聚氨酯材料及其制备方法

文档序号:3674458阅读:393来源:国知局
聚氨酯材料及其制备方法
【专利摘要】本发明公开了一种聚氨酯材料,包括第一段和第二段,所述第一段为生物可降解聚合物,所述第二段为通过脲键连接的多元异腈酸酯和多元胺;所述生物可降解聚合物和所述多元异腈酸酯之间通过氨酯键连接;所述生物可降解聚合物为羟基或者氨基封端的酯键类或醚键类聚合物。上述聚氨酯材料,包括第一段和第二段,第一段具有酯键或醚键降解位点,降解后显酸性,第二段具有氨酯键及脲键等碱性类降解位点,降解后显碱性。这些降解位点具有不同的降解速率,通过调节各种降解位点的比例,可以调节聚氨酯材料的降解速率,和传统的支架材料相比,上述聚氨酯材料降解速率可控范围较宽。本发明还公开了上述聚氨酯材料的制备方法。
【专利说明】聚氨酯材料及其制备方法
【技术领域】
[0001]本发明涉及高分子材料【技术领域】,特别是涉及一种聚氨酯材料及其制备方法,可提高生物材料的生物降解可控性。
【背景技术】
[0002]人体组织损伤、缺损会导致功能障碍。传统的修复方法有自体组织移植术和异体组织移植术。这两种修复方法虽取得了满意的疗效,但前者是以牺牲自体健康组织为代价,会导致二次手术、引发很多并发症及附加损伤,后者具有引入严重的组织免疫排斥反应、肝炎病毒或带有潜在的HIV病毒等病原体的危险。人的器官功能衰竭,采用药物治疗、暂时性替代疗法可挽救部分病人的生命,但供体器官来源极为有限,此外,因免疫排斥反应需长期使用免疫抑制剂,由此而带来的并发症有时也是致命的。自20世纪80年代科学家首次提出“组织工程学”概念以后,为众多的组织缺损、器官功能衰竭病人的治疗带来了曙光。[0003]全球范围内的生物医学工程科学家们对以支架材料、细胞和生长因子为三要素的组织工程进行了大量的研究,同时也取得快速的发展。具有良好的生物可降解性能的支架材料是现代组织工程研究及发展的基石。以可降解的支架材料在体外构建有生物活性的种植体,植入体内修复组织缺损,可替代器官功能。在体内环境及生长因子的作用下,细胞进行生命活动,生长和分化使组织进行愈合,伴随着组织的愈合的同时,可生物降解的支架材料也被生命体同步代谢掉。因此,利用现代再生医学的修复损伤组织的新思路,采用可降解的支架材料取代惰性不可降解材料构建的组织工程支架,植入人体后,可以避免二次手术,减轻患者的痛苦和治疗费用,拥有不可比拟的优势。但迄今为止,在可修复的组织临床上,如骨组织工程,韧带修复及血管组织工程等,都没有出现真正意义上的用可降解生物材料构建的“人体器官”。从支架材料的角度考究其原因,主要在于现阶段生物可降解材料的生物可降解性能与人体组织修复过程中对支架材料的可降解要求还存在一定差距。用于植入人体器官修复的支架材料的其降解速率必须具备可控性,支架材料的降解速率必须与人体待修复的组织愈合速率基本一致。而目前所涉及的可降解支架材料都只是具备生物可降解性能,在降解速率可控方面还值得人们去研究和探索。
[0004]一般的支架材料利用现有可降解材料进行嵌段构成。如聚乳酸(Poly LacticAcid, PLA),聚己内酯(polycaprolactone, PCL),聚乙醇酸(Polyglycolic acido, PGA)及聚-β -轻丁酸(poly-β -hydroxybutyricacid, PHB),都具备良好的生物降解性能,其降解行为存在一定差异。如PLA拥有强疏水性主链,其水解降解速率较慢,而PGA、PCL由于侧链不存在甲基,亲水性比PLA强,水解降解速率相对较快。为了获得降解速率的可控性,将乳酸(lactic acid, LA)和乙醇酸(Glycolic Acid, GA)进行共聚,通过改变LA/GA比例能起到调节材料的降解速率的作用。显然,通过调节上述的影响因素,可以获得一定供选择的降解速率范围。
[0005]然而,传统的支架材料利用酯键构成,以酯键为降解位点,因此其降解速率变化范围也相对较小,也就是降解速率可控范围比较小。
【发明内容】

[0006]基于此,有必要提供一种降解速率可控范围较宽的聚氨酯材料及其制备方法。
[0007]—种聚氨酯材料,包括第一段和第二段,所述第一段为生物可降解聚合物,所述第二段为通过脲键连接的多元异腈酸酯和多元胺;
[0008]所述生物可降解聚合物和所述多元异腈酸酯之间通过氨酯键连接;
[0009]所述生物可降解聚合物为羟基或者氨基封端的酯键类或醚键类聚合物。
[0010]在一个实施例中,所述生物可降解聚合物为羟基封端聚己内酯、羟基封端聚乳酸、羟基封端聚乙醇酸、聚乙二醇、氨基封端的聚乙二醇、羟基封端聚乳酸-己内酯共聚物、羟基封端聚乳酸-乙醇酸共聚物、羟基封端聚己内酯-乙醇酸共聚物及羟基封端聚乳酸-己内酯-乙醇酸共聚物中的一种。
[0011]在一个实施例中,所述多元异腈酸酯为脂肪族二异氰酸酯、芳香族二异氰酸酯和脂环族二异氰酸酯中的至少一种。
[0012]在一个实施例中,所述脂肪族二异氰酸酯为1,6_六亚甲基二异氰酸酯、赖氨酸二异氰酸酯、异佛尔酮二异氰酸酯或4,4- 二环己基甲烷二异氰酸酯。
[0013]在一个实施例中,所述芳香族二异氰酸酯为4,4- 二苯基甲烷二异氰酸酯、甲苯二异氰酸酯或苯二亚甲基二异氰酸酯。
[0014]在一个实施例中 ,所述多元胺为丁二胺或乙二胺。
[0015]一种聚氨酯材料的制备方法,包括以下步骤:
[0016]将摩尔比为1.0:1.1~?.0:2.0的生物可降解聚合物和多元异腈酸酯在温度为600C~80°C条件下,聚合反应2tT6h,以辛酸亚锡为催化剂,得到预聚物;所述生物可降解聚合物和所述多元异腈酸酯之间通过氨酯键连接;所述生物可降解聚合物为羟基或者氨基封端的酯键类或醚键类聚合物;
[0017]往所述预聚物中加入多元胺,所述生物可降解聚合物和所述多元胺的摩尔比为1.0:0.1~?.0:1.0,在温度为(TC~50°C条件下,聚合反应ltT4h,所述生物可降解聚合物和所述多元胺的摩尔数之和等于所述多元异腈酸酯的摩尔数,得到聚氨酯材料;所述预聚物和所述多元胺通过所述多元异腈酸酯和所述多元胺之间的脲键连接。
[0018]在一个实施例中,所述辛酸亚锡与所述生物可降解聚合物的摩尔比为
0.001:1 ~0.01:1。
[0019]在一个实施例中,所述生物可降解聚合物为羟基封端聚己内酯、羟基封端的聚乳酸、羟基封端聚乙醇酸、聚乙二醇、氨基封端的聚乙二醇、羟基封端聚乳酸-己内酯共聚物、羟基封端聚乳酸-乙醇酸共聚物、羟基封端聚己内酯-乙醇酸共聚物及羟基封端聚乳酸-己内酯-乙醇酸共聚物中的一种。
[0020]在一个实施例中,所述多元异腈酸酯为脂肪族二异氰酸酯、芳香族二异氰酸酯和酯环族二异氰酸酯中的至少一种。
[0021]上述聚氨酯材料,包括第一段和第二段,第一段具有酯键或醚键降解位点,降解后显酸性,第二段具有氨酯键及脲键等碱性类降解位点,在降解显碱性。这些降解位点具有不同的降解速率,通过调节各种降解位点的比例,可以调节聚氨酯材料的降解速率,和传统的支架材料相比,上述聚氨酯材料降解速率可控范围较宽。【专利附图】

【附图说明】
[0022]图1为一实施方式的聚氨酯材料的制备方法流程图;
[0023]图2为聚氨酯材料的制备流程图;
[0024]图3为聚氨酯材料的降解流程图;
[0025]图4为实施例f实施例4制备得到的聚氨酯材料连续12周pH变化曲线图;
[0026]图5为实施例f实施例4制备得到的聚氨酯材料连续12周降解失重率变化曲线图。
【具体实施方式】
[0027]为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的【具体实施方式】做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施的限制。
[0028]一种聚氨酯材料,包括第一段和第二段,第一段为生物可降解聚合物,第二段为通过脲键连接的多元异腈酸酯和多元胺。
[0029]生物可降解聚合物和多元异腈酸酯之间通过氨酯键连接。
[0030]生物可降解聚合物可以为羟基或者氨基封端的酯键类或醚键类聚合物。具体的,生物可降解聚合物可以为羟基封端聚己内酯(H0-PCL-OH)、羟基封端的聚乳酸(HO-PLA-OH),羟基封端聚乙醇酸(HO-PGA-OH),聚乙二醇(PEG)、氨基封端的聚乙二醇(NH2-PEG-NH2)、羟基封端聚乳酸-己内酯共聚物、羟基封端聚乳酸-乙醇酸共聚物、羟基封端聚己内酯-乙醇酸共聚物及羟基封端聚乳酸-己内酯-乙醇酸共聚物中的一种。
[0031]多元异腈酸酯可以为脂肪族二异氰酸酯、芳香族二异氰酸酯和酯环族二异氰酸酯中的至少一种。
[0032]脂肪族二异氰酸酯可以为1,6-六亚甲基二异氰酸酯(hexamethylenediisocyanate, HDI)、赖氨酸二异氰酸酯、异佛尔酮二异氰酸酯(isophoronediisocyanate, IPDI)或4,4_ 二环已基甲烧二异氰酸酯。
[0033]芳香族二异氰酸酯可以为4,4- 二苯基甲烷二异氰酸酯、甲苯二异氰酸酯或苯二亚甲基二异氰酸酯
[0034]多元胺可以为丁二胺或乙二胺。
[0035]上述聚氨酯材料,包括第一段和第二段,第一段具有酯键或醚键降解位点,降解后显酸性,第二段具有氨酯键及脲键等碱性类降解位点,在降解后显碱性。这些降解位点具有不同的降解速率,通过调节各种降解位点的比例,可以调节聚氨酯材料的降解速率,以满足临床上不同愈合速率的需求,和传统的支架材料相比,上述聚氨酯材料降解速率可控范围较宽。
[0036]通过脲键连接的多元异腈酸酯和多元胺为第二段,使聚氨酯材料的降解过程中,在释放酸性物质的同时,也有碱性小分子释放,使降解过程的微环境的PH得到改善,可以缓解微环境偏酸的现象,不至于出现过酸性,避免酸性自催化现象,也进一步使材料的生物降解实现可控性。同时,控制组织存在的微环境,有益于组织愈合。[0037]如图1和图2所示,上述聚氨酯材料的制备方法,包括以下步骤:
[0038]S10、将摩尔比为1.0:1.1~1.0:2.0的生物可降解聚合物和多元异腈酸酯在温度为60°C~80°C条件下,聚合反应2tT6h,以辛酸亚锡为催化剂,得到预聚物。
[0039]生物可降解聚合物和多元异腈酸酯之间通过氨酯键连接。
[0040]辛酸亚锡与生物可降解聚合物的摩尔比为0.001:~0.01:1。
[0041]生物可降解聚合物为羟基或者氨基封端的酯键类或醚键类聚合物。生物可降解聚合物可以为羟基封端聚己内酯(H0-PCL-OH)、羟基封端的聚乳酸(H0-PLA-OH)、羟基封端聚乙醇酸(HO-PGA-OH )、聚乙二醇(PEG )、氨基封端的聚乙二醇(NH2-PEG-NH2 )、羟基封端聚乳酸-己内酯共聚物、羟基封端聚乳酸-乙醇酸共聚物、羟基封端聚己内酯-乙醇酸共聚物及羟基封端聚乳酸-己内酯-乙醇酸共聚物中的一种。
[0042]多元异腈酸酯可以为脂肪族二异氰酸酯、芳香族二异氰酸酯和酯环族二异氰酸酯中的至少一种。
[0043]脂肪族二异氰酸酯可以为1,6-六亚甲基二异氰酸酯、赖氨酸二异氰酸酯、异佛尔酮二异氰酸酯或4,4- 二环已基甲烷二异氰酸酯。
[0044]芳香族二异氰酸酯可以为4,4- 二苯基甲烷二异氰酸酯、甲苯二异氰酸酯或苯二亚甲基二异氰酸酯。
[0045]S20、往SlO中得到的预聚物中加入多元胺,生物可降解聚合物和多元胺的摩尔比为1.0:0.1~1.0:1.0,在温度为(TC~50°C条件下,聚合反应ltT4h,生物可降解聚合物和多元胺的摩尔数之和等于多元异腈酸酯的摩尔数,得到聚氨酯材料。
[0046]预聚物和多元胺通过多元异腈酸酯和多元胺之间的脲键连接。
[0047]多元胺可以为丁二胺或乙二胺。
[0048]通过对采用上述方法制备得到聚氨酯材料进行体外12周实时监控的降解实验,观察聚氨酯材料在蒸馏水环境中,连续降解12周的pH值。在37°C条件下,将采用上述方法制备得到的聚氨酯材料置于PBS缓冲液中,进行实时监控,检测聚氨酯材料连续12周的质量损失率。通过比较这两个指标来初步确定聚氨酯材料的降解性能,从而可以通过调节原材料比例,实现用于组织修复的聚氨酯材料的生物降解性能的可控性。
[0049]上述聚氨酯材料的制备方法操作工艺简单,通过调节原料类型及原料比例,可以获得具备不同降解性能的聚氨酯材料,可用于生物组织修复支架材料。
[0050]下面为具体实施例部分。
[0051]实施例1
[0052]将摩尔比为1.0: 1.1的HO-PCL-OH (分子量为2000g/mol)和HDI在温度为60°C条件下,聚合反应6h,以辛酸亚锡为催化剂,其中,辛酸亚锡与HO-PCL-OH的摩尔比为
0.001:1,得到 HD1-PCL-HD1
[0053]往HD1-PCL-HDI中加入乙二胺,PCL和乙二胺的摩尔比为1.0:0.1,在温度为(TC条件下,聚合反应4h,得到PU-1,其中,第一段和第二段的摩尔比为1: 1.2。
[0054]实施例2
[0055]将摩尔比为1.0: 1.2的HO-PCL-OH(分子量为2000g/mol)和HDI在温度为80°C条件下,聚合反应2h,以辛酸亚锡为催化剂,其中,辛酸亚锡与HO-PCL-OH的摩尔比为0.01: 1,得到 HD1-PCL-HDI。[0056]往HD1-PCL-HDI中加入乙二胺,PCL和乙二胺的摩尔比为1.0:0.2,在温度为50°C条件下,聚合反应lh,得到TO-2,其中,第一段和第二段的摩尔比为1: 1.4。
[0057]实施例3
[0058]将摩尔比为L O: L 3的HO-PCL-OH (分子量为2000g/mol)和HDI在温度为70°C条件下,聚合反应4h,以辛酸亚锡为催化剂,其中,辛酸亚锡与HO-PCL-OH的摩尔比为
0.005:1,得到 HD1-PCL-HDI。
[0059]往HD1-PCL-HDI中加入乙二胺,PCL和乙二胺的摩尔比为1.0:0.3,在温度为30°C条件下,聚合反应2h,得到TO-3,其中,第一段和第二段的摩尔比为1: 1.6。
[0060]实施例4
[0061]将摩尔比为1.0: 1.4的HO-PCL-OH (分子量为2000g/mol)和HDI在温度为65°C条件下,聚合反应3h,以辛酸亚锡为催化剂,其中,辛酸亚锡与HO-PCL-OH的摩尔比为
0.007:1,得到 HD1-PCL-HDI。
[0062]往HD1-PCL-HDI中加入乙二胺,PCL和乙二胺的摩尔比为1.0:0.4,在温度为25°C条件下,聚合反应3h,得到TO-4,其中,第一段和第二段的摩尔比为1: 1.8。
[0063]实施例5
[0064]实施例5的聚氨酯材料的制备方法和实施例2的制备方法基本相同,不同点在于,使用的HO-PCL-OH的分子量为4000g/mol,制备得到PU-4000。
[0065]实施例6
[0066]实施例6的聚氨酯材料的制备方法和实施例2的制备方法基本相同,不同点在于,使用的HO-PCL-OH的分子量为6000g/mol,制备得到PU-6000。
[0067]实施例7
[0068]将摩尔比为1.0: 1.4的HO-PEG-OH和异佛尔酮二异氰酸酯(isophoronediisocyanate, IPDI)在温度为65°C条件下,聚合反应3h,以辛酸亚锡为催化剂,其中,辛酸亚锡与 HO-PEG-OH 的摩尔比为 0.006:1,得到 IPD1-PEG-1PDI。
[0069]往IPD1-PEG-1PDI中加入丁二胺,HO-PEG-OH和丁二胺的摩尔比为1.0:0.4,在温度为25°C条件下,聚合反应3h,得到PU-5。
[0070]将实施例f实施例4制备的聚氨酯材料,分别进行体外生物降解实验。将PU-1、PU-2、PU-3和PU-4置于蒸馏水中,连续降解12周,蒸馏水的pH值变化曲线图如图3所示(以PCL为对照)。在37°C条件下,将PU-1、PU-2、PU-3和PU-4置于PBS缓冲液中,连续12周失重率变化图如图4所示(以PCL为对照)。
[0071]从结果分析可知,实施例f实施例4制备得到的聚氨酯材料的生物降解性能得到了改善,PH值变化平缓,同时降解速率变慢,通过调节第一段和第二段的比例,可以实现生物降解性能可控。经过12周的降解,PCL降解环境的pH值及失重率分别为2.12和65.21% ;PU-1降解环境的pH值及失重率分别为3.89和52.36% ;PU_2降解环境的pH值及失重率分别为4.11和47.65% ;PU-3降解环境的pH值及失重率分别为4.25和43.23% ;PU_4降解环境的PH值及失重率分别为4.51和39.85%。
[0072]从以上结果可以看出,随着第二段的比例升高,聚氨酯材料的降解微环境的pH值变化平缓,同时失重率也变化缓慢。具体原理如图5所示,酯键降解速率>氨基甲酸酯或者脲键,同时第二段降解的碱性物质也能中和第一段降解的酸性物质。因此,可以看出,通过调控三种原料的比例,能控制聚氨酯类材料的生物降解性能。
[0073]将实施例5和实施例6制备的聚氨酯材料,分别进行体外降解实验。经过12周的降解考察,其结果如下:PU-4000降解环境的pH值及失重率分别为4.02和52.65% ;PU-6000降解环境的PH值及失重率分别为3.67和57.12%。实施例2制备得到的TO-2降解环境的PH值及失重率分别为4.11和47.65%。将实施例7制备的聚氨酯材料,分别进行体外降解实验。经过12周的降解考察,其结果如下:TO-5降解环境的pH值及失重率分别为5.12和38.32%。由此可以得出,通过改变原料的的类型,也能使聚氨酯材料实现降解可控。
[0074]以上实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发 明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
【权利要求】
1.一种聚氨酯材料,其特征在于,包括第一段和第二段,所述第一段为生物可降解聚合物,所述第二段为通过脲键连接的多元异腈酸酯和多元胺; 所述生物可降解聚合物和所述多元异腈酸酯之间通过氨酯键连接; 所述生物可降解聚合物为羟基或者氨基封端的酯键类或醚键类聚合物。
2.根据权利要求1所述的聚氨酯材料,其特征在于,所述生物可降解聚合物为羟基封端聚己内酯、羟基封端的聚乳酸、羟基封端聚乙醇酸、聚乙二醇、氨基封端的聚乙二醇、羟基封端聚乳酸-己内酯共聚物、羟基封端聚乳酸-乙醇酸共聚物、羟基封端聚己内酯-乙醇酸共聚物及羟基封端聚乳酸-己内酯-乙醇酸共聚物中的一种。
3.根据权利要求1所述的聚氨酯材料,其特征在于,所述多元异腈酸酯为脂肪族二异氰酸酯、芳香族二异氰酸酯和脂环族二异氰酸酯中的至少一种。
4.根据权利要求3所述的聚氨酯材料,其特征在于,所述脂肪族二异氰酸酯为1,6_六亚甲基二异氰酸酯、赖氨酸二异氰酸酯、异佛尔酮二异氰酸酯或4,4- 二环己基甲烷二异氰酸酯。
5.根据权利要求3所述的聚氨酯材料,其特征在于,所述芳香族二异氰酸酯为4,4-二苯基甲烷二异氰酸酯、甲苯二异氰酸酯或苯二亚甲基二异氰酸酯。
6.根据权利要求1所述的聚氨酯材料,其特征在于,所述多元胺为丁二胺或乙二胺。
7.一种聚氨酯材料的制备方法,其特征在于,包括以下步骤: 将摩尔比为1.0:1.1-1.0:2.0的生物可降解聚合物和多元异腈酸酯在温度为600C~80°C条件下,聚合反应2tT6h,以辛酸亚锡为催化剂,得到预聚物;所述生物可降解聚合物和所述多元异腈酸酯之间通过氨酯键连接;所述生物可降解聚合物为羟基或者氨基封端的酯键类或醚键类聚合物; 往所述预聚物中加入多元胺,所述生物可降解聚合物和所述多元胺的摩尔比为1.0:0.1-1.0:1.0,在温度为0℃-~50°C条件下,聚合反应ltT4h,所述生物可降解聚合物和所述多元胺的摩尔数之和等于所述多元异腈酸酯的摩尔数,得到聚氨酯材料;所述预聚物和所述多元胺通过所述多元异腈酸酯和所述多元胺之间的脲键连接。
8.根据权利要求7所述的聚氨酯材料的制备方法,其特征在于,所述辛酸亚锡与所述生物可降解聚合物的摩尔比为0.001:1-0.01:1。
9.根据权利要求7所述的聚氨酯材料的制备方法,其特征在于,所述生物可降解聚合物为羟基封端聚己内酯、羟基封端的聚乳酸、羟基封端聚乙醇酸、聚乙二醇、氨基封端的聚乙二醇、羟基封端聚乳酸-己内酯共聚物、羟基封端聚乳酸-乙醇酸共聚物、羟基封端聚己内酯-乙醇酸共聚物及羟基封端聚乳酸-己内酯-乙醇酸共聚物中的一种。
10.根据权利要求7所述的聚氨酯材料的制备方法,其特征在于,所述多元异腈酸酯为脂肪族二异氰酸酯、芳香族二异氰酸酯和酯环族二异氰酸酯中的至少一种。
【文档编号】C08G18/42GK103897133SQ201210580768
【公开日】2014年7月2日 申请日期:2012年12月27日 优先权日:2012年12月27日
【发明者】阮长顺, 潘浩波, 窦庶华 申请人:深圳先进技术研究院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1