一次性的集成微流体盒及其制备和使用的方法与流程

文档序号:12285216阅读:297来源:国知局
一次性的集成微流体盒及其制备和使用的方法与流程

本申请要求2014年3月11日提交的美国临时申请序列号61/951,462和2014年5月2日提交的美国临时申请序列号61/987,699的权益和优先权,其内容通过引用以其整体被并入本文以及用于所有目的。

发明背景

具有互补金属氧化物半导体(CMOS)技术,如CMOS图像传感器,以及流体通道两者的集成微流体盒是难以制造的。在大多数情况下,该流体通道被设计在CMOS表面内,这减小了有源区并导致复杂的流动模式。因此,需要新的将CMOS技术集成在多隔室微流体盒中的方法。进一步地,因为PCR mix中存在微泡,而这些微泡在PCR过程中会扩大,所以要密封微流体盒中聚合酶链反应(PCR)区是一个显著的挑战。因此,需要新的密封微流体盒中的PCR区的方法。

发明概述

所披露的实施方式涉及用于检测生物反应的微流体盒。在一些实施方式中,该微流体盒被配置以对核酸样本进行测序操作。在一个方面,微流体盒包括限定用于处理待测序的该核酸样本的通道以及阀门的流体层的堆叠,以及该堆叠中集成的固态的CMOS生物传感器。该生物传感器具有被配置以检测生物反应的信号的有源区,其中该有源区的基本上全部在操作期间可用于试剂递送和照明。在另一个方面,微流体盒包括:(a)流动池,其包括包含一个或多个反应位点的反应位点区;(b)流体通道,其用于递送反应物至该反应位点区和/或从该反应位点区除去反应物;(c)生物传感器,其具有被配置以检测该反应位点区中的生物反应的信号的有源区。该反应位点区靠近该生物传感器的该有源区并且该反应位点区跨越该生物传感器的该有源区的基本上全部。在一些实施方式中,该流体通道基本上不与该生物传感器的该有源区重叠。

在第一总体方面,微流体盒被配置以对核酸样本进行测序操作。该微流体盒包括:(a)生物测定系统,其包括限定用于处理待测序的该核酸样本的通道以及阀门的流体层的堆叠;以及(b)该堆叠中集成的以及流体并且光学耦合到该生物测定系统的固态的CMOS生物传感器,该生物传感器包括被配置以检测生物反应的信号的有源区,其中该有源区的基本上全部在操作期间可用于试剂递送和照明。在一些实施方式中,该微流体盒进一步包括至少部分包围该流体层的堆叠和该CMOS传感器的外壳。在一些执行过程中,该生物测定系统包括被安装在该生物传感器上的流动池。

在第二总体方面,披露了用于检测生物反应的微流体盒。该微流体盒包括:(a)流动池,其包括包含一个或多个反应位点的反应位点区;(b)流体通道,其用于递送反应物至该反应位点区和/或从该反应位点区除去反应物;(c)生物传感器,其具有被配置以检测该反应位点区中的生物反应的信号的有源区。在一些执行过程中,该反应位点区靠近该生物传感器的该有源区,并且该反应位点区跨越该生物传感器的该有源区的全部或基本上全部。在一些执行过程中,该流体通道基本上不或者不与该生物传感器的该有源区重叠。

在第二总体方面的微流体盒的一些实施方式中,该生物传感器包括光检测器。在一些执行过程中,该光检测器是CMOS或CCD传感器。在一些执行过程中,该CMOS传感器为约9200μm长,约8000μm宽,约800-1000μm厚,并且具有约50个I/O焊盘。

在一些执行过程中,第二总体方面的该微流体盒被配置以对核酸样本进行测序操作。该流动池包括测序室,以及所检测到的生物反应的信号指示该生物反应中所涉及的核苷酸碱基类型。在一些执行过程中,该测序室形成在测序室层上,以及该生物传感器被设置在该测序室层下面的测序室底部层上的开口中,以及该流体通道形成在该测序室底部层下面的流体通道层上。在一些执行过程中,该流动池包括被疏水区包围的用于核酸附着和扩增的亲水区的衬底。在一些执行过程中,该反应位点区跨越该生物传感器的该有源区的全部。

在第一和第二总体方面的该微流体盒的一些执行过程中,该盒进一步包括:PCR区、试剂混合和分配区,以及一个或多个膜阀门,其被配置以可逆地阻止该PCR区与该试剂混合和分配区或包括该反应位点区的该流动池流体连通。在一些执行过程中,该微流体盒进一步包括柔性PCB加热器。在一些执行过程中,该PCR区包括多个PCR通道。在一些执行过程中,该试剂混合和分配区包括多个试剂通道和/或试剂供给器。在一些执行过程中,该盒进一步包括被配置以将该PCR区与该试剂混合和分配区进行流体连接的旋转阀门。在一些执行过程中,该旋转阀门被进一步配置以将该试剂混合和分配区与包括反应位点区的该流动池进行流体连接。

在第三总体方面,披露了一种用于核酸分子测序的微流体盒的流体层的堆叠。该流体层的堆叠包括:(a)测序室层,其具有被配置用于执行成簇和测序反应的测序室区;(b)测序室底部层,其被设置在该测序室层下面,该测序室底部层具有被配置以容纳图像传感器的开口,该图像传感器带有被设置在该测序室区下面的图像传感器的有源区;(c)该测序室底部层下面的柔性印刷电路板(PCB)层;以及(d)流体通道层,其被设置在该柔性印刷电路板(PCB)层的下面,该流体通道层包括被配置以将反应物递送到该测序室区的流体通道。

在该流体层的堆叠的一些执行过程中,该测序室区跨越该图像传感器的该有源区的基本上全部。在一些执行过程中,该流体通道基本上不与该图像传感器的该有源区重叠。在一些执行过程中,该测序室层和该测序室底部层包括用于多个膜阀门的开口。在一些执行过程中,该流体层的堆叠进一步包括被设置在该测序室层上的膜层。该膜层、该测序室层和该测序室底部层上的开口,以及该柔性PCB层被配置以形成多个膜阀门。在一些执行过程中,该膜阀门的至少一些被配置以提供该微流体盒的PCR区的可逆密封,与该微流体盒的试剂混合和分配区隔开。

在第四总体方面,提供了用于操作微流体盒的方法。在一些执行过程中,方法涉及:(a)在该微流体盒的PCR区中对样本执行聚合酶链反应;和/或在该微流体盒的试剂混合和分配区将该样本与一种或多种试剂混合;(b)通过流体通道将该样本转移到测序室,其中该测序室:(1)不同于该PCR区和/或该试剂混合和分配区的位置,以及(2)该测序室基本上不与该流体通道重叠;(c)对该样本执行测序反应;以及(d)使用具有邻近于该测序室的有源区的图像传感器将测序反应成像。在一些执行过程中,该测序室基本上跨越该有源区的全部。在一些执行过程中,该方法进一步涉及:在执行该聚合酶链反应时,密封该PCR区,与该试剂混合和分配区隔开;将该样本从该PCR区转移到该试剂混合和分配区,然后将该样本与一种或多种试剂混合。

在第五总体方面,提供了一种制造微流体盒的方法。该方法涉及:(a)形成包括印刷电路板(PCB)的流体层;(b)将图像传感器附接至该PCB,其中该图像传感器被定位成使得该图像传感器的有源区的基本上全部可用于照明和/或试剂递送;(c)组装包括该流体层的堆叠和该图像传感器,以及(d)形成包括该流体层和该图像传感器的该微流体盒。在一些执行过程中,该图像传感器是CMOS图像传感器。

在一些执行过程中,该流体层的堆叠包括:(a)测序室层,其具有被配置用于执行成簇和测序反应的测序室区;(b)测序室底部层,其被设置在该测序室层下面,该测序室底部层包括被配置以包含图像传感器的开口,该图像传感器带有被设置在该测序室区下面的该图像传感器的有源区;(c)该测序室底部层下面的包括该PCB的柔性PCB层;以及(d)流体通道层,其被设置在该柔性PCB层的下面,其中该流体通道层包括被配置以将反应物递送到该测序室区的流体通道。在一些执行过程中,该流体通道不或者至少基本上不与该测序室区重叠。

援引加入

本文提及的全部专利、专利申请和其他出版物(包括这些参考文献中披露的全部序列)通过引入被明确并入本文,其程度如同每个单独的出版物、专利或专利申请被具体且单独地指明通过引用被引入。被引用的全部文献在相关的部分,其整体通过引用被并入本文,用于本文中其引用的上下文所指示的目的。然而,任何文献的引用不应当解释承认其相对于本披露内容是现有技术。

附图概述

图1描绘了将柔性印刷电路板(PCB)和辊2辊(R2R)印刷电子用于CMOS技术和数字流体的单片集成的方法的例子的流程图;

图2描绘了流体堆叠的例子的分解图,该流体堆叠具有可以使用图1的方法层压并结合在一起的某些层;

图3描绘了CMOS器件的例子的透视图,该CMOS器件可以使用图1的方法被集成到微流体盒的流体层;

图4A、4B、5、6和7描绘了一种结构的侧视图并且示出了使用图1的方法将CMOS器件附接至柔性PCB的方法的例子;

图8描绘了使用图1的方法形成的结构的例子的侧视图,其中该流体层和CMOS器件在微流体盒中被集成在一起;

图9A和9B描绘了膜阀门的例子的透视图,其中膜阀门可以被集成到该流体层中;

图10A和10B分别描绘了打开和关闭状态的膜阀门的剖视图;

图11描绘了包括集成在一起的CMOS技术和数字流体的微流体盒的例子的示意图;

图12和13描绘了微流体盒组件(其是图11中所示的集成的微流体盒的物理实例的一个例子)的透视图;

图14A和14B描绘了被安装在图12和13中所示的微流体盒组件中的流体组件的例子的透视图;

图15A和15B分别描绘了能够被安装在图14A和14B中所示的流体组件中的加热器迹线的例子的平面图和剖视图;

图16、17、18、19、20A和20B描绘了图12的微流体盒组件的各种其他视图,示出其更多的细节;

图21至29描绘了作为显示其内部部件的手段的图12的微流体盒组件的解构的方法;

图30示出了图12的微流体盒组件的一部分的透明透视图并示出了各种试剂流体槽及其样本装载端口;

图31示出了图12的微流体盒组件的一部分的另一透明透视图并进一步示出了其流体通道;

图32示出了图12的微流体盒组件的剖视图,其示出了该微流体盒组件的更多的细节;

图33A、33B、34A、34B和35示出了图12的微流体盒组件的外壳的各个视图,其示出了该外壳的更多的细节;

图36、37、38A、38B和39示出了图12的微流体盒组件的基板的各种视图,其示出了该基板的更多的细节;

图40A和40B描绘了该微流体盒组件的该流体组件的示出了其更多的细节的其他透视图;

图41A、41B和41C描绘了示出了该微流体盒组件的该流体组件的柔性PCB加热器的更多细节的其他视图;

图42A和42B分别示出了图2和图14中所示的流体层的进口/出口端口层的透视图和平面图;

图43A和43B分别示出了图2和图14中所示的流体层的流体通道层的透视图和平面图;

图44A和44B分别示出了图2和图14中所示的流体层的柔性PCB层的透视图和平面图;

图45A和45B分别示出了图2和图14中所示的流体层的测序室底部层的透视图和平面图;

图46A和46B分别示出了图2和图14中所示的流体层的测序室层的透视图和平面图;

图47A和47B分别示出了图2和图14中所示的流体层的膜层和测序室顶层的透视图和平面图;

图48A和48B示出了将该微流体盒组件用来进行测序所需的多重PCR和下游混合的方法的例子的流程图;

图49描绘了CMOS流动池的例子的侧视图,其中生物传感器有源区的多达约100%可用于试剂递送和照明;

图50描绘了图49中所示的CMOS流动池的一个实施例的例子的分解图;

图51和52分别描绘了图50中所示的CMOS流动池被完全组装时的透视图和侧视图;

图53描绘了图50、51和52中所示的CMOS流动池的流动池盖的例子的透视图;

图54、55、56和57描绘了在该CMOS流通池中提供其上可安装该流动池盖的扩展的平面表面的方法的例子;

图58A、58B、58C和58D描绘了在该CMOS流通池中提供其上可安装该流动池盖的扩展的平面表面的方法的另一例子;

图59、60、61和62描绘了在该CMOS流通池中提供其上可安装该流动池盖的扩展的平面表面的方法的又一个例子。

发明详述

除非另外指出,本文披露的方法和系统的实践涉及本领域的技术范围内的分子生物学、微生物学、蛋白质纯化、蛋白质工程、蛋白质和DNA测序,以及重组DNA领域中通常使用的常规技术和装置。这样的技术和装置为本领域的那些技术人员已知并被描述于许多文本和参考文献中(参见例如,Sambrook等人,“Molecular Cloning:A Laboratory Manual,”Third Edition(Cold Spring Harbor),[2001]);以及Ausubel等人,“Current Protocols in Molecular Biology”[1987])。

数字范围包括定义该范围的数字。它的目的是,在整个说明书中给出的每一最大数值限度包括每一较低数值限度,就像这样的较低数值限度在本文中明确写出。整个说明书中给出的每一最小数值限度将包括每一较高数值限度,就像这样的较高数值限度在本文中明确写出。整个说明书中给出的每一数值范围将包括落入这样的较宽数值范围内的每一个较窄数值范围,就像这样的较窄数值范围在本文中明确写出。

本文提供的标题并不意在限制本披露。

除非本文另有定义,本文中使用的全部技术和科学术语具有与本领域普通技术人员所通常理解的相同的含义。包括本文中包括的术语的各种科学字典对那些技术人员来说是公知的以及可用的。虽然与本文描述的那些类似或等同的任何方法和材料可用于实践或本文所披露的实施方式的测试中,但还是对一些方法和材料进行了说明。

下文紧接定义的术语通过将本说明书作为一个整体进行参考而进行更详细地描述。将理解的是,本披露不限于所描述的特定的方法、方案和试剂,因为这些可以根据它们由本领域的技术人员所使用的上下文而发生变化。

引言

测序方法

本文描述的方法可以结合各种核酸测序技术使用。特别适用的技术是那些这样的技术,其中核酸按阵列附着在固定位置,使得它们的相对位置不改变并且其中该阵列被反复成像。在其中图像在不同的颜色通道中被获得的实施方式中,例如与用于将一个核苷酸碱基类型与另一个进行区分的不同的标记重合是特别适用的。在一些实施方式中,确定靶核酸的核苷酸序列的过程可以是一种自动化的过程。优选的实施方式包括边合成边测序(“SBS”)技术。

边合成边测序(“SBS”)技术一般涉及通过靠着模板链的核苷酸的迭代添加而对新生核酸链的酶促延伸。在传统的SBS方法中,单个核苷酸单体可以在每个递送中在聚合酶的存在下被提供到靶核苷酸。然而,在本文中所描述的方法中,多于一种类型的核苷酸单体可以在递送中在聚合酶的存在下被提供到靶核酸。

SBS可以利用具有终止子部分的核苷酸单体或那些缺乏任何终止子部分的核苷酸单体。利用缺乏终止子的核苷酸单体的方法包括,例如焦磷酸测序以及使用γ-磷酸盐-标记的核苷酸的测序,如下文进一步详细地阐述。在使用缺乏终止子的核苷酸单体的方法中,在每个循环中添加的核苷酸的数目一般是可变的以及依赖于模板序列和核苷酸递送的模式。对于利用具有终止子部分的核苷酸单体的SBS技术,该终止子可以在如利用双脱氧核苷酸的传统Sanger测序的情况下所使用的测序条件下,是有效地不可逆转的;或该终止子在如Solexa(现在的Illumina,Inc.)开发的测序方法的情况下,可以是可逆的。

SBS技术可利用具有标记部分的核苷酸单体或那些缺乏标记部分的核苷酸单体。因此,可以基于该标记的特性,如该标记的荧光;该核苷酸单体的特性,如分子量或电荷;该核苷酸的掺入的副产品,如焦磷酸盐的释放;或类似物来检测掺入事件。在其中测序试剂中存在两种或更多种不同的核苷酸的实施方式中,不同的核苷酸可以是可彼此区分的;或可替代性地,该两种或更多种不同的标记在正在使用的检测技术下可以是难以区分的。例如,测序试剂中存在的该不同的核苷酸可具有不同的标记以及它们可以如通过Solexa(现在的Illumina,Inc.)开发的测序方法所示范的,使用适当的光学进行区分。

优选的实施方式包括焦磷酸测序技术。焦磷酸测序检测随着特定的核苷酸被掺入新生链,无机焦磷酸(PPi的)的释放(Ronaghi,M.,Karamohamed,S.,Pettersson,B.,Uhlen,M.and Nyren,P.(1996)“Real-time DNA sequencing using detection of pyrophosphate release.”Analytical Biochemistry 242(1),84-9;Ronaghi,M.(2001)“Pyrosequencing sheds light on DNA sequencing.”Genome Res.11(1),3-11;Ronaghi,M.,Uhlen,M.and Nyren,P.(1998)“A sequencing method based on real-time pyrophosphate.”Science 281(5375),363;美国专利号6,210,891;美国专利号6,258,568以及美国专利号6,274,320,其披露通过引用被全部并入本文)。在焦磷酸测序中,释放的PPi可以通过由ATP硫酸酶被立即被转换为三磷酸腺苷(ATP)来检测,以及所生成的ATP的水平经由荧光素酶产生的光子进行检测。待测序的核酸可以按阵列附着到特征以及该阵列可以进行成像来捕获由于该阵列的特征处核苷酸的掺入而产生的化学荧光信号。在用特定的核苷酸类型(例如,A、T、C或G)处理该阵列后,可获得图像。关于在该阵列中的哪些特征被检测到,每个核苷酸类型的添加后获得的图像都是不同的。该图像中的这些差异反映出该阵列上的该特征的不同的序列的内容。但是,该图像中每个特征的相对位置将保持不变。该图像可以使用本文所阐述的方法进行存储、处理和分析。例如,在用每个不同的核苷酸类型处理该阵列后获得的图像可以如本文中所示范的,针对从用于基于可逆的终止子的测序方法的不同检测通道中所获得的图像的相同的方式进行处理。

在另一示例性类型的SBS中,循环测序通过含有,例如,如国际专利公开号WO 04/018497和美国专利7,057,026(其披露通过引用被并入本文)中所描述的可裂解或光漂白的染料标记的可逆的终止子核苷酸的逐步加入来完成。这种方法正由Solexa(现在的Illumina Inc.)进行商业化,并且被描述于国际专利公开号WO 91/06678和国际专利公开号WO 07/123,744,其各自通过引用被并入本文。荧光标记的终止子的可用性(其中终止可逆向以及荧光标记可切割)便于高效循环可逆终止(CRT)测序。聚合酶也可以经共同工程化以有效地掺入并从这些经修饰的核苷酸处延伸。

优选地在基于可逆的终止子的测序实施方式中,该标记基本上不抑制SBS反应条件下的延伸。然而,检测标记可以是,例如通过切割或降解可移除的。继标记掺入成阵列的核酸特征之后,可以捕获图像。在具体的实施方式中,每个循环涉及四种不同的核苷酸种类向该阵列的同时递送以及每个核苷酸类型具有光谱上不同的标记。然后可以得到四个图像,每个使用对四个不同的标记之一有选择性的检测通道。可替代地,不同的核苷酸类型可以依次加入以及该阵列的图像可以在每个加入步骤之间获得。在这种实施方式中,每个图像将显示已经掺入特定类型的核苷酸的核酸特征。由于每个特征的序列内容不同,不同的图像中将存在或不存在不同的特征。然而,该图像中该特征的相对位置将保持不变。从这样的可逆的终止子-SBS方法中获得的图像可以如本文所阐述进行存储、处理和分析。图像捕获步骤之后,标记可以被移除以及可逆的终止子部分可以被移除用于后续的核苷酸添加和检测的循环。在特定的循环中检测该标记之后以及后续循环之前的该标记的移除可以提供减少循环之间的背景信号和串扰的优点。有用的标记和移除方法的例子如下文所阐述。

在特定的实施方式中,核苷酸单体的部分或全部可包括可逆的终止子。在这样的实施方式中,可逆的终止子/可裂解的荧光标记可以包括经由3'酯键连接至核糖部分的荧光标记(Metzker,Genome Res.15:1767-1776(2005),其通过引用并入本文)。其他方法已从荧光标记的切割中分离出终止子化学(Ruparel等人,Proc Natl Acad Sci USA 102:5932-7(2005),其通过引用全部并入本文)。Ruparel等人描述了对可逆的终止子的开发,其使用小的3'烯丙基来阻断延伸,但可以很容易地通过利用钯催化剂的短时间处理而进行解封。荧光团经由可光裂解的接头而附着到碱基,该接头可以通过暴露于长波长UV光30秒很容易地被切割。因此,二硫化物还原或光切割物可以用作可切割的接头。可逆终止的另一种方法是使用在将笨重的染料放置在dNTP上之后发生的自然终止。dNTP上的带电笨重染料的存在可以通过位阻和/或静电障碍作为有效的终止子。除非该染料被移除,否则一个掺入事件的存在阻止了进一步的掺入。染料的裂解移除了荧光标记并有效地逆转了该终止。经修饰的核苷酸的例子也被描述于美国专利7,427,673和美国专利7,057,026,其披露内容通过引用全部被并入本文。

可以与本文所述的方法和系统一起使用的附加的示范性SBS系统和方法被描述于美国专利公开号2007/0166705、美国专利公开号2006/0188901、美国专利7,057,026、美国专利公开号2006/0240439、美国专利公开号2006/0281109、国际专利公开号WO 05/065814,美国专利公开号2005/0100900、国际专利公开号WO 06/064199、国际专利公开号WO 07/010,251、美国专利公开号2012/0270305和美国专利公开号2013/0260372,其披露的内容通过引用被全部并入本文。

一些实施方式可以使用少于四种不同的标签来利用四种不同的核苷酸的检测。例如,SBS可以利用美国专利公开号2013/0079232(其通过引用被全部并入本文,以用于本文引证的上下文所指示的目的)的掺入材料中所描述的方法和系统来执行。

作为第一个例子,一对核苷酸类型可以在相同的波长处被检测到,但基于该对中的一员相比另一员的强度差;或者基于相比针对该对中的另一员检测到的信号,导致信号出现或消失的该对中的一员(如经由化学改性、光化学改性或物理改性)的改变而区分开来。作为第二个例子,四个不同的核苷酸类型中的三个在特定条件下可以被检测到,而第四个核苷酸类型缺少在这些条件下是可检测到的或在这些条件下以最小程度被检测到的(例如,由于背景荧光等的最小检测)标记。前三个核苷酸类型掺入核酸可以基于它们各自的信号的存在来确定以及第四个核苷酸类型掺入核酸可以基于任何信号的不存在或最小检测来确定。作为第三个例子,一个核苷酸类型可以包括在两个不同的通道中被检测到的一个(或多个)标记,而其它核苷酸类型在该通道的不超过一个通道中被检测到。前述的三个示例性配置不被视为互相排斥的以及可以以各种组合进行使用。结合全部三个例子的示例性实施方式是使用如下的基于荧光的SBS方法:在第一通道中被检测到的第一核苷酸类型(例如,具有当由第一激发波长激发时在第一通道中被检测到的标记的dATP)、在第二通道中被检测到的第二核苷酸类型(例如,具有当由第二激发波长激发时在第二通道中被检测到的标记的dCTP)、在第一和第二通道中被检测到的第三核苷酸类型(例如,具有当由第一和/或第二激发波长激发时在该两个通道中均被检测到的至少一个标记的dTTP)以及缺少在任一通道中不被或以最小程度被检测到的标记的第四个核苷酸类型(例如,无标记的dGTP)。

此外,如美国专利公开号2013/0079232(其通过引用被全部并入本文,以用于本文引证的上下文所指示的目的)的引入材料中所描述,可以使用单个通道来获得测序数据。在这种所谓的单染料测序方法中,该第一核苷酸类型被标记,但该标记在该第一图像生成之后被移除,以及只有在生成该第一图像后,该第二核苷酸类型才被标记。该第三核苷酸类型在该第一和第二图像中均保留其标记,以及该第四核苷酸类型在这两个图像中均未标记。

一些实施方式可以通过连接技术利用测序。这样的技术利用DNA连接酶掺入寡核苷酸并确定这样的寡核苷酸的掺入。该寡核苷酸通常具有的不同标记与该寡核苷酸杂交的序列中特定的核苷酸的身份相关。与其他的SBS方法类似,图像可以在用经标记的测序试剂处理核酸特征的阵列之后获得。每个图像将显示已经掺入特定类型的标记的核酸特征。由于每个特征的序列内容不同,不同的图像中将存在或不存在不同的特征,但是该图像中该特征的相对位置将保持不变。从基于连接的测序方法中获得的图像可以如本文所阐述进行存储、处理和分析。可与本文所述的方法和系统一起使用的示例性SBS系统和方法被描述于美国专利6,969,488、美国专利6,172,218和美国专利6,306,597(其披露内容通过引用被全部并入本文)中。

一些实施方式可以利用纳米孔测序(Deamer,D.W.&Akeson,M.“Nanopores and nucleic acids:prospects for ultrarapid sequencing.”Trends Biotechnol.18,147-151(2000);Deamer,D.和D.Branton,“Characterization of nucleic acids by nanopore analysis”.Acc.Chem.Res.35:817-825(2002);Li,J.,M.Gershow,D.Stein,E.Brandin,以及J.A.Golovchenko,“DNA molecules and configurations in a solid-state nanopore microscope”Nat.Mater.2:611-615(2003),其披露内容通过引用被全部并入本文)。在这样的实施方式中,靶核酸通过纳米孔。该纳米孔可以是合成的孔或生物膜蛋白,如α-溶血素。随着该靶核酸通过该纳米孔,每个碱基对可以通过测量该孔中的电导度的波动来确定。(美国专利7,001,792;Soni,G.V.&Meller,“A.Progress toward ultrafast DNA sequencing using solid-state nanopores.”Clin.Chem.53,1996-2001(2007);Healy,K.“Nanopore-based single-molecule DNA analysis.”Nanomed.2,459-481(2007);Cockroft,S.L.,Chu,J.,Amorin,M.&Ghadiri,M.R.“A single-molecule nanopore device detects DNA polymerase activity with single-nucleotide resolution.”J.Am.Chem.Soc.130,818-820(2008),其披露内容通过引用被全部并入本文)。从纳米孔测序中获得的数据可以如本文所阐述进行存储、处理和分析。特别是,该数据可以根据本文中阐述的光图像和其他图像的示例性处理而被处理为图像。

一些实施方式可以利用涉及DNA聚合酶活性的实时监测的方法。核苷酸掺入可以,例如,如美国专利7,329,492和美国专利7,211,414(其各自通过引用并入本文)中所描述,通过荧光团负载聚合酶和γ-磷酸-标记的核苷酸之间的荧光共振能量转移(FRET)相互作用来检测或核苷酸掺入可以,例如,如美国专利7,315,019(其通过引用并入本文)中所描述,利用零模式波导以及例如,如美国专利7,405,281和美国专利公开号2008/0108082(其各自通过引用并入本文)中所描述,使用荧光核苷酸类似物和工程化的聚合酶来检测。照明可以被限制为围绕表面-拴系的聚合酶的仄升(zeptoliter)尺度体积,使得经荧光标记的核苷酸的掺入可以用低背景观察到(Levene,M.J.等人“Zero-mode waveguides for single-molecule analysis at high concentrations.”Science 299,682-686(2003);Lundquist,P.M.等人“Parallel confocal detection of single molecules in real time.”Opt.Lett.33,1026-1028(2008);Korlach,J.等人“Selective aluminum passivation for targeted immobilization of single DNA polymerase molecules in zero-mode waveguide nano structures.”Proc.Natl.Acad.Sci.USA 105,1176-1181(2008),其披露内容通过引用被全部并入本文)。从这样的方法中获得的图像可如本文所阐述进行存储、处理和分析。

某些SBS实施方式包括将核苷酸掺入到延伸产物中后释放的质子的检测。例如,基于释放的质子的检测的测序可使用电探测器以及可市购自Ion Torrent(吉尔福德,CT,生命技术子公司)的相关联的技术或美国专利公开号2009/0026082;美国专利公开号2009/0127589;美国专利公开号2010/0137143;或美国专利公开号2010/0282617(其各自通过引用并入本文)中所描述的测序方法和系统。本文阐述的用于利用动力学排除来扩增靶核酸的方法可容易地被应用于用于检测质子的衬底。更具体地,本文所阐述的方法可以用来产生被用来检测质子的扩增子的克隆群。

以上的SBS方法可以以多路传输格式有利地进行,使得多个不同的靶核酸被同时操纵。在特定的实施方式中,不同的靶核酸可在共同的反应容器中或在特定的衬底的表面上进行处理。这允许测序试剂的方便递送,未反应的试剂的移除和以多重方式对掺入事件的检测。在使用表面-结合的靶核酸的实施方式中,该靶核酸可以是阵列格式的。在阵列格式中,该靶核酸可以以空间上可区分的方式典型地结合到表面上。该靶核酸可以通过直接的共价结合,附着于珠或其它粒子或结合至聚合酶或附着于该表面上的其它分子而得以结合。该阵列可以包括每一个位点的靶核酸的单一拷贝(也称为特征)或具有相同序列的多个拷贝可以存在于每个站点或特征上。多个拷贝可以通过扩增方法,如下文进一步详细描述的桥扩增或乳液PCR得以生产。

本文所阐述的方法可以使用具有包括例如,至少约10个特征/cm2、100个特征/cm2、500个特征/cm2、1,000个特征/cm2、5,000个特征/cm2、10,000个特征/cm2、50,000个特征/cm2、100,000个特征/cm2、1,000,000个特征/cm2、5,000,000个特征/cm2或更高的任意的各种密度的特征的阵列。

本文所阐述的方法的一个优点是它们提供了对平行的多个靶核酸的快速和有效的检测。因此,本披露提供了能够使用本领域中已知的如上述示范的那些技术来制备和检测核酸的集成系统。因此,本披露的集成系统可以包括能够递送扩增试剂和/或测序试剂到一个或多个固定的DNA片段的流体组件,该系统包括如泵、阀门、贮存器、流体线等的组件。流动池可以被配置和/或被用在用于检测靶核酸的集成系统中。示例性流动池被描述于,例如美国专利公开号2010/0111768 Al和美国专利申请号13/273,666(其各自通过引用被并入本文)中。如针对流动池所示范的,集成系统的该流体组件的一个或多个可用于扩增方法以及用于检测方法。将核酸测序实施方式作为一个例子,集成系统的该流体组件的一个或多个可用于本文所阐述的扩增方法以及用于如上文所示范的那些,测序方法中的测序试剂的递送。可替代地,集成系统可以包括单独的流体系统以执行扩增方法并执行检测方法。能够创建扩增的核酸,也能够确定核酸的序列的集成测序系统的例子包括,但不限于MiSeqTM平台(加州圣地亚哥的Illumina公司)和美国专利申请号13/273,666(其通过引用被并入本文)中所描述的设备。

CMOS技术

互补金属氧化物半导体(CMOS)是用于制造集成电路,包括数字逻辑电路(如微处理器)和模拟电路(如CMOS图像传感器)的技术。

“活性检测器”是指能够检测指示所期望的反应的活性的任何设备或部件。活性检测器可能够检测预定的体积或区域内的预定事件、属性、质量或特性。例如,活性检测器可能够捕获该预定体积或区域的图像。活性检测器可能够检测预定体积的溶液内或沿预定区域的离子浓度。示范性活性检测器包括电荷耦合器件(CCD)(如CCD摄像机);光电倍增管(PMT);分子表征设备或探测器,例如与纳米孔一起使用的那些;微电路装配,如美国专利号7,595,883(其通过引用被全部并入本文)中所描述的那些;以及具有场效应晶体管(场效应管)的CMOS制造的传感器,该场效应管包括化学敏感的场效应晶体管(chemFET)、离子敏感的场效应晶体管(ISFET)和/或金属氧化物半导体场效应晶体管(MOSFET)。示范性活性检测器被描述于,例如国际专利公开号WO2012/058095(其通过引用被全部并入本文,以用于本文引证的上下文所指示的目的)中。

“生物传感器”是指具有多个反应位点的任何结构。生物传感器可以包括固态成像装置(如CCD或CMOS成像器)以及,可选地,安装在其上的流动池。该流动池可以包括与该反应位点流体连通的至少一个流动通道。作为一个具体的例子,该生物传感器被配置以与生物测定系统流体和电耦合。该生物测定系统可以根据预定的协议(如边合成边测序)将反应物递送到该反应位点并执行多个成像事件。包围该反应位点的区域被称为“反应位点区”。例如,该生物测定系统可引导溶液在该反应位点区中沿该反应位点流动。在本披露的一些实施方式中,该反应位点区不同于以及独立于引导溶液进入以及来自该反应位点区的流体通道。在一些应用中,该溶液的至少一种可以包括具有相同或不同的荧光标记的四个类型的核苷酸。该核苷酸可以结合到对应的位于该反应位点的寡核苷酸。然后该生物测定系统可以使用激发光源(例如,固态光源,如发光二极管或LED)照亮该反应位点。该激发光可以具有一种或多种预定波长,包括一系列波长。经激发的荧光标记提供了可以由光检测器检测到的发射信号。

在一个方面,该固态成像器包括CMOS图像传感器,其包括被配置以检测该发射信号的光检测器的阵列。在一些实施方式中,每个该光检测器仅具有单一像素,并且其中像素与由过滤壁限定的检测路径的比率基本上是一比一。示例性生物传感器被描述于,例如美国专利申请号13/833,619(其通过引用被全部并入本文,以用于本文引证的上下文所指示的目的)中。

“检测表面”是指包括光学检测器的任何表面。该检测器可以基于任何合适的技术,如包括电荷耦合器件(CCD)或互补金属氧化物半导体(CMOS)的那些。在特定的实施方式中,可以使用具有单光子雪崩二极管(CMOS-SPAD)的CMOS成像器,例如,以使用荧光寿命成像(FLIM)来区分荧光团。可用于FLIM的示例性的基于CMOS的系统被描述于美国专利公开号2008/0037008A1;Giraud等人,Biomedical Optics Express 1:1302-1308(2010);或Stoppa等人,IEEE European Solid-State Device Conference(ESSCIRC),Athens,Greece,IEEE,pp.204-207(2009)中,其各自通过引用被全部并入本文。可以使用的其他有用的检测设备包括,例如被描述于美国专利7,329,860和美国专利公开号2010/0111768(其各自通过引用被全部并入本文)中的那些。

此外,将理解的是,如本领域中已知的其它信号检测设备可用于检测本文所阐述的方法中产生的信号。例如,用于检测焦磷酸盐或质子的检测器是特别有用的。焦磷酸盐释放可使用如那些可市购自454生命科学公司(康涅狄格州布兰福德的罗氏公司)或被描述于美国专利公开号2005/0244870(其通过引用被全部并入本文)测器进行检测。用于基于质子释放检测引物延伸的示例性系统包括可市购自Ion Torrent(康涅狄格州吉尔福德,生命技术子公司)或被描述于美国专利公开号2009/0026082;2009/0127589;2010/0137143;以及10/0282617(其各自通过引用被全部并入本文)的那些。示例性检测表面和检测器被描述于,例如Min-Jui Richard等人于2013年5月9日公开的题为“Integrated Sequencing Apparatuses and Methods of Use”的美国专利公开号20130116128,其各自通过引用被全部并入本文,以用于本文引证的上下文所指示的目的。

“测序模块”是指已经适应于测序应用的CMOS芯片。在一些实施方式中,该模块可以包括表面,该表面包括由疏水性区包围的,用于核酸附着和扩增的亲水区的衬底。例如,可以使用具有亲水性贴片的动态焊盘,如上文所述的那些。替代性地或者附加地,动态焊盘的集合(包括一些在亲水状态下,而周围的焊盘是在疏水状态下)可以形成由疏水区围绕的亲水区。用于核酸附着的表面将可选地包括多个隔离区,使得每个隔离区含有优选衍生自用于测序的一种核酸分子的多个核酸分子。例如,该亲水区可以包括凝胶。该亲水区可以是光滑的、有纹理的、多孔的、非多孔的等等。该疏水区优选地位于该亲水区之间。试剂通过任何数目的力的方式在表面上移动。

一次性的集成微流体盒

本披露提供了一种一次性的集成微流体盒以及其制备和使用的方法。制成该一次性的集成微流体盒的方法将柔性印刷电路板(PCB)和辊2辊(R2R)印刷电子用于CMOS技术和数字流体的单片集成。也就是说,该一次性的集成微流体盒包括流体层的堆叠,其中CMOS传感器被集成,全部安装在外壳中。因此,传统的注射模制流体可以与柔性PCB技术集成。该流体层使用适合于在用于在柔性塑料或金属箔制的辊上创建电子装置的R2R印刷电子方法中使用的材料形成。进一步地,该流体层包括聚合酶链反应(PCR)区以及试剂混合和分配区。该流体层也包括一组膜阀门,该PCR区可以通过该膜阀门完全封闭。

使用该一次性的集成微流体盒的方法包括:在该盒上执行多重PCR以及测序所需的下游混合。

本披露提供了CMOS流动池,其中该生物传感器有源区的大部分或多达约100%可用于试剂递送和照明。

图1描绘了将柔性印刷电路板(PCB)和辊2辊(R2R)印刷电子用于CMOS技术和数字流体的单片集成的方法100的例子的流程图。也就是说,使用方法100,多层层压的流体可以与柔性PCB技术集成(见图2)。进一步地,使用从应用方法100形成的结构,传统的注射模制流体可以与柔性PCB技术集成(见图13至32)。方法100可以包括,但不限于,下面的步骤。

在步骤110中,流体层形成,然后层压并结合在一起。例如,图2描绘了可在此步骤中层压并结合在一起的一组流体层200的分解图。在这个例子中,流体层200按顺序包括入口/出口层210、流体通道层220、柔性PCB层260、测序室底部层280、测序室层250,以及与测序室顶层290共面的膜层240。进口/出口端口层210、流体通道层220、柔性PCB层260、测序室底部层280、测序室层250、膜层240,以及测序室顶层290适合于使用R2R印刷电子工艺形成。在一些执行过程中,其它层也可以用R2R工艺形成。此外,用于在PCB而非R2R上形成层的合适的工艺在一些执行过程中可被用于形成该流体层。

进口/出口端口层210可以由,例如聚碳酸酯、聚(甲基丙烯酸甲酯)(PMMA)、环烯烃共聚物(COC)和/或聚酰亚胺形成。进口/出口端口层210在一个例子中可为约25μm至约1000μm厚;或者在另一个例子中约为250μm厚。开口(或孔)的设置被提供于进口/出口端口层210中。该开口(或孔)为,例如各种液体供应贮存器(未示出)提供可以充当入口端口和/或出口端口的流体路径。此处下文中参照图42A和42B示出并描述了进口/出口端口层210的更多细节。

流体通道层220可以由,例如聚碳酸酯、PMMA、COC和/或聚酰亚胺形成。流体通道层220在一个例子中可以为约25μm至约1000μm厚;或者在另一个例子中约为250μm厚。流体通道的设置被提供于流体通道层220中。该流体通道提供沿流体层200从一个目的地到另一个的流体路径。因为流体通道层220被夹在进口/出口端口层210和柔性PCB层260之间,所以流体可以被底部的入口/出口端口层210以及被顶部的柔性PCB层260限制在该流体通道内。在一个例子中,流体通道层220被用来进行PCR以及测序所需的下游混合。此处下文中参照图43A和43B示出并描述了流体通道层220的更多细节。

柔性PCB层260可以由例如,聚碳酸酯、PMMA、COC和/或聚酰亚胺形成。柔性PCB层260在一个例子中可以为约30μm至约300μm厚;或者在另一个例子中约为200μm厚。开口(或孔)的设置被提供于柔性PCB层260中。该开口(或孔)提供流体路径,该流体路径可以充当被用于控制流体通道层220的该流体通道中的液体流动的膜阀门的入口和/或出口。此处下文中参照图44A和44B示出并描述了柔性PCB层260的更多细节。

测序室底部层280可以由例如,聚碳酸酯、PMMA、COC和/或聚酰亚胺形成。测序室底部层280在一个例子中可以为约25μm至约1000μm厚;或者在另一个例子中约为250μm厚。开口的设置被提供于测序室底部层280中,用于在流体层200的堆叠内形成该膜阀门。测序室底部层280还包括接近测序室层250的测序室放置的CMOS器件,例如CMOS图像传感器262。测序室底部层280与该CMOS器件是共面的并充当测序室层250的测序室的入口/出口的流体连接层。此处下文中参照图45A和45B示出并描述了测序室底部层280的更多细节。

测序室层250可以由例如,聚碳酸酯、PMMA、COC和/或聚酰亚胺形成。测序室层250在一个例子中可以为约50μm至约300μm厚;或者在另一个例子中约为100μm厚。开口的设置被提供于测序室层250中,用于在流体层200的堆叠内形成该膜阀门。测序室层250还包括测序室。此处下文中参照图46A和46B示出并描述了测序室层250的更多细节。

膜层240可以由例如硅氧烷弹性体形成。膜层240在一个例子中可以为约25μm至约1000μm厚;或者在另一个例子中约为250μm厚。膜层240充当用于打开和关闭流体层200的堆叠内的该膜阀门的弹性膜,其中该膜阀门通过按次序组合柔性PCB层260、测序室底部层280、测序室层250和膜层240而创建。此处下文中参照图9A、9B、10A和10B示出并描述了膜阀门的更多细节。此处下文中参照图47A和47B示出并描述了膜层240的更多细节。

测序室顶层290由具有良好的光学特性的低自体荧光材料,如COC形成。测序室顶层290在一个例子中可以为约25μm至约1000μm厚;或者在另一个例子中约为250μm厚。测序室顶层290被用于覆盖测序室层250中的测序室。此处下文中参照图47A和47B示出并描述了测序室顶层290的更多细节。

现在再次参照图1,在步骤115中,将CMOS器件附接到该柔性PCB。例如,CMOS图像传感器262(见图2)被附接到流体层200的测序室底部层280。图3描绘了CMOS图像传感器262的一个例子的透视图。在一个例子中,CMOS图像传感器262为约9200μm长,约8000μm宽,以及约800-1000μm厚;并且可具有约50个I/O焊盘。CMOS图像传感器262可以包括像素阵列。在一个例子中,该像素阵列是4384x 3292像素,具有7272μm x 5761μm的总体尺寸。

继续步骤115,图4A、4B、5、6和7描绘了结构400的侧视图,其示出了将CMOS器件附接到柔性PCB的过程的例子。结构400是多层结构。现在参照图4A,结构400的初步形成始于柔性PCB。例如,该柔性PCB按次序包括聚酰亚胺层410、PCB加热层412、聚酰亚胺层414、PCB布线层416,以及聚酰亚胺层418。也就是说,图4示出了具有PCB加热层和PCB布线层的柔性PCB,又名券箔(coupon foil)。

接下来,现在参照图4B,低温的各向同性导电粘结剂(低温ICA)420被分配在聚酰亚胺层418的顶上。

接下来以及现在参照图5,CMOS器件,例如CMOS图像传感器262,被放置在该券箔上;即,在低温ICA 420的顶上。在一个例子中,CMOS图像传感器262使用公知的拾取和放置工艺被置于低温ICA 420的顶上。图5示出了CMOS图像传感器262的I/O焊盘422与低温度ICA 420接触,从而电连接到PCB布线层416。图5还示出了CMOS图像传感器262包括背向聚酰亚胺层418的生物层424。保护膜426可被置于生物层424的顶上,直到准备使用。

接下来以及现在参照图6,一组流体层428被提供于该柔性PCB的聚酰亚胺层418的顶上。也就是说,提供了一种与CMOS表面共面的层压的聚碳酸酯薄膜。流体层428的一个例子是图2中所示的流体层200。

接下来,现在参照图7,该券箔上CMOS图像传感器262的倒装结合通过在CMOS图像传感器262周围的间隙中分配底部填充(under-fill)的环氧粘结剂430而得以完成。

现在再次参照图1,在步骤120中,进行包括集成在一起的流体层和一种(或多种)CMOS器件的微流体盒的最终组装。例如,图8描绘了微流体盒800的例子的侧视图。微流体盒800包括流体部分810和基于图7所示的结构400的CMOS部分812。最后的组装步骤可包括,例如,分配(打印)该底部填充的环氧树脂粘结剂430,移除该保护膜426,在CMOS部分812处层压低温的非导电粘结剂814(例如,紫外线或热的非导电粘结剂),将低自动荧光环状烯烃共聚物(COC)层816层压到微流体盒800的CMOS部分812,以及在流体部分810的两侧均层压柔性PCB加热器818。在形成微流体盒800的过程中,通常使用自对准工艺流程,使得该CMOS器件的表面和流体层彼此齐平。

流体路径在微流体盒800中形成。也就是说,在流体部分810的输入处提供样本入口820以及在CMOS部分812的下游提供出口822。样本入口820提供了PCR室824。然后PCR室824提供了试剂分配区826。然后该试剂分配区826提供了测序室828。CMOS图像传感器262的生物层424朝向测序室828。然后测序室828提供出口822。进一步地,微流体盒800包括控制进出PCR室824的液体的流动的某些膜阀门830。

图9A和9B描绘了膜阀门830的例子的透视图,其中膜阀门可以集成到,例如流体层200中。现在参照图9A,其是膜阀门830的透视图。在这个例子中,膜阀门830按次序包括基础层910、流体通道层912和贮存器层914。基础层910、流体通道层912和贮存器层914可以由例如,聚碳酸酯、PMMA、COC和/或聚酰亚胺形成。贮存器层914具有在贮存器层914中创建小型贮存器916的凹陷区。膜层918跨贮存器916延伸。贮存器层916具有入口920和出口922,其为各个流体通道924提供流动路径。为了更好地显示贮存器916以及进口920和出口922的功能,图9B示出了没有覆盖贮存器916的膜层918的膜阀门830。膜层918由柔性的且可拉伸的弹性体膜材料(如有机硅弹性体)形成。

图10A和10B分别示出了沿图9A的线A-A截取的膜阀门830的剖面图。致动器,例如致动器1010,可以用来打开和关闭膜阀门830。例如,图10A示出了致动器1010不与膜层918接合的打开状态下的膜阀门830。与此相反,图10B示出了致动器1010与膜层918接合的闭合状态下的膜阀门830。也就是说,致动器1010的前端被用来推动膜层918的中心部分顶住出口922并由此阻断穿过其中的液体的流动。膜阀门830(即膜阀门242、244和246)可以使用,例如机械或空气致动,例如螺线管或气动泵来致动。

图11描绘了包括集成在一起的CMOS技术和数字流体的微流体盒1100的例子的示意图。也就是说,微流体盒1100包括流体地和可操作地连接到四个样本供给器1110(如样本供给器1110a、1110b、1110c、1110d)、十三个试剂供给器1112(如试剂供给器1112a-l112m)和出口泵1114的流体层200。流体层200包括PCR区270以及试剂混合和分配区275。PCR区270包括,例如四个PCR通道222(如PCR通道222a、222b、222c、222d)。PCR通道222a、222b、222c和222d的入口由样本供给器1110a、1110b、1110c和1110d分别供给。因为微流体盒1100包括由四个样本供给器1110供给的四个PCR通道222,所以微流体盒1100被配置用于4X样本多路复用。

该四个PCR通道222的输入端使用四个膜阀门242来控制。也就是说,PCR通道222a、222b、222c和222d的输入端分别使用膜阀门242a、242b、242c和242d来控制。类似地,该四个PCR通道222的输出端使用四个膜阀门244来控制。也就是说,PCR通道222a、222b、222c和222d的输出端分别使用膜阀门242a、242b、242c和242d来控制。该四个PCR通道222的输出端提供共同的PCR输出通道224,其然后提供试剂混合和分配区275。流体层200中膜阀门242和膜阀门244的存在允许PCR区270被完全封闭。

试剂混合和分配区275包括十三个试剂通道226(如试剂通道226a-226m)的设置。此外,十三个试剂通道226a-226m由该十三个试剂供给器1112a-l112m分别供给。旋转阀门组件(未示出)被用来将一定的PCR通道222流体地连接到一定的试剂供给器1112。在这样做时,可以创建一定的PCR Mix。该旋转阀门组件(未示出)也可以被用来将一定的PCR Mix流体连接到测序进料通道228,其提供测序室258的入口。进一步地,CMOS图像传感器262被定位在测序室258处。

测序出口通道230被提供在测序室258的出口处。出口泵1114被流体和可操作地连接到测序出口通道230。出口泵1114被用来提供正压或负压,以便在沿着流体层200的流动路径的任何方向上移动液体。进一步地,沿着测序出口通道230的长度提供一系列的三个膜阀门246。膜阀门242、244和246可以根据图9A、9B、10A和10C中所显示和描述的膜阀门830来执行。

在测序出口通道230处的该三个膜阀门246可以用作泵,以替代或组合出口泵1114。因此,在一个实施方式中,微流体盒1100仅包括出口泵1114以及省略了该三个膜阀门246。在另一个实施方式中,微流体盒1100仅包括该三个隔膜阀门246以及省略了出口泵1114。在又一个实施方式中,微流体盒1100既包括出口泵1114,又包括该三个膜阀门246。在另一个实施方式中,微流体盒1100包括代替出口泵1114和/或该三个膜阀门246的任何其它类型的泵送机构。此处下文中参照图12至47B示出并描述了实施微流体盒1100的例子的更多细节。

图12和13描绘了微流体盒组件1200(其是图11中所示的集成的微流体盒1100的物理实例的一个例子)的透视图。微流体盒组件1200是集成有柔性PCB技术的常规注射模制的流体的例子。在这个例子中,微流体盒组件1200是包括紧固在基板1212顶上的外壳1210的多隔室微流体盒。外壳1210和基板1212可以由,例如模制的塑料形成并经由螺钉紧固在一起(见图19)。微流体盒组件1200的总体高度可以是,例如约12mm到约100mm。微流体盒组件1200的总长度可以是,例如约100mm到约200mm。微流体盒组件1200的总宽度可以是,例如约100mm到约200mm。

外壳1210的内侧是流体组件1400,其如图14A和14B中所示。也就是说,图14A和14B描绘了被安装在图12和13中所示的微流体盒组件1200中的流体组件1400的例子的透视图。流体组件1400基于图11中所示的集成微流体盒1100。也就是说,流体组件1400包括图2和11中示出和描述的流体层200。流体组件1400还包括旋转阀门组件1410,其相对于流体层200的试剂混合和分配区275的该十三个试剂通道226a-226m设置。流体层200的长度可以是,例如约100mm到约200mm。流体层200的宽度可以是,例如约100mm到约200mm。

进一步地,流体组件1400包括围绕流体层200的PCR区270的两侧进行包裹的柔性PCB加热器1412。两个独立受控的加热器迹线被提供在柔性PCB加热器1412中,使得PCR区270的一侧上存在一个加热器迹线而PCR区270的另一侧上存在另一个加热器迹线。柔性PCB加热器1412是图8中所示的微流体盒800的柔性PCB加热器818的例子。此处下文中参照图15A和15B示出并描述了加热器示踪剂的例子的更多细节。此处下文中参照图41A、41B和41C示出并描述了柔性PCB加热器1412的例子的更多细节。

现在再次参照图12和13,微流体盒组件1200的外壳1210还包括基本上与流体层200的该四个PCR通道222(如PCR通道222a、222b、222c、222d)的输入端对齐的四个样本装载端口1214(如样本装载端口1214a、1214b、1214c、1214d)。微流体盒组件1200的外壳1210还包括提供流体层200的该十三个通道试剂226(如试剂通道226a-226m)的十三个试剂贮存器1216。该十三个试剂贮存器1216可以是相同或不同尺寸。例如,该试剂贮存器1216可容纳范围从约0.001ml到约0.150ml的液体体积。

微流体盒组件1200的外壳1210还包括由测序出口通道230提供的废物贮存器1218。废物贮存器1218可容纳范围,例如从约25ml到约100ml的液体体积。图13示出了试剂贮存器1216和废物贮存器1218可以用,例如箔密封件1220覆盖和密封。

图15A和15B分别描绘了能够被安装在图14A和14B中所示的流体组件1400中的加热器迹线1500的例子的平面图和剖视图。也就是说,图15A示出了加热器迹线1500的例子的平面图,其有一种蛇形布局。图15B示出了包括加热器迹线1500的流体组件1400的柔性PCB加热器1412的一侧的剖面图。柔性PCB加热器1412是一种的多层结构,其按次序包括,例如单面柔性铜层1510、粘合层1512、介电层1514、其中加热器迹线1500被图案化的铜加热层1516,以及层1518。铜加热层1516示出了沿图15A的线A-A截取的加热器迹线1500的剖面。

图16、17、18、19、20A和20B描绘了图12的微流体盒组件1200的各种其他视图,示出其更多的细节。也就是说,图16示出了微流体盒组件1200的外壳1210侧的透视图,而图17示出了其平面图,两者都示出了该十三个试剂贮存器1216和废物贮存器1218的配置的更多细节。

图18示出了安装有该箔密封件1220的微流体盒组件1200的该外壳1210侧的平面图。箔密封件1220具有开口,使得该四个样本装载端口1214保持暴露且可用。

图19示出了微流体盒组件1200的该基板1212侧的透视图。图20示出了微流体盒组件1200的该基板1212侧的平面图。图20B示出了微流体盒组件1200的侧视图。图19、20A和20B示出了基板1212的更多细节。也就是说,基板1212包括用于使流体组件1400的流体层200的PCR区270的部分外露的开口1222和开口1224。通过开口1224所示的是用于接触流体组件1400的柔性PCB加热器1412的一组I/O焊盘1226。

沿着开口1222的一个边缘的是用于进入和致动流体组件1400的流体层200的该四个膜阀门242的四个开口1228。也就是说,开口1228a基本上与膜阀门242a对齐。开口1228b基本上与膜阀门242b对齐。开口1228c基本上与膜阀门242c对齐。开口1228d基本上与膜阀门242d对齐。

沿开口1222的相对边缘的是用于进入和致动流体组件1400的流体层200的该四个膜阀门244的四个开口1230。也就是说,开口1230a基本上与膜阀门244a对齐。开口1230b基本与膜阀门244b对齐。开口1230c基本上与膜阀门244c对齐。开口1230d基本上与膜阀门244d对齐。

附加地,基板1212包括用于进入和致动流体组件1400的流体层200的该膜阀门246的开口1232。基板1212还包括测序室258处的开口1234。基板1212的一个角有斜面1236,其用于使,例如微流体系统的仪器平台(未示出)中的微流体盒组件1200定向。图19和图20A还显示被用于将基板1212紧固到外壳1210的四个螺钉1238。进一步地,旋转阀门组件1410相对于流体组件1400的流体层200的试剂混合和分配区275被示出。旋转阀门组件1410包括具有通过其用户或设备可转动流量控制器部1242的握持部1240的把手(见图22)。

自微流体盒组件1200使基板1212侧朝上开始,图21至29大体上示出了作为显示其内部部件的设置和安装的手段的对微流体盒组件1200的逐步解构。首先,图21示出了为了使流体组件1400外露而移除了基板1212的微流体盒组件1200。在这样做时,流体层200的该柔性PCB层260侧是可见的。进一步地,柔性PCB加热器1412的一侧是可见的。还外露的是流体层200和基板1212之间的间隔1244。在图21中,膜阀门242、244和246是可见的。

现在参照图22,旋转阀门组件1410的握持部1240已被移除,使得流量控制器部1242现在是可见的。握持部1240的下侧(未示出)被设计成与流量控制器部1242接合,使得流量控制器部1242可被旋转以引导液体流通过该十三个试剂通道226中的一个。

现在参照图23,旋转阀门组件1410的流量控制器部分1242已被移除,以便与流体层200的PCR输出通道224、试剂通道226和测序进料通道228相关联的流体路径是可见的。

现在参照图24,示出流体层200具有透明度,使得微流体盒组件1200内的该流体路径是可见的。

现在参照图25,流体层200已被移除以及外壳1210内单独示出了柔性PCB加热器1412。现在参照图26,柔性PCB加热器1412已被移除以及外壳1210内单独示出了流体层200。

现在参照图27,流体层200和柔性PCB加热器1412两者已经从外壳1210中移除。图27还示出了用于接收螺钉1238的四个带螺纹的孔1252。进一步地,图27示出了CMOS图像传感器262和正在覆盖CMOS图像传感器262的保护盖1254的一部分。现在参照图28,CMOS图像传感器262已被移除,使得保护盖1254是完全可见的。现在参照图29,保护帽1254已被移除,示出了与CMOS图像传感器262相关联的外壳1210中的间隙区1256。

图30示出了微流体盒组件1200的外壳1210的透明透视图,以便示出显示相对于样本装载端口1214、试剂贮存器1216和废物储存器1218的开口的位置。也就是说,在此视图中可以看到相对于样本装载端口1214的开口1246的位置、相对于试剂贮存器1216的开口1248的位置和相对于废物贮存器1218的开口1250的位置。

图31示出了其上覆盖有各种流体通道的微流体盒组件1200的外壳1210的透明透视图。也就是说,在此视图中可以看到相对于样本装载端口1214、试剂贮存器1216和废物储存器1218的各种流体通道的位置。图32示出了图12的微流体盒组件的剖视图,其示出了该微流体盒组件的更多的细节。

图33A、33B、34A、34B和35示出了图12的微流体盒组件的外壳1210的各个视图,其示出了该外壳的更多的细节。也就是说,图33A和33B分别示出了外壳1210的平面图及侧视图。在一个例子中,外壳1210是约12mm至约100mm的高度,约100mm至约200mm的长度,约100mm至约200mm的宽度。图34A示出了没有安装箔密封件1220的外壳1210的透视图。图34B示出了安装了箔密封件1220的外壳1210的透视图。图33A、33B、34A和34B示出了外壳1210的外部,而图35示出了外壳1210的内部的平面图。

图36、37、38A、38B和39示出了图12的微流体盒组件的基板1212的各种视图,其示出了该基板的更多的细节。也就是说,图36和37分别示出了基板1212的外部和内部的透视图。图38A示出了基板1212的外部的平面图,而图38B示出了基板1212的侧视图。图36、37、38A、38B和39示出了基板1212进一步包括用于接收螺钉1238的四个孔1258,其中心具有用于接收旋转阀门组件1410的握持部1240和流量控制器部分1242的开口1262的凹陷区1260。

图40A和40B描绘了该微流体盒组件1200的该流体组件1400的示出了其更多的细节的其他透视图。也就是说,图40A和40B各自示出了流体组件1400的透视图。图40A示出了不带有柔性PCB加热器1412的流体组件1400,而图40B示出了安装了柔性PCB加热器1412的流体组件1400。进一步地,在流体层200的一个边缘上以及PCR区270内存在凹槽1414。凹槽1414被设计为接收柔性PCB加热器1412。

图41A、41B和41C描绘了示出了该微流体盒组件1200的流体组件1400的柔性PCB加热器1412的更多细节的各种视图。也就是说,图41A和41B分别示出了柔性PCB加热器1412的透视图,而图41C示出了柔性PCB加热器1412的侧视图。柔性PCB加热器1412包括U形卷绕面板1416和侧面延伸面板1418,全部使用柔性PCB技术形成。该U形卷绕面板1416包括面板1420和面板1422,各自其中具有图案化的加热器迹线1500,例如加热器迹线1500a和1500b。加热器迹线1500的例子被示于图15A和l5B中。面板1420和面板1422之间的空间被设定为使得柔性PCB加热器1412可以被压配合到流体层200的PCR区270之上并被装配到凹槽1414中,如图40B中所示。图41B和41C也示出了I/O焊盘1226,其提供了与该两个加热器迹线1500以及与CMOS图像传感器262的电连接。

侧边扩展面板1418在靠近U形卷绕面板1416中的弯曲处从面板1420处延伸。侧边扩展面板1418被设计为朝向CMOS图像传感器262延伸。如图40B中所示,离该U形卷绕面板1416最远的侧边扩展面板1418的端部被成形为靠着CMOS图像传感器262进行装配。侧边扩展面板1418的目的是提供与被组装在刚性或柔性PCB的顶上的CMOS图像传感器262的电连接。

图42A和42B分别示出了图2和图14中所示的流体层的进口/出口端口层210的透视图和平面图。再次,进口/出口端口层210可以由,例如聚碳酸酯或任何其它的适于与R2R过程一起使用的材料形成。进口/出口端口层210提供了微流体盒组件1200的流体层200和外壳1210之间的接口。也就是说,入口/出口端口层210提供了从外壳1210的样本装载端口1214、该十三个试剂贮存器1216和废物贮存器1218到流体层200的流体通道层220的流体路径。例如,入口/出口端口层210包括基本上与外壳1210中样本装载端口1214的开口1246对齐的一组开口212。进口/出口端口层210包括基本上与外壳1210中试剂贮存器1216的开口1248对齐的一组开口214。进口/出口端口层210还包括基本上与外壳1210中废物贮存器1218的开口1250对齐的开口216。

图43A和43B分别示出了图2和图14中所示的流体层200的流体通道层220的透视图和平面图。再次,流体通道层220可以由,例如聚碳酸酯或任何其它的适于与R2R过程一起使用的材料形成。流体通道层220是流体层200中全部的液体流得以促进的层。也就是说,全部的PCR和测序操作发生在流体通道层220处。PCR操作发生在PCR区270处的PCR通道222中。PCR输出通道224提供了试剂混合和分配区275。试剂分配在试剂混合和分配区275使用试剂通道226发生。该十三个试剂通道226被图案化以提供旋转阀门组件1410。测序进料通道228提供如图45A和45B所示的测序室层250的测序室258的入口。然后,测序出口通道230流体地连接到测序室258的出口。

图44A和44B分别示出了图2和图14中所示的流体层200的柔性PCB层260的透视图和平面图。再次,柔性PCB层260可以由,例如聚酰亚胺或任何其它的适于与R2R过程一起使用的材料形成。柔性PCB层260包括与膜阀门242的入口/出口关联的一组开口(或孔)264。柔性PCB层260还包括与膜阀门244的入口/出口关联的一组开口(或孔)266。如果存在膜阀门246,柔性PCB层260包括与膜阀门246的入口/出口关联的一组开口(或孔)267。进一步地,柔性PCB层260包括基本上与旋转阀门组件1410对齐并提供通向该旋转阀门组件1410的流体路径的一组开口268。

图45A和45B分别示出了图2和图14中所示的流体层200的测序室底部层280的透视图和平面图。再次,测序室底部层280可以由,例如聚碳酸酯或任何其它的适于与R2R过程一起使用的材料形成。测序室底部层280包括用于在流体层200的堆叠内形成膜阀门242的一组开口282。测序室底部层280还包括用于在流体层200的堆叠内形成膜阀门244的一组开口284。如果存在膜阀门246,测序室底部层280包括用于在流体层200的堆叠内形成膜阀门246的一组开口286。进一步地,测序室底部层280包括基本上与旋转阀门组件1410对齐并提供通向该旋转阀门组件1410的流体路径的一组开口288。附加地,测序室底部层280包括一对开口289,其流体地耦合到测序室层250的测序室258。

测序室底部层280是流体层的层,其中集成有该CMOS技术。也就是说,CMOS图像传感器262被安装在测序室底部层280上。CMOS图像传感器262的位置基本对应于测序室层250的测序室258的位置。

图46A和46B分别示出了图2和图14中所示的流体层200的测序室层250的透视图和平面图。再次,测序室层250可以由,例如聚碳酸酯或任何其它的适于与R2R过程一起使用的材料形成。测序室层250是流体层200的发生测序操作(即,使用测序室258)的层。

测序室层250包括用于在流体层200的堆叠内形成膜阀门242的一组开口252。测序室层250还包括用于在流体层200的堆叠内形成膜阀门244的一组开口254。如果存在膜阀门246,测序室层250包括用于在流体层200的堆叠内形成膜阀门246的一组开口255。进一步地,测序室层250包括基本上与旋转阀门组件1410对齐并提供通向该旋转阀门组件1410的流体路径的一组开口256。

图47A和47B分别示出了图2和图14中所示的流体层200的膜层240和测序室顶层290的透视图和平面图。膜层240可以由,例如硅橡胶形成,而测序室顶层290可以由,例如COC形成。膜层240充当用于打开和关闭流体层200的堆叠内的膜阀门242、244和246的弹性膜,其中膜阀门242、244和246通过按次序组合柔性PCB层260、测序室底部层280、测序室层250和膜层240而创建。图47A和47B还示出了测序室顶层290,其被用来覆盖测序室层250的测序室258。

图48A和48B描绘了将该微流体盒组件1200用来进行测序所需的多重PCR和下游混合的方法4800的例子的流程图。因为微流体盒组件1200基于图11中所示的微流体盒1100,所以微流体盒组件1200被配置用于4X样本多路复用。进一步地,在方法4800中,该十三个试剂贮存器1216为指定的试剂贮存器1216a、1216b、1216c、1216d、1216e、1216f、1216g、1216h、1216i、1216j、1216k、12161和1216m。进一步地,方法4800利用出口泵1114,其流体地连接到微流体盒组件1200。出口泵1114被定位于测序室258的下游。出口泵1114能够提供正压和负压(即真空压力)两者。方法4800包括,但不限于下列步骤。

在步骤4810中,提供已备用的微流体盒组件1200。也就是说,微流体盒组件1200上设置有装有所需液体的一个或多个贮存器。例如,试剂贮存器1216可以填充有相同或不同的试剂液体。在一个例子中,该试剂贮存器1216a-m全部被填充有加氢缓冲液(HT1)。方法4800前进到步骤4815。

在步骤4815中,关闭全部的膜阀门,然后装载样本/PCR MIX。“PCRMIX”是指经优化在用于扩增DNA模板的常规PCR中使用的PCR主混合物。在这个步骤中,关闭膜阀门242a和244a,关闭膜阀门242b和244b,关闭膜阀门242c和244c,以及关闭膜阀门242d和244d。以这种方式,PCR通道222a、222b、222c和222d全部被完全封闭。然后,使第一样本液与PCR MIX(以下称为样本/PCR_MIX1)混合并装载入样本装载端口1214a。第二样本液与PCR MIX(以下称为样本/PCR_MIX2)混合并装载入样本装载端口1214b。第三样本液与PCR MIX(以下称为样本/PCR_MIX3)混合并装载入样本装载端口1214c。第四样本液与PCR MIX(以下称为样本/PCR_MIX4)混合并装载入样本装载端口1214d。在这个步骤完成时,样本/PCR MIX的体积位于该样本装载端口1214的每个中并且待处理。方法4800前进到步骤4820。

在步骤4820中,打开用于第一样本的膜阀门。然后,将第一样本拉入该PCR区内。然后,关闭用于第一样本的膜阀门。例如,打开用于PCR通道222a的膜阀门242a和244a。然后,使用出口泵1114,将样本/PCR MIXL拉入PCR通道222a内。然后,关闭用于PCR通道222a的膜阀门242a和244a,其中样本/PCR MIX1的体积现在被密封在PCR通道222a的内部。方法4800前进到步骤4825。

在判定步骤4825中,确定是否有另一个样本等待被装载入PCR区,即PCR区270内。如果有,则方法4800前进到步骤4830。如果没有,则方法4800前进到步骤4835。

在步骤4830中,打开用于下一个样本的膜阀门。然后,将下一个样本拉入该PCR区内。然后,关闭用于下一个样本的膜阀门。在一个例子中,打开用于PCR通道222b的膜阀门242b和244b。然后,使用出口泵1114,将样本/PCR_MIX2拉入PCR通道222b内。然后,关闭用于PCR通道222b的膜阀门242b和244b,其中样本/PCR_MIX2的体积现在被密封在PCR通道222b的内部。

在另一例子中,打开用于PCR通道222c的膜阀门242c和244c。然后,使用出口泵1114,将样本/PCR_MIX3拉入PCR通道222c内。然后,关闭用于PCR通道222c的膜阀门242c和244c,其中样本/PCR_MIX3的体积现在被密封在PCR通道222c的内部。

在又一个例子中,打开用于PCR通道222d的膜阀门242d和244d。然后,使用出口泵1114,将样本/PCR_MIX4拉入PCR通道222d内。然后,关闭用于PCR通道222d的膜阀门242d和244d,其中样本/PCR_MIX4的体积现在被密封在PCR通道222d的内部。

方法4800返回到步骤4825。

在步骤4835中,使样本/PCR MIX1在PCR通道222a中,样本/PCR_MIX2在PCR通道222b中,样本/PCR_MIX3在PCR通道222c中,以及使样本/PCR_MIX4在PCR通道222d中,执行PCR操作。当完成PCR操作后,样本/PCR_MIX1现在被称为PCR_MIX1,样本/PCR_MIX2现在被称为PCR_MIX2,样本/PCR_MIX3现在被称为PCR_MIX3,以及样本/PCR_MIX4现在被称为PCR_MIX4。方法4800前进到步骤4840。

在步骤4840中,将该旋转阀门旋转到第一PRC MIX位置。例如,通过旋转旋转阀门组件1410的握持部1240,旋转阀门组件1410的位置被设定为容纳PCR_MIX1的PCR通道222a。方法4800前进到步骤4845。

在步骤4845中,打开用于第一PRC MIX的膜阀门。然后,将第一PCRMIX拉动通过旋转阀门朝向该CMOS器件。然后,关闭用于第一PRC MIX的膜阀门。例如,开口用于PCR通道222a的膜阀门242a和244a。然后,使用出口泵1114,将PCR_MIX1从PCR通道222a中拉出,进入PCR输出通道224,并通过旋转阀门组件1410。然后,关闭膜阀门242a和244a。方法4800前进到步骤4850。

在步骤4850中,将该旋转阀门旋转到加氢缓冲液(HT1)位置,意味着到容纳HT1的该试剂贮存器1216处。在方法4800中,至少一个试剂贮存器1216容纳一定体积的HT1。以举例的方式,试剂贮存器1216k容纳一定体积的HT1。因此,通过旋转旋转阀门组件1410的握持部1240,旋转阀门组件1410的位置现在被设置为容纳HT1的试剂贮存器1216k。方法4800前进到步骤4855。

在步骤4855中,将第一PCR_MIX推入HT1贮存器内。例如,使用出口泵1114,将PCR_MIX1推动通过旋转阀门组件1410并进入试剂贮存器1216k以及与其中的HT1进行混合。方法4800前进到步骤4860。

在判定步骤4860中,确定是否有另一个PCR MIX等待与HT1混合。如果有,则方法4800前进到步骤4865。如果没有,则方法4800前进到步骤4885。

在步骤4865中,将该旋转阀门旋转到下一个PRC MIX位置。在一个例子中,通过旋转旋转阀门组件1410的握持部1240,旋转阀门组件1410的位置被设定为容纳PCR_MIX2的PCR通道222b。在另一例子中,通过旋转旋转阀门组件1410的握持部1240,旋转阀门组件1410的位置被设定为容纳PCR_MIX3的PCR通道222c。在又一例子中,通过旋转旋转阀门组件1410的握持部1240,旋转阀门组件1410的位置被设定为容纳PCR_MIX4的PCR通道222d。方法4800前进到步骤4870。

在步骤4870中,打开用于下一个PRC MIX的膜阀门。然后,拉动下一个PCR MIX通过该旋转阀门朝向该CMOS器件。然后,关闭用于下一个PRC MIX的膜阀门。在一个例子中,打开用于PCR通道222b的膜阀门242b和244b。然后,使用出口泵1114,将PCR_MIX2从PCR通道222b中拉出,进入PCR输出通道224,并通过旋转阀门组件1410。然后,关闭膜阀门242b和244b。在另一例子中,打开用于PCR通道222c的膜阀门242c和244c。然后,使用出口泵1114,将PCR_MIX3从PCR通道222c中拉出,进入PCR输出通道224,并通过旋转阀门组件1410。然后,关闭膜阀门242c和244c。在又一例子中,打开用于PCR通道222d的膜阀门242d和244d。然后,使用出口泵1114,将PCR_MIX4从PCR通道222d中拉出,进入PCR输出通道224,并通过旋转阀门组件1410。然后,关闭膜阀门242D和244D。方法4800前进到步骤4875。

在步骤4875中,将该旋转阀门旋转到HT1位置。例如,通过旋转旋转阀门组件1410的握持部1240,使旋转阀门组件1410的位置返回到容纳HT1的试剂贮存器1216k。方法4800前进到步骤4880。

在步骤4880中,将下一个PCR MIX推入该HT1贮存器内。在一个例子中,使用出口泵1114,将PCR_MIX2推动通过旋转阀门组件1410并进入试剂贮存器1216k以及与其中的HT1进行混合。在另一例子中,使用出口泵1114,将PCR_MIX3推动通过旋转阀门组件1410并进入试剂贮存器1216k以及与其中的HT1进行混合。在又一个例子中,使用出口泵1114,将PCR_MIX4推动通过旋转阀门组件1410并进入试剂贮存器1216k以及与其中的HT1进行混合。方法4800返回到步骤4860。

在步骤4885中,将来自HT1贮存器的混合物拉入该测序室内以及执行成簇/测序配方。例如,现在用试剂贮存器1216k容纳HT1、PCR_MIXl、PCR_MIX2、PCR_MIX3和PCR_MIX4的混合物,将该混合物从试剂贮存器1216k中拉出,然后沿测序进料通道228拉动并进入测序室258。然后,使用CMOS图像传感器262,执行成簇化/测序配方。方法4800结束。

带有可用的生物传感器有源区的CMOS流动池

CMOS流动池可以被设计成单次使用的消耗品。因此,作为小型且便宜的器件对该CMOS流动池来说可能是有益的。在小型的CMOS流动池中,使用该生物传感器有源区的尽可能多的部分是重要的。然而,当前的CMOS流动池设计不允许对该生物传感器有源区的100%利用率。因此,需要新的方法来提供对CMOS流动池中该生物传感器有源区的增加的利用率。本披露的各种执行过程提供了CMOS流动池,其中该生物传感器有源区的大部分或多达约70%、80%、90%、95%、98%、99%或100%可用于试剂递送和照明,如此处下文参照图49至62所示和所描述。

图49描绘了CMOS流动池4900的例子的侧视图,其中该生物传感器有源区的大部分或多达约100%可用于试剂递送和照明。在一些执行过程中,可以使用CCD或其它图像传感器来代替或作为CMOS传感器之外的附加。CMOS流动池4900包括PCB衬底4910,其是,例如柔性PCB基板。如此处所描绘,PCB衬底4910上面的是CMOS传感器器件4920。CMOS生物传感器器件4920是其上具有生物层的CMOS图像传感器。而且PCB衬底4910上面和CMOS生物传感器器件4920周围的是层压膜4930。层压膜4930可以由,例如环氧树脂、聚酰亚胺或其它塑料薄膜、硅、双马来酰亚胺-三嗪(BT)衬底等形成。PCB衬底4910和层压膜4930可使用柔性PCB技术形成。

层压膜4930的目的是提供一种扩展面,其围绕基本上与CMOS生物传感器器件4920的顶部共面的CMOS生物传感器器件4920的周边。在一个例子中,如果CMOS生物传感器器件4920的管芯厚度约为100μm,那么层压膜4930的厚度为约100μm±约5μm。

PCB衬底4910和层压膜4930之间的微小间隙在CMOS生物传感器器件4920的周边周围形成沟槽或通道4950。沟槽或通道4950的宽度可以是,例如约100μm至约1000μm。沟槽或通道4950填充有填充材料4952,以便形成跨CMOS生物传感器器件4920和层压膜4930两者的基本上连续的平面表面。填充材料4952是不干扰发生在CMOS生物传感器器件4920之上的反应的材料。填充材料4952可以是,例如经紫外(UV)固化的环氧树脂、经热固化的环氧树脂或类似物。

CMOS生物传感器器件4920和层压膜4930上面的是流动通道4942之上的流动池盖4940。进一步地,流动池盖4940包括提供通向流动通道4942的进口/出口端口的第一端口4944和第二端口4946。流动池盖4940由具有低的或没有自发荧光的光学透明的材料(但不限于环烯烃共聚物(COC))形成。流动池盖4940的总厚度可以是,例如约300μm至约1000μm。流动通道4942之外存在用于将流动池盖4940结合至层压膜4930的结合区。结合可以经由低自发荧光粘结剂。

因为跨CMOS生物传感器器件4920和层压膜4930两者存在基本上连续的平面表面,流动池盖4940内的流动通道4942的区域其大小可横跨越整个CMOS生物传感器器件4920;也就是说,它可以跨越该生物传感器有源区的约100%。在一个例子中,如果CMOS生物传感器器件4920的管芯尺寸约为8mm×9mm,则该有源区约为7mm×8mm。然而,CMOS生物传感器器件4920的管芯尺寸的范围可以,例如多达约25mm×25mm,其中具有的有源区按比例算较大。

图49示出了,例如填充流动通道4942的试剂流体4954。化学反应发生在CMOS生物传感器器件4920顶上的流动通道4942中的试剂流体4954中。当通过流动池盖4940被照亮时,CMOS生物传感器器件4920被用于检测发生在流动通道4942中的化学反应。电连接(未示出)通过PCB衬底4910提供,以用于从CMOS传感器器件4920获取信号。在CMOS流动池4900中,CMOS生物传感器器件4920的该生物传感器有源区的约100%可用于试剂递送和照明。

图50描绘了图49中所示的CMOS流动池4900的一个实施例的例子的分解图。图50示出了CMOS生物传感器器件4920包括有源区4922。有源区4922之外的CMOS传感器器件4920的任何部分是无源区4924。CMOS生物传感器器件4920可使用,例如,倒装芯片技术被附接到PCB衬底4910。进一步地,层压膜4930包括开口或窗口4932,其大小适合于当靠着PCB衬底4910被层压时用于接收CMOS生物传感器器件4920。在将层压膜4930层压到PCB衬底4910之前,在层压膜4930中提供开口或窗口4932。当流通池盖4940被结合到层压膜4930时,流动通道4942基本上与CMOS生物传感器器件4920对齐并且其区域延伸超出CMOS生物传感器器件4920的区域。在图50中,流动池盖4940被示出为透明的。图51和52分别描绘了图50中所示的CMOS流动池4900被完全组装时的透视图和侧视图。

图53描绘了图50、51和52中所示的CMOS流动池4900的流动池盖4940的例子的透视图。也就是说,图53示出了图50、51和52中所示的CMOS流动池4900的流动池盖4940的顶部和底部透视图。在这个例子中,第一端口4944和第二端口4946的直径可以约为750μm。进一步地,流动通道4942的深度或高度可以约为100μm。

图54、55、56和57描绘了在CMOS流通池中提供其上可安装该流动池盖的扩展的平面表面的方法的例子。

在第一步骤中以及现在参照图54,层压膜4930和CMOS传感器器件4920被提供在PCB衬底4910的顶上。CMOS生物传感器器件4920的周边的周围存在沟槽或通道4950。沟槽或通道4950的存在是因为层压膜4930中的开口或窗口4932比CMOS传感器器件4920略大。

在下一步骤中以及现在参照图55,用,例如具有用于靠着沟槽或通道4950进行紧密装配的特征的光学透明的弹性体4960密封沟槽或通道4950的上侧。弹性体4960是光学透明的,使得UV光能够通过其中。弹性体4960的目的是阻塞沟槽或通道4950的顶部,准备进行填充。

在下一步骤中以及现在参照图56,使用,例如PCB衬底4910中的一对贯通孔4916,沟槽或通道4950填充有填充材料4952,如经UV固化的环氧树脂,这是弹性体4960是光学透明的原因。

在下一步骤中以及现在参照图57,一旦填充材料4952被固化,弹性体4960便被移除以及基本上连续的平面表面现在存在于流动池中,以用于接收流动池盖,如流动池盖4940。

图58A、58B、58C和58D描绘了在CMOS流通池中提供其上可安装该流动池盖的扩展的平面表面的方法的另一例子。

在第一步骤中以及现在参照图58A,CMOS生物传感器器件4920被提供在PCB衬底4910的顶上。

在下一步骤中以及现在参照图58B,在CMOS生物传感器器件4920和PCB衬底4910周围提供模具5510(例如,蛤壳式模具)。模具5510在PCB衬底4910的顶上以及CMOS生物传感器器件4920的周边的周围提供空间或空隙5512。

在下一步骤中以及现在参照图58C,使用,例如低压注射模制工艺或反应注射模制工艺,模具5510中的空间或空隙5512填充有填充材料4952,如经UV固化的或经热固化的环氧树脂。

在下一步骤中以及现在参照图58D,一旦填充材料被固化,模具5510便被移除以及基本上连续的平面表面现在存在于流动池中,以用于接收流动池盖,如流动池盖4940。

图59、60、61和62描绘了在CMOS流通池中提供其上可安装该流动池盖的扩展的平面表面的方法的又一个例子。

在第一步骤中以及现在参照图59,CMOS传感器器件4920被提供在PCB衬底4910的顶上。而且,机械材料件5910被提供在PCB衬底4910的顶上以及在CMOS生物传感器器件4920的一端。类似地,机械材料件5912被提供在PCB衬底4910的顶上以及在CMOS生物传感器器件4920的另一端。机械材料件5910和5912可以是,例如空白硅、玻璃或塑料。沟槽或通道5914在机械材料件5910和CMOS传感器器件4920之间。另一个沟槽或通道5914在机械材料件5912和CMOS传感器器件4920之间。

在下一步骤中以及现在参照图60,一组阻挡物5916被提供在沟槽或通道5914的端部。例如,阻挡物5916a和5916b阻塞一个沟槽或通道5914的端部以及阻挡物5916c和5916d阻塞另一沟槽或通道5914的端部,准备进行填充。

在下一步骤中以及现在参照图61,沟槽或通道5914填充有填充材料4952,比如经UV固化的或经热固化的环氧树脂。填充材料4952被保留在阻挡物5916a和5916b之间以及阻挡物5916c和5916d之间。

在下一步骤中以及现在参照图62,一旦填充材料4952被固化,基本上连续的平面表面现在存在于流动池中,以用于接收流动池盖,如流动池盖4940。

系统

应当理解的是,本披露的各个方面可以被实施为方法、系统、计算机可读介质和/或计算机程序产品。本披露的各方面可以采取硬件实施方式、软件实施方式(包括固件、常驻软件、微代码等)或组合软件和硬件方面的实施方式(其在本文中全部一般地可被称为“电路”、“模块”或“系统”)的形式。进一步地,本披露的方法可采取具有体现在介质中的计算机可用程序代码的计算机可用存储介质上的计算机程序产品的形式。

任何合适的计算机可用介质可被用于本披露的软件方面。计算机可用或计算机可读介质可以是,例如但不限于,电子、磁、光学、电磁、红外或半导体系统、装置、设备或传播介质。该计算机可读介质可以包括暂时和/或非暂时性实施方式。该计算机可读介质的更具体的例子(非穷举列表)将包括下列的一些或全部:具有一个或多个导线的电连接(RAM)、便携式计算机磁盘、硬盘、随机存取存储器的、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或闪存)、光纤、便携式密纹光盘只读存储器(CD-ROM)、光存储设备、传输介质(如支持因特网或内联网的那些)或磁存储设备。注意,计算机可用或计算机可读介质甚至可以是纸或在其上打印有程序的另一种合适的介质,因为程序可以经由,例如对纸或其它介质的光学扫描以电子方式被捕获,然后编译、解释或在需要时,以适当方式处理,然后被存储在计算机存储器中。在本文件的上下文中,计算机可用或计算机可读介质可以是能够包含、存储、通信、传播或传送程序以被指令执行系统、装置或设备或结合其进行使用的任何介质。

用于执行本文所阐述的方法和装置的操作的程序代码可以用面向对象的编程语言,如Java、Smalltalk、C++或诸如此类书写。然而,用于执行本文所阐述的方法和装置的操作的程序代码也可以用传统的过程编程语言,诸如“C”编程语言或类似的编程语言书写。该程序代码可以由处理器、专用集成电路(ASIC)或其他执行该程序代码的部件来执行。该程序代码可以被简称为存储在存储器(如以上所讨论的计算机可读介质)中的应用软件。该程序代码可以导致该处理器(或者任何处理器控制的设备)产生图形用户界面(“GUI”)。该图形用户界面可以在视觉上被产生在显示设备上,但该图形用户界面也可具有可听的功能。然而,该程序代码可以在任何处理器控制的设备,如计算机、服务器、个人数字助理、电话、电视或任何利用该处理器和/或数字信号处理器的处理器控制的设备中进行操作。

该程序代码可以本地和/或远程执行。该程序代码,例如,可以被全部或部分地存储在该处理器控制的设备的本地存储器中。然而,该程序代码也可以至少部分远程地被存储、读取和下载到该处理器控制的设备中。例如,用户的计算机可以完全地执行该程序代码或仅部分地执行该程序代码。该程序代码可以是至少部分地在该用户的计算机上和/或在远程计算机上被部分地执行或完全在远程计算机或服务器上的独立软件包。在后一种情况下,该远程计算机可通过通信网络被连接到该用户的计算机。

可以不考虑网络环境而应用本文所阐述的方法和装置。该通信网络可以是在无线电频率域和/或因特网协议(IP)域中运行的有线网络。然而,该通信网络也可以包括分布式计算网络,如因特网(有时可替代地称为“万维网”)、内联网、局域网(LAN)和/或广域网(WAN)。该通信网络可以包括同轴电缆、铜线、光纤线路和/或混合式同轴线路。该通信网络甚至可以包括利用电磁波谱的任何部分和任何信令标准(如IEEE 802标准族、GSM/CDMA/TDMA或任何蜂窝标准;和/或ISM频带)的无线部分。该通信网络甚至可以包括电力线部分,其中信号经由电气配线连通。本文阐述的方法和装置可以被应用到任何无线/有线通信网络,而无需考虑物理元件部分,物理配置或者一种(或多种)通信标准。

本披露的某些方面参照各种方法和方法步骤进行说明。将理解的是,每个方法步骤可以通过该程序代码和/或通过机器指令来执行。该程序代码和/或该计算机指令可以创建用于执行该方法中指定的功能/动作的装置。

计算机可读存储器中也可以存储该程序代码,其可以引导处理器、计算机或其他可编程的数据处理装置以特定方式起作用,使得被存储在该计算机可读存储器中的该程序代码产生或转换包括执行方法步骤的各个方面的指示装置的制造品。

该程序代码也可以被加载到计算机或其它可编程数据处理装置,以便使一系列操作步骤被执行,以产生处理器/计算机执行过程,使得该程序代码提供本披露的方法中所指定的用于执行各种功能/动作的步骤。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1