包含羟丙基甲基纤维素的热可塑性陶瓷组合物的制作方法

文档序号:10540384阅读:465来源:国知局
包含羟丙基甲基纤维素的热可塑性陶瓷组合物的制作方法
【专利摘要】一种可用于制备陶瓷体的热可塑性组合物,其包含由于烘烤或烧结而凝固的无机材料,和羟丙基甲基纤维素,其DS为至少1.4且MS为至少0.6,其中DS是甲氧基的取代度并且MS是羟基丙氧基的摩尔取代度,并且作为2重量%水溶液在20℃下确定的粘度高达80mPa·s,其中所述热可塑性组合物包含至少40重量百分比的所述无机材料和至少10重量百分比的所述羟丙基甲基纤维素,并且其中所述组合物不包含多于5重量百分比的水,所有百分比均基于所述组合物的总重量。
【专利说明】
包含羟丙基甲基纤维素的热可塑性陶瓷组合物
技术领域
[0001] 本发明涉及热可塑性组合物及其用于制造模塑体的用途。
【背景技术】
[0002] 由由于烘烤或烧结而凝固的无机材料(例如陶瓷形成材料)制造模塑体是众所周 知的。根据一种操作,将无机材料与水和模塑助剂(例如无机粘合剂、表面活性剂、润滑剂和 增塑剂)混合并捏合。水的量通常为每100重量份无机材料10至60重量份,典型地15至40重 量份的水。然而,当无机材料在水存在下不具有惰性时、当应有利于尚未凝固的昂贵无机材 料的循环利用时或者当显著量水的存在对待模塑的无机材料具有其它不期望的影响时,显 著量水的存在是不期望的。
[0003] 还已知的是,使包含无机材料的组合物经受热模塑技术,例如热挤压。在已知的热 挤压工艺中,通常将无机材料以与聚合物粘合剂共混的细粉的形式使用。在介于该聚合物 粘合剂的玻璃化转变温度和分解温度之间的温度下挤压共混物以形成称为"生坯体"的陶 瓷前体。生坯体中的聚合物粘合剂有助于维持该生坯体的结果完整性。用于陶瓷组合物的 热挤压的已知聚合物粘合剂是例如聚乙烯、聚甲醛、乙烯-丙烯酸乙酯共聚物、乙烯-乙烯 基-乙酸酯共聚物和聚(乙烯-共-丙烯酸丁酯)。他们以相对高的量使用以使无机颗粒粘结 而不在其之间留下空隙空间并且能够使无机颗粒通过热模塑技术进行加工。通常通过热或 催化降解来去除聚合物粘合剂。在除去粘合剂之后,烘烤成形结构以将无机颗粒烧结成致 密化的成形陶瓷体。如美国专利号5,041,248中所公开的,用于热塑性陶瓷模塑组合物的已 知粘合剂的主要问题是粘合剂从成形的陶瓷前体热分解一般向烧结体中引入缺陷,例如裂 缝和空隙。为了使缺陷最小化,非常缓慢地除去粘合剂。然而,已知粘合剂在不存在氧的情 况下需要非常高的脱粘温度。由于所使用材料的氧敏感性,因此通常脱粘气氛不含氧。对于 上述粘合剂还众所周知的是:在脱粘步骤期间释放有毒气体并且陶瓷最终产品中的剩余碳 含量来自不完全燃烧。
[0004] 因此,长期以来需要提供这样的新热可塑性组合物,其包含由于烘烤或烧结而凝 固的无机材料,和粘合剂,其中所述粘合剂可在较温和的脱粘条件下除去。
[0005] 因此,已出乎意料地发现,某些羟丙基甲基纤维素可用作包含由于烘烤或烧结而 凝固之无机材料的热可塑性组合物中的粘合剂。

【发明内容】

[0006] 本发明的一个方面是热可塑性组合物,其包含由于烘烤或烧结而凝固的无机材 料,和羟丙基甲基纤维素,所述羟丙基甲基纤维素的DS为至少1.4且MS为至少0.6,其中DS是 甲氧基的取代度并且MS是羟基丙氧基的摩尔取代度,并且作为2重量%水溶液在20°C下所 确定的粘度高达80mPa · s,
[0007] 其中所述热可塑性组合物包含至少40重量百分比的无机材料和至少10重量百分 比的羟丙基甲基纤维素,并且其中所述组合物不包含多于5重量百分比的水,所有的百分比 均基于所述组合物的总重量。
[0008] 本发明的另一个方面是用于制造模塑体的方法,所述方法包括以下步骤:加热上 述组合物以提供可塑性物料,使该可塑性物料经受热模塑技术以产生模塑体以及烧结该模 塑体。
[0009] 本发明的又一个方面是由上述组合物产生的模塑体。
[0010] 本发明的又一个方面是所述模塑体作为催化剂载体、作为催化剂、热交换体、过滤 体、管或膜的用途。
【具体实施方式】
[0011] 本发明的热可塑性组合物包含由于烘烤或烧结而凝固的无机材料,优选陶瓷形成 材料。由于烘烤或烧结而凝固的物料不包括水硬性粘合剂(例如水泥或石膏),并且不包括 基于水泥或石膏的物料。无机陶瓷形成材料可以是合成产生的材料,例如氧化物、氢氧化物 等,或者其可以是天然存在的矿物,例如粘土、滑石或这些的任意组合。更优选地,所述无机 材料是氧化铝或其前体、二氧化硅或其前体、铝酸盐、铝硅酸盐、氧化铝二氧化硅、长石、二 氧化钛、熔融二氧化硅、氮化铝、碳化铝、高岭土、堇青石或其前体、莫来石或其前体、粘土、 膨润土、滑石、锆石、氧化锆、尖晶石、碳化硅、硼化硅、氮化硅、二氧化钛、碳化钛、碳化硼、氧 化硼、硼硅酸盐、硼硅酸钠钡、硅酸盐和页硅酸盐、金属硅、碳、毛玻璃、稀土氧化物、碱石灰、 沸石、钛酸钡、锆钛酸铅、钛酸铝、钡铁氧体、锶铁氧体,或此类无机材料中两种或更多种的 组合。术语"粘土"意指具有片状结构并且在与水混合时形成塑性物料的水合硅酸铝。通常 来说,粘土由一种或多种结晶结构例如高岭土、伊利石和蒙脱石构成。优选的氧化物是当与 粘土混合时形成堇青石和莫来石的那些(例如,用于形成堇青石的二氧化硅和滑石,和在形 成莫来石时的氧化铝)。所述无机材料通常呈粉末的形式。典型的颗粒尺寸为至多10微米。
[0012] 基于所述组合物的总重量,无机材料总计为至少40重量%,优选至少45重量%,更 优选至少50重量%,并且甚至更优选至少55重量%。基于所述组合物的总重量,无机材料的 量为至多90重量%,并且优选至多85重量%,或至多80重量%,或至多75重量,或至多70重 量%。
[0013] 本发明的热可塑性组合物还包含羟丙基甲基纤维素。令人吃惊的是,用于本发明 的羟丙基甲基纤维素可在通常施加于无机粉末和无机粘合剂之共混合物的条件下经受热 模塑技术。所述羟丙基甲基纤维素可在后续脱粘步骤中通过热脱粘或通过用水萃取来从模 塑陶瓷前体("生坯体")除去,这避免了形成有毒气体。
[0014] 所述羟丙基甲基纤维素具有含β-1,4糖苷键键合的D-吡喃葡萄糖重复单元的纤维 素骨架,在本发明的情形下将所述重复单元命名为脱水葡萄糖单元。脱水葡萄糖单元的羟 基被甲氧基取代的程度在本发明中必不可少。脱水葡萄糖单元的羟基不被除甲氧基和羟基 丙氧基之外的任何基团取代。
[0015] 将每个脱水葡萄糖单元的平均甲氧基数称为甲氧基的取代度,DSUegree ofsubstitution)。在DS的定义中,术语"被甲氧基取代的羟基"在本发明中应解释为不仅包 括与纤维素骨架之碳原子直接结合的甲基化羟基,而且包括与纤维素骨架结合之羟基丙氧 基取代基的甲基化羟基。
[0016] 将脱水葡萄糖单元的羟基被羟基丙氧基取代的程度通过表羟基丙氧基的摩尔取 代度,MS(molar substitution)来表示。MS为轻丙基甲基纤维素中每个脱水葡萄糖单元的 羟基丙氧基的平均摩尔数。应理解,在羟基丙氧基化反应期间,可通过甲基化剂和/或羟基 丙氧基化剂进一步醚化与纤维素骨架结合的羟基丙氧基的羟基。对于脱水葡萄糖单元之同 一碳原子位置的多个后续羟基丙氧基化反应产生其中多个羟基丙氧基通过醚键彼此共价 结合的侧链,每个侧链作为整体形成纤维素骨架的羟基丙氧基取代基。因此,术语"羟基丙 氧基"在MS的情形下必须解释为指作为羟基丙氧基取代基的构成单元的羟基丙氧基,其包 括单个羟基丙氧基或者其中两个或更多个羟基丙氧基单元通过醚键键合彼此共价结合的 上述侧链。在该定义中,羟基丙氧基取代基的末端羟基是否经进一步甲基化并不重要;对于 MS的确定,甲基化和未经甲基化的羟基丙氧基基团二者均包括在内。
[0017]用于本发明组合物的羟丙基甲基纤维素的DS为至少1.4,优选至少1.6,更优选至 少1.7,并且最优选至少1.8。所述羟丙基甲基纤维素的DS-般为至多2.7,更典型地至多 2.5,并且甚至更典型地至多2.4。
[0018]用于本发明组合物的羟丙基甲基纤维素的DS为至少0.6,并且优选至少0.7。所述 羟丙基甲基纤维素的DS-般为至多1.9,典型地至多1.7,更典型地至多1.5,并且最典型地 至多1.3。
[0019] 甲氧基%和羟基丙氧基%的确定根据美国药典(United States Pharmacopeia) 来进行(USP 35,"羟丙甲纤维素",第3467-3469页)。获得的数值为甲氧基%和羟基丙氧 基%。随后,将这些数值转换为甲氧基取代基的取代度(DS)和羟基丙氧基取代基的摩尔取 代度(MS)。在转换中,将残余量的盐考虑在内。
[0020] 作为2重量%水溶液在哈克VT550粘度计中以2.55JT1的剪切速率于20°C下所确定 的,用于本发明组合物的羟丙基甲基纤维素的粘度为至多880mPa · s,优选至多770mPa · s, 并且更优选至多660mPa · s。所述粘度优选至少2.4mPa · s,更优选至少5mPa · s,并且最优 选至少10mPa · s。这样的粘度的羟丙基甲基纤维素可通过使更高粘度的羟丙基甲基纤维素 经受部分解聚合工艺来获得。部分解聚合工艺在本领域中是众所周知的,并且在例如欧洲 专利申请EP 1,141,029、EP 210,917、EP 1,423,433和美国专利号4,316,982中进行了描 述。
[0021] 用于本发明的羟丙基甲基纤维素及其作为无机液体之增稠剂的用途在美国专利 号4,614,545中进行了描述,但是其用于制备含有由于烘烤或烧结而凝固之无机材料的热 可塑性组合物的用途在本发明之前尚不知道。本发明的组合物可包含上述一种或多种羟丙 基甲基纤维素。
[0022] 基于所述组合物的总重量,羟丙基甲基纤维素合计为至少10wt%,优选至少15重 量%,并且更优选至少20重量%。基于所述组合物的总重量,羟丙基甲基纤维素的量为至多 60重量%,典型地至多50wt%,更典型地至多45重量%,并且最典型地至多40重量%。
[0023]在一个实施例中,本发明的热可塑性组合物还包含不同于羟丙基甲基纤维素的聚 合物粘合剂。优选地,这样的聚合物粘合剂的量不高于羟丙基甲基纤维素的量。更优选地, 所述热可塑性组合物中这样的聚合物粘合剂的量为基于羟丙基甲基纤维素重量的20重 量%至80重量%。不同于羟丙基甲基纤维素并且可包含在本发明的热可塑性组合物中的示 例性聚合物粘合剂是热塑性聚合物,例如,聚乙烯、聚丙烯、聚丙烯酸酯、聚甲醛、乙烯-丙烯 酸乙酯共聚物、乙烯-乙烯基-乙酸酯共聚物、聚异丁烯聚合物、聚(乙烯-共-丙烯酸丁酯)及 其组合。
[0024] 基于所述组合物的总重量,所述组合物包含不多于5重量百分比,优选不多于3重 量百分比,并且更优选不多于1重量百分比的水。此外,基于所述组合物的总重量,所述组合 物优选包含不多于5重量百分比,更优选不多于3重量百分比,并且甚至更优选不多于1重量 百分比在大气压下沸点高达230Γ的有机溶剂。更优选地,所述组合物不包含水或在大气压 下沸点高达230 °C的有机溶剂。
[0025] 本发明的热可塑性组合物还可包含其它添加剂,例如增塑剂、软化剂、表面活性 剂、蜡、油、润滑剂、稳定剂、抗氧化剂或其组合。
[0026] 可用于实施本发明的表面活性剂的非限制性实例是C8至C22脂肪酸和/或其衍生 物。可与这些脂肪酸一起使用的另外表面活性剂组分是C 8至C22脂肪酯、C8至C22脂肪醇以及 这些的组合。示例性的表面活性剂是硬脂酸、月桂酸、油酸、亚油酸、棕榈油酸及其衍生物、 与月桂基硫酸铵组合的硬脂酸,以及这些全部的组合。最优选的表面活性剂是月桂酸、硬脂 酸、油酸以及这些的组合。表面活性剂的量典型地可为基于羟丙基甲基纤维素重量的0.1至 3百分比。润滑剂的非限制性实例是例如聚环氧乙烷均聚物、共聚物和三聚物,乙二醇,或油 类润滑剂,例如轻质矿物油、玉米油、高分子量聚丁烯、多元醇酯、轻质矿物油和蜡乳剂的共 混物、石蜡在玉米油中的共混合物,以及这些的组合。典型地,油类润滑剂的量可为基于羟 丙基甲基纤维素重量的0.1至10百分比,更典型地0.3至6百分比。
[0027] 无机材料、羟丙基甲基纤维素和任选的其它添加剂(例如不同于羟丙基甲基纤维 素的聚合物粘合剂以及选自表面活性剂、润滑剂、稳定剂和抗氧化剂的一种或多种任选组 分)的均匀混合可通过例如已知的常规捏合工艺来完成。
[0028] 本发明的另一个方面是用于制造模塑体的方法,所述方法包括以下步骤:加热上 述热可塑性组合物以提供可塑性物料,使该可塑性物料经受热模塑技术以产生模塑体以及 烧结该模塑体。
[0029] 加热可在混合无机材料、羟丙基甲基纤维素、典型地不同于羟丙基甲基纤维素的 聚合物粘合剂和任选的其它添加剂(例如表面活性剂、润滑剂、增塑剂、软化剂、蜡、油、稳定 剂或抗氧化剂)之前、期间或之后进行。典型地,在混合上述组分期间或之后进行加热。将本 发明的热可塑性组合物加热至至少组合物在压力下将具有可塑性,例如将流动通过挤压模 的温度。典型地,将混合物加热至至少l〇〇°C,优选至少110°C的温度。所述温度一般应不高 于羟丙基甲基纤维素开始降解的温度。一般来说,将混合物加热至至多220°C,优选至多210 °C,并且更优选至多200°C的温度。可使混合物经受已知的热模塑技术,例如注射模塑,并且 优选地挤压。可通过任何已知的常规陶瓷挤压工艺使混合物成形为模塑体,也称为"生坯 体"。在一个示例性方面,挤压可使用液压油缸挤出压机,或两段脱气单螺旋挤出机或出料 端带有模具组件的双螺杆挤压机来进行。然后,处理制备的模塑体或"生坯体"以基本去除 羟丙基甲基纤维素。根据本发明的一个方面,在洗涤步骤中去除羟丙基甲基纤维素,其中羟 丙基甲基纤维素溶解于水中,优选环境温度的水中。例如,可如下从制备的模塑体或"生坯 体"萃取羟丙基甲基纤维素:将整个体放置于水浴中使得水溶解羟丙基甲基纤维素并且在 羟丙基甲基纤维素已从模塑体洗掉之后保留模塑的"生坯体"。或者,可加热或烘烤羟丙基 甲基纤维素以使羟丙基甲基纤维素热分解并且作为主要气态分解产物除去羟丙基甲基纤 维素。如下完成分解:以一定加热速率将模塑体加热至导致羟丙基甲基纤维素基本上完全 分解的温度,所述加热速率使得分解产物从模塑体扩散而不会形成空隙或其它缺陷。典型 地,将模塑体加热至240 °C至600 °C,更典型地280 °C至550 °C的温度。典型地在去除降解产物 而不与无机粉末反应的气氛中进行分解。在除去羟丙基甲基纤维素之后,随后可根据已知 技术在有效地将生坯体转化成烧结制品的条件下烧制生坯体。烧制的温度和时间条件取决 于该体的分解以及尺寸和几何学,并且本发明不限于特定的烧制温度和时间。典型温度为 600°C至2300°C,并且在这些温度下的保持时间典型地为1小时至20小时。
[0030] 根据本发明的模塑体可具有任意常规的尺寸和形状。他们可用于多种应用,例如 催化剂载体、作为催化剂、热交换体、过滤体、管、膜等。本发明的组合物和方法非常适于中 空和实心型材的产生。
[0031] 以下实例仅用于举例说明目的并且不旨在对本发明的范围进行限制。除非另作说 明,否则所有百分比均为按重量计。
[0032] 实例1和比较例A至E
[0033]实例1和比较例A至E中使用以下羟丙基甲基纤维素(HPMC)的样品,其各自的DS(甲 基)为2.2且MS(羟基丙氧基)为1.2,但具有不同粘度。甲氧基%和羟基丙氧基%的确定根据 美国药典来进行(USP 35,"轻丙甲纤维素",第3467-3469页)。随后,将这些数值转化为甲氧 基取代基的取代度(DS)和羟基丙氧基取代基的摩尔取代度(MS) dPMC样品的粘度作为2重 量%水溶液在哈克VT550粘度计中以2.55JT1的剪切速率于20°C下确定。
[0034] HPMC样品可商购得到或者根据已知程序通过部分解聚合更高粘度的HPMC来获得。 部分解聚合通过将HPMC粉末与气态氯化氢一起在60 °C至85°C的温度下加热80至100分钟来 实现。
[0035] 糊料形式的可塑性组合物的制备
[0036] 将具有金属盖之Brabender Plasti-Corder PL 2000转矩捏合机的30ml捏合单元 W30加热至190 °C。在空单元自动校准之后,将羟丙基甲基纤维素、任选的堇青石前体材料 (伊美瑞(Imerys)堇青石CP820M)和任选的其它成分的均相混合物填充到该单元中。在 30rpm下进行均化直至达到恒定转矩。
[0037] 在捏合条件下对HPMC的热稳定性的测试
[0038]将以下羟丙基甲基纤维素(HPMC)的样品加料到上述转矩捏合机中并捏合至少40 分钟:所述羟丙基甲基纤维素各自的DS(甲基)为2.2且MS(羟基丙氧基)为1.2,但是具有不 同的粘度,如下表1中所列出。为了确定HPMC粘合剂的热稳定性,在175°C至180°C下进行纯 HPMC(不含陶瓷成分)的捏合测试。为了观察热稳定性,观察捏合转矩随时间的进程(参见下 表1).在糊料呈均相之前,转矩值显示出很多显著跳跃,这可归因于材料缺乏均相性。在形 成均相糊料之后,转矩随时间下降可归因于HPMC分子的热降解。
[0039]均相糊料在几分钟之内实现。作为HPMC分子之热降解的间接量度,在混合第20分 钟和第30分钟之间观察到转矩的下降,并在表1中以%提及。
[0040]藍
[0041]
[0042] 挤压试验
[0043] 将具有直径为2.0mm且长度为27.2mm的模具的毛细管流变仪(马尔文RH10,马尔文 仪器)加热至高达17 3 °C并用来自上述转矩捏合机且由实例1之HPMC和堇青石前体材料(伊 美瑞堇青石CP820M)组成的糊料填充。实例1的HPMC的DS(甲基)为2.2,1^(羟基丙氧基)为 1.2,并且作为2重量%水溶液在20°C下确定的粘度为40mPa · s。
[0044] 通过模具的垂直挤压用以约5mm/分钟移动的活塞来进行。挤压成意大利细面条样 细丝。表2示出了使用实例1之HPMC的三个不同的成功挤压试验。
[0045] 表 2
[0046]
[0047] 实例2至8和比较例F至Η
[0048] 提供具有如下表3中所列出的DS(甲基)、MS(羟基丙氧基)和粘度的HPMC的样品。使 用用于碱化纤维素的醚化的已知方法来制备该样品。向碱纤维素添加醚化剂氯甲烷和环氧 丙烷并在升高的温度下反应。将得到的粗制HPMC中和,使用热水洗涤成不含氯化物,干燥并 研磨。如上文针对实例1和比较例A至E所述的,使产生的HPMC经受部分解聚合。
[0049] 糊料形式的可塑性组合物的制备
[0050] 将具有金属盖之Brabender Plasti-Corder PL 2000转矩捏合机的30ml捏合单元 W30加热至HPMC的软化温度,如下表3中所列出的。在空单元自动校准之后,将HPMC和任选的 其它材料填充到该单元中,在30rpm下进行均化直至达到恒定转矩。
[0051 ] 挤压试验
[0052]将具有直径为1.7mm且长度为27.2mm的模具的毛细管流变仪(马尔文RH10,马尔文 仪器)加热至下表3或4中列出的温度,并用来自上述扭转捏合机的糊料填充。通过模具的垂 直挤压用以约5mm/分钟移动的活塞来进行。通过目测检查来评价产生的意大利面条样细 丝。
[0053]在第一组试验中,来自上述转矩捏合机的糊料仅由HPMC组成以测试HPMC自身的挤 压性能。毛细管流变仪具有直径为1.7mm的模具。
[0054] 如表3中的结果所说明的,不具有至少1.4的DS和至少0.6的MS的HPMC没有足够的 热塑性。
[0055] 表 3
[0056]
[0057] (1):软化温度,用热台显微镜确定,加热速率:2°C/分钟。
[0058] (2):捏合开始之前捏合单元中的实际温度
[0059] (3):目测检查之后捏合机中的糊料特性
[0060] n.d·:未测定
[0061] (4)颗粒不熔融,无塑性物料
[0062]在第二组试验中,测试以下基于陶瓷堇青石的物料的挤压性能,其包含40重量% 如下表中列出的HPMC和60%重量与实例1中相同的堇青石前体材料,两个重量百分比均基 于物料的总重量。毛细管流变仪具有直径为2.0_的模具。
[0063] 表 4
[0064]
[0065] 0:30分钟捏合之后捏合单元中的实际温度
【主权项】
1. 一种热可塑性组合物,其包含: 由于烘烤或烧结而凝固的无机材料,和 羟丙基甲基纤维素,其DS为至少1.4且MS为至少0.6,其中DS是甲氧基的取代度并且MS 是羟基丙氧基的摩尔取代度,并且作为2重量%水溶液在20°C下确定的粘度高达80mPa · s, 其中所述热可塑性组合物包含至少40重量百分比的所述无机材料和至少10重量百分 比的所述羟丙基甲基纤维素,并且 其中所述组合物不包含多于5重量百分比的水,所有百分比均基于所述组合物的总重 量。2. 如权利要求1所述的组合物,其中作为2%重量水溶液在20°C下所确定,所述羟丙基 甲基纤维素的粘度高达60mPa · s。3. 如权利要求1或2中任一项所述的组合物,其中所述羟丙基甲基纤维素的DS为1.6至 2.5〇4. 如权利要求1至3中任一项所述的组合物,其中所述羟丙基甲基纤维素的MS为0.6至 1.7。5. 如权利要求1至4中任一项所述的组合物,其中所述无机材料是陶瓷形成材料。6. 如权利要求1至5中任一项所述的组合物,其中所述无机材料是氧化铝或其前体、二 氧化硅或其前体、铝酸盐、铝硅酸盐、氧化铝二氧化硅、长石、二氧化钛、熔融二氧化硅、氮化 铝、碳化铝、高岭土、堇青石、莫来石、粘土、膨润土、滑石、锆石、氧化锆、尖晶石、碳化硅、硼 化硅、氮化硅、二氧化钛、碳化钛、碳化硼、氧化硼、硼硅酸盐、硼硅酸钠钡、硅酸盐、页硅酸 盐、金属硅、碳、毛玻璃、稀土氧化物、碱石灰、沸石、钛酸钡、锆钛酸铅、钛酸铝、钡铁氧体、锶 铁氧体,或此类无机材料中两种或更多种的组合。7. 如权利要求1至6中任一项所述的组合物,其包含至少50重量百分比的所述无机材料 和至少20重量百分比的所述羟丙基甲基纤维素。8. 如权利要求1至7中任一项所述的组合物,其额外包含不同于羟丙基甲基纤维素的聚 合物粘合剂。9. 一种用于制造模塑体的方法,其包括以下步骤:加热如权利要求1至8中任一项所述 的组合物以提供可塑性物料,使所述可塑性物料经受热模塑技术以产生模塑体以及烧结所 述模塑体。10. 如权利要求9所述的方法,其中将所述组合物加热至至少100°C的温度。11. 如权利要求9或10所述的方法,其中在已使所述可塑性物料经受热模塑技术之后, 加热或烘烤产生的模塑体以使所述羟丙基甲基纤维素热分解。12. 如权利要求9或10所述的方法,其中在已使所述可塑性物料经受热模塑技术之后, 将产生的模塑体放置于水浴中,其中所述羟丙基甲基纤维素从所述模塑体中洗出。13. -种模塑体,其由如权利要求1至8中任一项所述的组合物产生。14. 如权利要求13所述的模塑体,其具有实心或中空型材。15. -种如权利要求13或14所述的模塑体的用途,其用作催化剂载体、用作催化剂、热 交换体、过滤体、管或膜。
【文档编号】C04B35/638GK105899473SQ201580003659
【公开日】2016年8月24日
【申请日】2015年1月9日
【发明人】R·拜尔, A·瓦格纳
【申请人】陶氏环球技术有限责任公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1