六方氮化硼、其制造方法及电器件和半导体器件与流程

文档序号:24158581发布日期:2021-03-05 13:44阅读:502来源:国知局
六方氮化硼、其制造方法及电器件和半导体器件与流程

[0001]
本公开涉及制造六方氮化硼(h-bn)的方法,更具体地,涉及其中在相对低的温度下外延生长六方氮化硼的制造六方氮化硼的方法。


背景技术:

[0002]
作为具有二维结构的材料的六方氮化硼具有硼原子和氮原子的六边形排列,由于约5.9ev的高带隙能量而具有电绝缘特性,并且在化学和物理上稳定。
[0003]
六方氮化硼晶体具有非常强的共价键并具有润滑性。此外,因为六方氮化硼具有高导热性、可不具有熔点并且在约3,000℃下升华,所以它在高温下具有高稳定性,并且在1000℃或更高的高温范围内具有105ω的非常高的电阻。这样的六方氮化硼可以主要用于电器件或电子器件中诸如绝缘膜、抗扩散膜或表面抗氧化剂膜的应用。此外,六方氮化硼可以用来制作用于生长其他二维材料的衬底。此外,因为六方氮化硼具有2.26的低比重,所以它可以用于减轻部件重量。
[0004]
这样的六方氮化硼通常使用热化学气相沉积(t-cvd)在约1,000℃至约1,500℃的高温下生长。


技术实现要素:

[0005]
根据一方面,提供了一种制造六方氮化硼的方法,该方法包括:将催化金属放置在腔室中,该催化金属具有六方晶体结构,并与腔室中的六方氮化硼(h-bn)具有大于或等于0%且小于或等于15%的晶格失配;以及在将氮源和硼源供应到腔室中的同时,在800℃或更低的温度下在催化金属上生长六方氮化硼。
[0006]
在一些实施方式中,催化金属可以包括钴(co)、co-cr合金、co-n合金、co-ir合金、锌(zn)、钌(ru)、锝(tc)、锇(os)和铼(re)中的至少一种的晶体。
[0007]
额外的方面将在以下描述中部分地阐述且将部分地自该描述明显,或者可以通过本公开的所呈现的实施方式的实践而被了解。
[0008]
在一些实施方式中,氮源和硼源可以包括作为硼和氮的化合物的环硼氮烷、1,3,5-三甲基环硼氮烷、2,4,6-三甲基环硼氮烷、氨基硼烷、2,4,6-三氯环硼氮烷、b-三(甲基氨基)环硼氮烷和氨硼烷中的至少一种。
[0009]
在一些实施方式中,氮源可以包括氨气(nh3)气体和氮气(n2)气体中的至少一种。
[0010]
此外,在一些实施方式中,硼源可以包括选自bh3、bf3、bcl3、b2h6、(ch3ch2)3b和(ch3)3b中的至少一种材料。
[0011]
在一些实施方式中,氮源和硼源可以通过蒸发固体氮化硼粉末来提供。
[0012]
在一些实施方式中,方法还可以包括:在生长六方氮化硼之前,从催化金属的表面去除污染物。
[0013]
在一些实施方式中,从催化金属的表面去除污染物可以包括:将氢气(h2)气体供应到腔室中以及将腔室中的温度升高至1,000℃。
[0014]
在一些实施方式中,在以100sccm的流量供应氢气气体的同时,去除污染物可以被执行20分钟。
[0015]
在一些实施方式中,生长六方氮化硼可以通过电感耦合等离子体化学气相沉积来执行。
[0016]
在一些实施方式中,生长六方氮化硼可以在从约350℃至约800℃的范围内的温度下执行。
[0017]
在一些实施方式中,生长六方氮化硼可以包括:以0sccm至100sccm的流量将氢气(h2)气体供应到腔室中;以0sccm至100sccm的流量将氩气(ar)气体供应到腔室中;以0.01sccm至1sccm的流量将环硼氮烷气体供应到腔室中;以及将腔室中的压力保持在约0.01托至约1托。
[0018]
在一些实施方式中,催化金属和六方氮化硼之间的晶格失配可以大于0%且小于或等于10.4%。
[0019]
在一些实施方式中,生长六方氮化硼可以提供可具有单晶结构的生长的六方氮化硼。
[0020]
在一些实施方式中,生长的六方氮化硼的均方根表面粗糙度可以大于或等于0nm且小于或等于2nm。
[0021]
此外,生长的六方氮化硼的均方根表面粗糙度可以大于或等于0nm且小于或等于1.7nm。
[0022]
根据另一方面,提供了一种通过上述方法之一制造的六方氮化硼。该六方氮化硼可以具有单晶结构,并具有大于或等于0nm且小于或等于2nm的均方根表面粗糙度。
[0023]
根据另一方面,提供了一种电器件,其包括:通过上述方法之一制造的六方氮化硼;以及在六方氮化硼上的二维材料。
[0024]
在一些实施方式中,二维材料可以包括石墨烯、过渡金属二硫族化物、黑磷或磷烯。
[0025]
根据另一方面,一种半导体器件包括:包括源极区域和漏极区域的衬底,源极区域和漏极区域各自包含掺杂半导体;第一六方氮化硼和第二六方氮化硼,通过上述方法之一制造并且在衬底上,第一六方氮化硼在源极区域上,第二六方氮化硼在漏极区域上;在第一六方氮化硼上的源电极;以及在第二六方氮化硼上的漏电极。
[0026]
根据一方面,提供了一种制造六方氮化硼的方法。该方法包括:将催化金属放置在腔室中,该催化金属具有六方晶体结构,并包括钴(co)、co-cr合金、co-n合金、co-ir合金、锌(zn)、钌(ru)、锝(tc)、锇(os)和铼(re)中的至少一种的晶体;以及在将氮源和硼源供应到腔室中的同时,在约350℃至约800℃的范围内的温度下在催化金属上生长六方氮化硼。
[0027]
在一些实施方式中,生长六方氮化硼可以包括:以0sccm至100sccm的流量将氢气(h2)气体供应到腔室中;以0s ccm至100s ccm的流量将氩气(ar)气体供应到腔室中;以0.01sccm至1sccm的流量将环硼氮烷气体供应到腔室中;以及将腔室中的压力保持在0.01托至1托。
[0028]
在一些实施方式中,生长六方氮化硼通过电感耦合等离子体化学气相沉积来执行。
[0029]
在一些实施方式中,该方法还可以包括在生长六方氮化硼之前,从催化金属的表
面去除污染物。
[0030]
在一些实施方式中,氮源和硼源可以包括环硼氮烷、1,3,5-三甲基环硼氮烷、2,4,6-三甲基环硼氮烷、氨基硼烷、2,4,6-三氯环硼氮烷、b-三(甲基氨基)环硼氮烷和氨硼烷中的至少一种。
附图说明
[0031]
本公开的某些实施方式的以上/其他方面、特征和优点将由以下结合附图的描述更加明显,附图中:
[0032]
图1是根据一实施方式的用于制造六方氮化硼的系统的示意图;
[0033]
图2是通过图1的系统制造的六方氮化硼的表面的原子力显微镜照片;
[0034]
图3示出了通过图1的系统制造的六方氮化硼的低能电子衍射测量结果;
[0035]
图4是示出在400℃的温度下生长的六方氮化硼的拉曼光谱测量结果的曲线图;
[0036]
图5是示出在500℃的温度下生长的六方氮化硼的拉曼光谱测量结果的曲线图;
[0037]
图6是示出在600℃的温度下生长的六方氮化硼的拉曼光谱测量结果的曲线图;
[0038]
图7是示出在800℃的温度下生长的六方氮化硼的拉曼光谱测量结果的曲线图;
[0039]
图8是示出通过根据比较例1的方法生长的六方氮化硼的拉曼光谱测量结果的曲线图;
[0040]
图9是示出通过根据比较例2的方法生长的六方氮化硼的拉曼光谱测量结果的曲线图;
[0041]
图10a至图10e是示出使用六方氮化硼制造场效应晶体管的工艺的示意性透视图;以及
[0042]
图11是包括六方氮化硼的半导体器件的示意性结构的剖视图。
具体实施方式
[0043]
现在将详细参照其示例在附图中示出的实施方式,其中同样的附图标记始终指代同样的元件。在这方面,发明构思的实施方式可以具有不同的形式,并且不应被解释为限于在此阐述的描述。因此,下面通过参照附图仅描述实施方式以解释各方面。当在此使用时,术语“和/或”包括一个或更多个相关所列举项目的任何及所有组合。
[0044]
诸如
“……
中的至少一个”的表述当在一列元素之后时,修饰整列元素而不修饰该列中的个别元素。诸如
“……
中的至少一个”的表述当在一列元素(例如,a、b和c)之后时,修饰整列元素,而不修饰该列中的个别元素。例如,“a、b和c中的至少一个”、“a、b或c中的至少一个”、“a、b、c或其组合中的一个”以及“a、b、c及其组合中的一个”可以分别被解释为覆盖以下组合中的任何一个:a;b;a和b;a和c;b和c;以及a、b和c。
[0045]
在下文中,将参照附图详细描述制造六方氮化硼的方法。在以下附图中,同样的附图标记指代同样的元件,并且为了清楚和便于说明,每个元件的尺寸可以被夸大。此外,以下实施方式仅是说明性的,并且可以被各种各样地修改。此外,在下面的层结构中,表述“在
……
上方”或“在
……
上”不仅可以包括直接接触地在
……
上/下方/左侧/右侧,而且还可以包括不接触地在
……
之上/下面/左侧/右侧。
[0046]
六方氮化硼(h-bn)包括以平面六边形晶体结构交替排列的硼原子和氮原子。六方
氮化硼具有层间结构,其中相邻的硼原子和氮原子由于两个原子的极性而彼此重叠。六方氮化硼可以用于各种应用,因为它在氧化气氛中非常不活泼、具有高导热性和高电绝缘性质并具有稳定的化学性质。本公开提供了在相对低的温度下外延生长六方氮化硼的方法。
[0047]
例如,图1是根据一实施方式的用于制造六方氮化硼的系统的示意图。参照图1,六方氮化硼可以使用电感耦合等离子体化学气相沉积(icp-cvd)系统10生长。电感耦合等离子体化学气相沉积系统10可以包括其中发生反应的腔室11、用于将源气体15提供到腔室11中的源入口12和13以及用于使引入到腔室11中的源气体15离子化并产生等离子体17的线圈14。线圈14可以位于腔室11中或者可以位于腔室11外部。电感耦合等离子体化学气相沉积系统10可以具有其他各种结构。然而,电感耦合等离子体化学气相沉积系统10的详细结构超出了本实施方式的范围,因而将省略其详细描述。
[0048]
首先,根据一实施方式,催化金属16被放置在腔室11中。催化金属16可以具有平坦的薄膜形式。催化金属16可以包括具有与六方氮化硼相同的六方晶体结构的金属材料。具体地,催化金属16可以包括与六方氮化硼具有15%或更小(例如,大于或等于0%且小于或等于15%)的晶格失配的金属材料。例如,催化金属16可以包括选自钴(co)、co-cr合金、co-n合金、co-ir合金、锌(zn)、钌(ru)、锝(tc)、锇(os)和铼(re)的至少一种材料的晶体。例如,六方氮化硼的晶格常数为约250pm(皮米),铼(re)的晶格常数为约276.1pm,使得铼(re)和六方氮化硼之间的晶格失配为约10.4%。此外,与六方氮化硼具有约0.3%的最低晶格失配的钴(co)的晶格常数为约250.71pm。因此,可以进一步限制金属材料的范围,从而可以使用与六方氮化硼具有10.4%或更小的晶格失配的金属材料作为催化金属16。
[0049]
为了使催化金属16具有六方晶体结构,可以使用预先生长在具有六方晶体结构的生长衬底(未示出)上的催化金属16。例如,催化金属16通过在合适的温度下在铝氧化物(al2o3)衬底上生长前述金属层而获得。允许催化金属16具有六方晶体结构的生长温度条件可以取决于金属材料而改变。尽管催化金属16从生长衬底分离并且仅催化金属16被放置在腔室11中,但是生长衬底和催化金属16两者也可以被放置在腔室11中。
[0050]
此外,在催化金属16被放置在腔室11中之前,选择性地,可以处理催化金属16的表面以提高平滑度。例如,可以使用化学抛光、物理抛光、化学机械抛光和电抛光中的至少一种作为抛光工艺。
[0051]
在催化金属16被放置在腔室11中之后,选择性地,可以从催化金属16的表面去除诸如碳的污染物。例如,在氢气气氛中,存在于催化金属16的表面上的诸如碳的污染物可以通过与氢结合而被去除。例如,在以约100sccm的流量将氢气(h2)供应到腔室11中的同时,腔室11中的温度可以升高到1000℃。去除污染物的工艺可以执行约20分钟。在去除污染物的同时,不向线圈14施加电流。如果催化金属16的表面上几乎没有污染物质,则可以省略去除这些污染物的工艺。
[0052]
在从催化金属16的表面去除污染物之后,可以通过电感耦合等离子体化学气相沉积在催化金属16上生长六方氮化硼。根据本实施方式,可以在将氮源和硼源供应到腔室11中的同时在800℃或更低的温度下在催化金属16上生长六方氮化硼。为此,在将腔室11中的温度保持在800℃或更低的同时,氮源和硼源与氢气(h2)或者氩气和氢气的混合物(ar/h2)一起被提供到腔室11中。同时,向线圈14施加电流。
[0053]
氮和硼的化合物可以用作氮源和硼源。例如,氮和硼的化合物可以包括选自环硼
氮烷((bh)3(nh)3)、氨基硼烷(nh2bh2)、氨硼烷(h3nbh3)、1,3,5-三甲基环硼氮烷(c3h
12
b3n3)、2,4,6-三甲基环硼氮烷、2,4,6-三氯环硼氮烷(b3cl3h3n3)和b-三(甲基氨基)环硼氮烷(b
3.0
n
4.4
±
0.1
c
2.0
±
0.1
h
9.3
±
0.2
)的至少一种材料。或者,可以通过蒸发固体氮化硼粉末将氮和硼的化合物提供到腔室11中。
[0054]
此外,可以将作为氮源的氮前体提供到腔室11中,并可以将作为硼源的硼前体提供到腔室11中。氮前体可以包括例如选自氨气(nh3)气体和氮气(n2)气体的至少一种材料。此外,硼前体包括选自硼烷(bh3)、三氟化硼(bf3)、三氯化硼(bcl3)、b2h6、(ch3ch2)3b和(ch3)3b的至少一种材料。
[0055]
氮源和硼源在穿过腔室11内部的同时被线圈14内部的电场离子化。结果,氮源和硼源以等离子体17的状态存在于腔室11中。此后,处于等离子17状态的氮原子和硼原子彼此联接(couple),以生长六方氮化硼晶体。
[0056]
例如,当使用环硼氮烷制造六方氮化硼时,腔室11中的温度可以保持在约800℃或更低。此外,可以在向线圈14施加约500w或更小的功率的同时,以约0.01sccm至约1sccm的流量将环硼氮烷供应到腔室11中。同时,可以以约0sccm至约100sccm的流量将氢气(h2)气体供应到腔室11中,并且可以以约0s ccm至约100sccm的流量将氩气(ar)气体供应到腔室11中。在这种情况下,腔室11中的压力可以保持在约0.01托至约1托。
[0057]
图2是通过图1的系统制造的六方氮化硼的表面的原子力显微镜照片。例如,图2的六方氮化硼可以使用在铝氧化物衬底上生长至500nm厚度的钴作为催化金属16在约390℃的温度下制造。参照图2,可以发现,具有相对平滑且均匀的表面的六方氮化硼被形成。以这种方式制造的六方氮化硼被测量出具有约2nm或更小的均方根(rms)表面粗糙度,更精确地,具有约1.7nm或更小的均方根(rms)表面粗糙度。
[0058]
图3示出了通过前述方法制造的六方氮化硼使用低能电子衍射(leed)的测量结果。参照图3,作为leed测量的结果,发现了以一个六边形图案形式排列的六个衍射点。这意味着通过前述方法形成的六方氮化硼具有单晶结构。因此,通过前述方法形成的六方氮化硼可以具有高品质。
[0059]
图4至图7是示出在不同温度下生长的六方氮化硼的拉曼光谱测量结果的曲线图。图4是示出在400℃的温度下生长的六方氮化硼的拉曼光谱测量结果的曲线图,图5是示出在500℃的温度下生长的六方氮化硼的拉曼光谱测量结果的曲线图,图6是示出在600℃的温度下生长的六方氮化硼的拉曼光谱测量结果的曲线图,图7是示出在800℃的温度下生长的六方氮化硼的拉曼光谱测量结果的曲线图。
[0060]
参照图4,可以发现,拉曼光谱的峰出现在约1370cm-1
处。拉曼光谱取决于材料的种类而具有不同的峰。因为六方氮化硼在1370cm-1
处具有固有峰,所以可以确认,即使在约400℃的温度下也可以制造六方氮化硼。然而,在图4的曲线图中,在1370cm-1
以外的位置也看到了峰。这意味着除了六方氮化硼的异质成分之外,还部分地形成了立方氮化硼(c-bn)、非晶氮化硼(a-bn)、氮化硼碳(b
x
c
y
n
z
)或bn烟尘(bn soot)的异质成分。依次参照图5至图7,随着六方氮化硼的生长温度升高,某个峰出现在1370cm-1
处。特别是,在六方氮化硼在600℃和800℃下生长的情况下,1370cm-1
处的峰的强度比其他峰的强度强得多。
[0061]
从图2至图7的测量结果可以发现的是,根据本实施方式,当使用与六方氮化硼具有约15%或更小的晶格失配的催化金属时,甚至在约800℃或更低的低温下也可以生长六
方氮化硼。例如,六方氮化硼可以在约350℃至约800℃的温度范围内生长。因此,由于六方氮化硼的生长温度低,所以可以降低用于制造六方氮化硼的工艺成本,并且可以降低六方氮化硼的生产成本。
[0062]
此外,因为通过本实施方式的方法制造的六方氮化硼可以具有单晶结构,所以可以提高六方氮化硼的品质。例如,当具有多晶结构的六方氮化硼用作电器件或电子器件的抗扩散膜或表面抗氧化剂膜时,掺杂剂或氢可能渗透到六方氮化硼的晶体缺陷中。在这种情况下,抗扩散膜或表面抗氧化剂膜的性能可能劣化。具有单晶结构的六方氮化硼可以改善抗扩散膜或表面抗氧化剂膜的性能。
[0063]
同时,图8是示出通过根据比较例1的方法生长的六方氮化硼的拉曼光谱测量结果的曲线图。根据比较例1的六方氮化硼使用具有面心立方结构的铂(pt)晶体作为催化金属通过icp-cvd在700℃、800℃和900℃下制造。此外,在比较例1中,没有从铂催化金属的表面去除污染物。参照图8的曲线图,在700℃下制造的六方氮化硼中,在1370cm-1
处没有峰出现,而在800℃和900℃下制造的六方氮化硼中,在约1365cm-1
处出现弱峰。
[0064]
此外,图9是示出通过根据比较例2的方法生长的六方氮化硼的拉曼光谱测量结果的曲线图。在比较例2中,在氢气气氛中在1000℃的温度下从催化金属的表面去除污染物。此外,在与比较例1中的条件相同的条件下制造六方氮化硼。参照图9的曲线图,在700℃下制造的六方氮化硼中,在1370cm-1
处没有峰出现,在800℃下制造的六方氮化硼中,在约1370cm-1
处出现弱峰,而在900℃下制造的六方氮化硼中,在约1370cm-1
处出现相对强的峰。因此,可以发现,在通过常规热化学气相沉积(t-cvd)制造六方氮化硼时主要用作催化金属的铂(pt)不适合通过根据本实施方式的方法在800℃或更低温度下生长六方氮化硼。
[0065]
通过根据本实施方式的前述方法制造的六方氮化硼可以有用地用作钝化膜,诸如抗扩散膜或表面抗氧化剂膜。在这种情况下,因为六方氮化硼具有单晶结构,所以可以提高钝化膜的性能。此外,六方氮化硼可以用作用于生长诸如石墨烯的其他二维材料的衬底。
[0066]
例如,当六方氮化硼可以用作用于生长其他二维材料的衬底时,可以去除六方氮化硼下方的催化金属16。例如,催化金属16可以通过酸性溶液去除。当在酸处理之前用例如聚甲基丙烯酸甲酯(pmma)的支撑构件涂覆六方氮化硼薄膜然后去除催化金属16时,可以促进六方氮化硼的后续转移工艺。
[0067]
六方氮化硼与石墨烯具有较小的晶格失配。因此,当六方氮化硼薄膜被转移到用于石墨烯的催化金属上然后通过cvd形成石墨烯时,可以获得高品质的石墨烯。除了石墨烯之外,还可以在六方氮化硼上生长诸如黑磷(bp)、磷烯(其为二维同素异形体)以及过渡金属二硫族化物(tmdc)(其为过渡金属和硫族元素的化合物)的其他二维材料。例如,过渡金属二硫族化物(诸如mos2、ws2、tas2、hfs2、res2、tis2、nbs2、sns2、mose2、wse2、tase2、hfse2、rese2、tise2、nbse2、snse2、mote2、wte2、tate2、hfte2、rete2、tite2、nbte2、snte2)、黑磷或磷烯可以在六方氮化硼上生长。此外,诸如tiox、nbox、mnox、vaox、mno3、tao3、wo3、mocl2、crcl3、rucl3、bii3、pbcl4、ges、gas、gese、gase、ptse2、in2se3、gate、ins、inse和inte的其他各种二维材料可以在六方氮化硼上生长。
[0068]
此外,可以使用在六方氮化硼上生长的二维材料来制造诸如场效应晶体管(fet)的电器件或电子器件。例如,图10a至图10e是示出使用六方氮化硼制造场效应晶体管的工艺的示意性透视图。
[0069]
首先,参照图10a,六方氮化硼22和石墨烯21可以被放置在包括硅23和包含诸如sio2的绝缘材料的绝缘膜24的绝缘体上硅(soi)衬底上。例如,涂覆有pmma的六方氮化硼22被转移到soi衬底,并且pmma通过丙酮去除。此后,石墨烯21被转移到六方氮化硼22上。或者,六方氮化硼22可以转移到用于生长石墨烯的催化金属上,pmma可以被去除,然后石墨烯21可以在六方氮化硼22上生长。此后,用于生长石墨烯的催化金属被去除,并且六方氮化硼22和其上的石墨烯21被转移到soi衬底上。
[0070]
接着,参照图10b和图10c,第一电极26和第二电极27通过溅射等借助于掩模25被沉积在石墨烯21上。接着,参照图10d和图10e,除了在第一电极26和第二电极27之间由掩模28覆盖的部分以外,六方氮化硼22和石墨烯21的其余部分被去除。例如,soi衬底上的六方氮化硼22和石墨烯21可以使用o2等离子体被去除。以这种方式,可以制造包括由石墨烯21制成的沟道的场效应晶体管20。这里,留在第一电极26和第二电极27之间的石墨烯21可以用作沟道。
[0071]
尽管在以上参照图10a至图10e的描述中解释了石墨烯21在六方氮化硼22上生长或转移到六方氮化硼22上,但这仅是示例。除了石墨烯21之外,其他各种二维材料可以在六方氮化硼22上生长或转移到六方氮化硼22上,以制造诸如晶体管的电器件。例如,诸如过渡金属二硫族化物、黑磷、磷烯、tiox、nbox、mnox、vaox、mno3、tao3、wo3、mocl2、crcl3、rucl3、bii3、pbcl4、ges、gas、gese、gase、ptse2、in2se3、gate、ins、inse和inte的二维材料可以代替石墨烯21在六方氮化硼22上生长或转移到六方氮化硼22上,以制造诸如场效应晶体管的电子器件。
[0072]
同时,六方氮化硼可以插置在金属和半导体之间的界面处,以降低在金属和半导体之间的界面处发生的肖特基势垒。例如,图11是包括六方氮化硼的半导体器件的示意性结构的剖视图。参照图11,半导体器件100可以包括半导体层101、102和103、电接触半导体层101、102和103的金属层106和107以及设置在半导体层101、102和103与金属层106和107之间的六方氮化硼104和105。
[0073]
这里,半导体层101、102和103可以包括由掺有第一类型掺杂剂的半导体形成的阱区域101以及由掺有与第一类型掺杂剂在电上相反的第二类型掺杂剂的半导体形成的源极区域102和漏极区域103。尽管在图11中示出了阱区域101掺有p型掺杂剂并且源极区域102和漏极区域103掺有n型掺杂剂,但这仅是示例。阱区域101可以掺有n型掺杂剂,并且源极区域102和漏极区域103可以掺有p型掺杂剂。
[0074]
六方氮化硼104和105可以包括设置在源极区域102上的第一六方氮化硼104和设置在漏极区域103上的第二六方氮化硼105。尽管未在图11中示出,但是如图10a至图10e所示,诸如石墨烯、过渡金属二硫族化物、黑磷和磷烯的二维材料可以在六方氮化硼104和105上额外地生长或转移到六方氮化硼104和105上。
[0075]
金属层106和107可以包括设置在第一六方氮化硼104上的源电极106和设置在第二六方氮化硼105上的漏电极107。包括源电极106和漏电极107的金属层106和107可以包括诸如镁(mg)、铝(al)、钪(sc)、钛(ti)、钒(v)、铬(cr)、锰(mn)、镍(ni)、铜(cu)、锌(zn)、镓(ga)、锆(zr)、铌(nb)、钼(mo)、铅(pd)、银(ag)、镉(cd)、铟(in)、锡(sn)、镧(la)、铪(hf)、钽(ta)、钨(w)、铱(ir)、铂(pt)、金(au)、铋(bi)或其合金的金属。
[0076]
半导体器件100还可以包括:栅极绝缘膜108,设置在源极区域102和漏极区域103
之间的阱区域101上;栅电极109,设置在栅极绝缘膜108上;以及间隔物110,围绕栅绝缘膜108的侧壁和栅电极109的侧壁。阱区域101、源极区域102和漏极区域103可以形成在半导体衬底中。间隔物110可以限制和/或防止栅极绝缘膜108和栅电极109直接接触源电极106和漏电极107。栅极绝缘膜108可以由sio2、sinx、hfo2、al2o3等形成,栅电极109可以由多晶硅制成,或者可以由与金属层106和107相同的金属材料制成。间隔物110可以由诸如sio2或sinx的绝缘材料制成。
[0077]
在这样的结构中,第一六方氮化硼104可以降低源极区域102和源电极106之间的肖特基势垒,第二六方氮化硼105可以降低漏极区域103和漏电极107之间的肖特基势垒。因此,可以减小源极区域102和源电极106之间的接触电阻以及漏极区域103和漏电极107之间的接触电阻。
[0078]
应理解,这里描述的实施方式应仅在描述性意义上考虑,而不是出于限制的目的。对每个实施方式内的特征或方面的描述通常应被认为可用于其他实施方式中的其他类似特征或方面。尽管已经参照附图描述了一个或更多个实施方式,但是本领域普通技术人员将理解,在不背离如由所附权利要求限定的精神和范围的情况下可以在其中进行在形式和细节上的各种改变。
[0079]
本申请要求享有2019年9月3日在韩国知识产权局提交的韩国专利申请第10-2019-0108930号的权益,其公开通过引用全文在此合并。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1