝酸铋、硝酸钆、硝酸锶、硝酸铁、醋酸锰和硝酸钴为原料(硝酸铋过量5%),按摩尔比为0.96:0.06:0.03:0.94:0.04:0.02(x=0.06)溶于乙二醇甲醚中,搅拌30min,再加入醋酸酐,搅拌90min,得到金属离子总浓度为0.25mol/l的稳定的前驱液;其中乙二醇甲醚和醋酸酐的体积比为3.5:1;

步骤3:将fto/glass基片用去离子水洗净后用n2吹干,再用紫外光照射仪照射洁净的fto/glass基片40min,使fto/glass基片表面达到原子清洁度,然后将前驱液旋涂在fto/glass基片上,其匀胶转速为3900r/min,匀胶时间为12s,得到湿膜,湿膜在190℃下烘烤8min得干膜,再在540℃下在空气中退火25min,即得晶态bi0.91gd0.06sr0.03fe0.94mn0.04co0.02o3薄膜;

步骤4:将晶态bi0.91gd0.06sr0.03fe0.94mn0.04co0.02o3薄膜冷却至室温,重复步骤2直到达到所需厚度,即得到gdsrmnco共掺铁酸铋多铁薄膜。

实施例3

步骤1:将fto/glass基片分别用洗洁精、丙酮、无水乙醇清洗干净封存在无水乙醇中备用;

步骤2:以硝酸铋、硝酸钆、硝酸锶、硝酸铁、醋酸锰和硝酸钴为原料(硝酸铋过量5%),按摩尔比为0.93:0.09:0.03:0.94:0.04:0.02(x=0.09)溶于乙二醇甲醚中,搅拌30min,再加入醋酸酐,搅拌90min,得到金属离子总浓度为0.3mol/l的稳定的前驱液;其中乙二醇甲醚和醋酸酐的体积比为3:1;

步骤3:将fto/glass基片用去离子水洗净后用n2吹干,再用紫外光照射仪照射洁净的fto/glass基片40min,使fto/glass基片表面达到原子清洁度,然后将前驱液旋涂在fto/glass基片上,其匀胶转速为3800r/min,匀胶时间为15s,得到湿膜,湿膜在200℃下烘烤7min得干膜,再在550℃下在空气中退火22min,即得晶态bi0.88gd0.09sr0.03fe0.94mn0.04co0.02o3薄膜;

步骤4:将晶态bi0.88gd0.09sr0.03fe0.94mn0.04co0.02o3薄膜冷却至室温,重复步骤2直到达到所需厚度,即得到gdsrmnco共掺铁酸铋多铁薄膜。

采用xrd测定gdsrmnco共掺铁酸铋多铁薄膜的物相组成结构。用sem测定gdsrmnco共掺铁酸铋多铁薄膜的微观形貌。用agilente4980a精密lcr表测试gdsrmnco共掺铁酸铋多铁薄膜的介电性能。用agilentb2900测试gdsrmnco共掺铁酸铋多铁薄膜的漏导电流特性。用radiantmultiferroic铁电分析仪测试gdsrmnco共掺铁酸铋多铁薄膜的铁电性能。

对实施例3制得的gdsrmnco共掺铁酸铋多铁薄膜进行以上测试,结果如图1、图2、图3所示。

图1为本发明实施例3制得的gdsrmnco共掺铁酸铋多铁薄膜的精修图,从图中可知,溶胶凝胶方法制备的bi0.88gd0.09sr0.03fe0.94mn0.04co0.02o3薄膜属于三方结构,空间群为r3c:h(17.79%)和r3m:r(82.21%)共存,没有杂质的出现。

图2表明bi0.88gd0.09sr0.03fe0.94mn0.04co0.02o3多铁薄膜在电场为700kv/cm时,其剩余极化值为109μc/cm2,矫顽场为253kv/cm。

图3表明bi0.88gd0.09sr0.03fe0.94mn0.04co0.02o3多铁薄膜在不同测试电压下的电滞回线,外加电压为25v、30v、35v、40v,具有剩余极化值分别为84μc/cm2、97μc/cm2、108μc/cm2和120μc/cm2的对称矩形电滞回线,说明该薄膜具有对电压变化的铁电稳定性。

另外通过测试发现bi0.88gd0.09sr0.03fe0.94mn0.04co0.02o3多铁薄膜在1khz频率下的介电常数为416。

实施例4

步骤1:将fto/glass基片分别用洗洁精、丙酮、无水乙醇清洗干净封存在无水乙醇中备用;

步骤2:以硝酸铋、硝酸钆、硝酸锶、硝酸铁、醋酸锰和硝酸钴为原料(硝酸铋过量5%),按摩尔比为0.90:0.12:0.03:0.94:0.04:0.02(x=0.12)溶于乙二醇甲醚中,搅拌30min,再加入醋酸酐,搅拌90min,得到金属离子总浓度为0.35mol/l的稳定的前驱液;其中乙二醇甲醚和醋酸酐的体积比为2.5:1;

步骤3:将fto/glass基片用去离子水洗净后用n2吹干,再用紫外光照射仪照射洁净的fto/glass基片40min,使fto/glass基片表面达到原子清洁度,然后将前驱液旋涂在fto/glass基片上,其匀胶转速为3600r/min,匀胶时间为16s,得到湿膜,湿膜在195℃下烘烤7.5min得干膜,再在560℃下在空气中退火21min,即得晶态bi0.85gd0.12sr0.03fe0.94mn0.04co0.02o3薄膜;

步骤4:将晶态bi0.85gd0.12sr0.03fe0.94mn0.04co0.02o3薄膜冷却至室温,重复步骤2直到达到所需厚度,即得到gdsrmnco共掺铁酸铋多铁薄膜。

实施例5

步骤1:将fto/glass基片分别用洗洁精、丙酮、无水乙醇清洗干净封存在无水乙醇中备用;

步骤2:以硝酸铋、硝酸钆、硝酸锶、硝酸铁、醋酸锰和硝酸钴为原料(硝酸铋过量5%),按摩尔比为0.87:0.15:0.03:0.94:0.04:0.02(x=0.15)溶于乙二醇甲醚中,搅拌30min,再加入醋酸酐,搅拌90min,得到金属离子总浓度为0.4mol/l的稳定的前驱液;其中乙二醇甲醚和醋酸酐的体积比为2.8:1;

步骤3:将fto/glass基片用去离子水洗净后用n2吹干,再用紫外光照射仪照射洁净的fto/glass基片40min,使fto/glass基片表面达到原子清洁度,然后将前驱液旋涂在fto/glass基片上,其匀胶转速为3500r/min,匀胶时间为18s,得到湿膜,湿膜在205℃下烘烤6.5min得干膜,再在545℃下在空气中退火23min,即得晶态bi0.82gd0.15sr0.03fe0.94mn0.04co0.02o3薄膜;

步骤4:将晶态bi0.82gd0.15sr0.03fe0.94mn0.04co0.02o3薄膜冷却至室温,重复步骤2直到达到所需厚度,即得到gdsrmnco共掺铁酸铋多铁薄膜。

以上所述内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不是全部或唯一的实施方式,本领域普通技术人员通过阅读本发明说明书而对本发明技术方案采取的任何等效的变换,均为本发明的权利要求所涵盖。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1