包含聚乳酸聚合物、聚乙酸乙烯酯聚合物和增塑剂的组合物和膜的制作方法

文档序号:11445377阅读:633来源:国知局
包含聚乳酸聚合物、聚乙酸乙烯酯聚合物和增塑剂的组合物和膜的制造方法与工艺



技术实现要素:

在一个实施方案中,描述了一种组合物,该组合物包含:半结晶聚乳酸聚合物;聚乙酸乙烯酯聚合物,该聚乙酸乙烯酯聚合物具有至少25℃的玻璃化转变温度(tg);增塑剂;以及任选地无定形聚乳酸聚合物。

在另一个实施方案中,描述了一种组合物,该组合物包含:半结晶聚乳酸聚合物;聚乙酸乙烯酯聚合物,该聚乙酸乙烯酯聚合物具有至少25℃的tg;增塑剂;成核剂;以及任选地无定形聚乳酸聚合物。在一些实施方案中,基于一种或多种聚乳酸聚合物、聚乙酸乙烯酯聚合物和增塑剂的总量,聚乙酸乙烯酯聚合物的存在量为至少15重量%或20重量%。在一些实施方案中,基于一种或多种聚乳酸聚合物、聚乙酸乙烯酯聚合物和增塑剂的总量,增塑剂的存在量在5重量%或35重量%的范围内。在一些实施方案中,半结晶聚乳酸聚合物包含至少90重量%的l-丙交酯的聚合单元以及小于10重量%、9重量%、8重量%、7重量%、6重量%、5重量%、4重量%、3重量%或2重量%的d-丙交酯和/或内消旋-丙交酯的聚合单元。在有利的实施方案中,该组合物对于第二加热扫描具有大于10j/g、11j/g、12j/g、13j/g、14j/g或15j/g并且小于40j/g的净熔融吸热δhnm2。此外,该组合物优选地具有小于30℃、25℃或20℃的tg。

在另一个实施方案中,描述了一种膜,该膜包含一种或多种此类组合物。该膜优选地对于第一加热扫描具有大于10j/g、11j/g、12j/g、13j/g、14j/g或15j/g并且小于40j/g的净熔融吸热δhnm1。此外,该膜优选地具有小于30℃、25℃或20℃的tg。

在另一个实施方案中,描述了一种制品,诸如带材或片材,该制品包括本文所述的膜和设置在该膜上的压敏粘合剂层。

附图说明

图1为包含成核剂的组合物的代表性dsc曲线,在冷却过程中表现出了尖锐的结晶放热峰。

图2为不含成核剂的组合物的代表性dsc曲线,在冷却过程中未表现出结晶放热峰。

图3描绘了实施例12的动态力学分析结果。

图4描绘了实施例16的动态力学分析结果。

具体实施方式

本文所述的组合物包含聚乳酸(“pla”)聚合物。乳酸为通过玉米淀粉或蔗糖的细菌发酵获得的可再生材料,并且因此被视为天然材料或换言之“生物质”材料。乳酸具有两种光学异构体:l-乳酸(还称为(s)-乳酸)和d-乳酸(还称为(r)-乳酸),如下所描绘的:

乳酸的聚酯化提供聚乳酸聚合物。

更通常地,乳酸通常被转化为环状丙交酯单体,并且丙交酯发生开环聚合,诸如如下所描绘的:

所得的聚合物材料通常称为聚乳酸聚合物。

结晶度并且因此许多重要的特性在很大程度上由所使用的d-丙交酯和/或内消旋-丙交酯与l环状丙交酯单体的比率控制。同样,对于通过乳酸的直接聚酯化制备的聚合物而言,结晶度在很大程度上由衍生自d-乳酸的聚合单元与衍生自l-乳酸的聚合单元的比率控制。

本文所述的组合物和膜通常包含单独的半结晶pla聚合物或半结晶pla聚合物与无定形pla聚合物的组合。半结晶和无定形pla聚合物两者通常包含高浓度的衍生自l-乳酸的聚合单元(例如,l-丙交酯)和低浓度的衍生自d-乳酸的聚合单元(例如,d-丙交酯)。

半结晶pla聚合物通常包含至少90重量%、91重量%、92重量%、93重量%、94重量%或95重量%的衍生自l-乳酸的聚合单元(例如,l-丙交酯)以及不大于10重量%、9重量%、8重量%、7重量%、6重量%或5重量%的衍生自d-乳酸的聚合单元(例如,d-丙交酯和/或内消旋-丙交酯)。在另一个实施方案中,半结晶pla聚合物包含至少96重量%的衍生自l-乳酸的聚合单元(例如,l-丙交酯)和小于4重量%、3重量%或2重量%的衍生自d-乳酸的聚合单元(例如,d-丙交酯和/或内消旋-丙交酯)。同样,该组合物和膜包含甚至更低浓度的衍生自d-乳酸的聚合单元(例如,d-丙交酯和/或内消旋-丙交酯),这取决于半结晶pla聚合物在该组合物或膜中的浓度。例如,如果组合物包含15重量%的具有约2重量%d-丙交酯和/或内消旋-丙交酯的半结晶pla,则该组合物包含约0.3重量%d-丙交酯和/或内消旋-丙交酯。该组合物和膜通常包含不大于9重量%、8重量%、7重量%、6重量%、5重量%、4重量%、3重量%、2重量%、1.5重量%、1.0重量%、0.5重量%、0.4重量%、0.3重量%、0.2重量%或0.1重量%衍生自d-乳酸的聚合单元(例如,d-丙交酯和/或内消旋-丙交酯)。半结晶pla的合适示例包括natureworkstmingeotm4042d和4032d。这些聚合物已经在文献中描述为如具有约200,000克/摩尔的分子量mw;约100,000克/摩尔的mn;以及约2.0的多分散性。

该组合物还可包含与半结晶pla共混的无定形pla聚合物。无定形pla通常包含不超过90重量%的衍生自l-乳酸的聚合单元和大于10重量%的衍生自d乳酸的聚合单元(例如,d-丙交酯和/或内消旋-丙交酯)。在一些实施方案中,无定形pla包含至少80重量%或85重量%的衍生自l-乳酸的聚合单元(例如,l-丙交酯)。在一些实施方案中,无定形pla包含不大于20重量%或15重量%的衍生自d-乳酸的聚合单元(例如,d-丙交酯和/或内消旋-丙交酯)。合适的无定形pla包括natureworkstmingeotm4060d等级。此聚合物已经在文献中描述成具有约180,000克/摩尔的分子量mw。

pla聚合物优选地为“膜级”聚合物,在210℃下在2.16kg的质量的情况下具有不大于25g/min、20g/min、15g/min或10g/min的熔体流动速率(如根据astmd1238所测量的)。在一些实施方案中,pla聚合物在210℃下具有小于10或9g/min的熔体流动速率。熔体流动速率与pla聚合物的分子量相关。pla聚合物通常具有至少50,000g/mol、75,000g/mol、100,000g/mol、125,000g/mol、150,000g/mol的重均分子量(mw),如使用聚苯乙烯标准通过凝胶渗透色谱法所测定的。在一些实施方案中,分子量(mw)不大于400,000g/mol、350,000g/mol或300,000g/mol。

pla聚合物通常具有在约25mpa至150mpa范围内的拉伸强度;在约1000mpa至7500mpa范围内的拉伸模量;以及至少3%、4%或5%至约15%范围内的拉伸伸长率。在一些实施方案中,pla聚合物的拉伸强度为至少30mpa、40mpa或50mpa。在一些实施方案中,pla聚合物的拉伸强度不大于125mpa、100mpa或75mpa。在一些实施方案中,pla聚合物的拉伸模量为至少1500mpa、2000mpa或2500mpa。在一些实施方案中,pla聚合物的拉伸模量不大于7000mpa、6500mpa、6000mpa、5500mpa、5000mpa或4000mpa。此类拉伸和伸长特性可通过astmd882测定,并且通常由此类pla聚合物的制造商或供应商报告。

pla聚合物通常具有在约50℃至65℃范围内的玻璃化转变温度tg,如可通过如在下述实施例中所描述的差示扫描量热法(dsc)所测定的。

半结晶pla聚合物通常具有在140℃至175℃范围内的熔点。通常包括单独的半结晶pla或半结晶pla与无定形pla聚合物的组合的pla聚合物可在180℃、190℃、200℃、210℃、220℃或230℃的温度下进行熔融加工。

基于pla聚合物、聚乙酸乙烯酯聚合物和增塑剂的总重量,该组合物通常包含至少40重量%、45重量%或50重量%的量的半结晶pla聚合物或半结晶pla和无定形pla的共混物。pla聚合物的总量通常不大于pla聚合物、聚乙酸乙烯酯聚合物和增塑剂的总重量的90重量%、85重量%、80重量%、75重量%或70重量%

当该组合物包含半结晶pla和无定形pla的共混物时,基于pla聚合物、聚乙酸乙烯酯聚合物和增塑剂的总重量,半结晶pla的量通常为至少10重量%、15重量%或20重量%。在一些实施方案中,基于pla聚合物、聚乙酸乙烯酯聚合物和增塑剂的总重量,无定形pla聚合物的量的范围为10重量%、15重量%、25重量%或30重量%至50重量%、55重量%或60重量%。无定形pla聚合物的量可大于结晶聚合物的量。

该组合物还包含聚乙酸乙烯酯聚合物。聚乙酸乙烯酯聚合物具有至少25℃、30℃、35℃或40℃的tg。聚乙酸乙烯酯的tg通常不大于50℃或45℃。

聚乙酸乙烯酯聚合物通常具有至少50,000g/mol、75,000g/mol;100,000g/mol、125,000g/mol、150,000g/mol、175,000g/mol、200,000g/mol、225,000g/mol或250,000g/mol的重均分子量或数均分子量(如使用聚苯乙烯标准通过尺寸排阻色谱法所测定的)。在一些实施方案中,分子量(mw)不大于1,000,000g/mol、750,000g/mol、500,000g/mol、450,000g/mol、400,000g/mol、350,000g/mol或300,000g/mol。在一些实施方案中,聚乙酸乙烯酯聚合物的分子量大于一种或多种pla聚合物的分子量。聚乙酸乙烯酯聚合物可表征为在10重量%乙酸乙酯溶液中在20℃下具有在10mpa*s至50mpa*s范围内的粘度。

聚乙酸乙烯酯聚合物通常为均聚物。然而,该聚合物可包含相对低浓度的衍生自其它共聚单体的重复单元,前提是聚乙酸乙烯酯聚合物的tg在先前所述的范围内。其它共聚单体包括例如丙烯酸类单体诸如丙烯酸和丙烯酸甲酯;乙烯基单体诸如氯乙烯和乙烯基吡咯烷酮;以及c2-c8亚烷基单体,诸如乙烯。聚乙酸乙烯酯聚合物的衍生自其它共聚单体的重复单元的总浓度通常不大于10重量%、9重量%、8重量%、7重量%、6重量%或5重量%。在一些实施方案中,聚乙酸乙烯酯聚合物的衍生自其它共聚单体的重复单元的浓度通常不大于4重量%、3重量%、2重量%、1重量%或0.5重量%。聚乙酸乙烯酯聚合物通常具有低水平的水解。聚乙酸乙烯酯聚合物的被水解为乙烯醇单元的聚合单元通常不大于聚乙酸乙烯酯聚合物的10mol%、9mol%、8mol%、7mol%、6mol%、5mol%、4mol%、3mol%、2mol%、1mol%或0.5mol%。

聚乙酸乙烯酯聚合物可以商品名vinnapastm从各种供应商包括瓦克公司(wacker)商购获得。在与pla组合之前,此类聚乙酸乙烯酯聚合物常常呈(例如,白色)固态粉末或无色珠状形式。在一些实施方案中,聚乙酸乙烯酯聚合物(例如,粉末,在与pla聚合物组合之前)不是水可再分散的。

可利用单一聚乙酸乙烯酯聚合物或两种或更多种聚乙酸乙烯酯聚合物的组合。

基于pla聚合物、聚乙酸乙烯酯聚合物和增塑剂的总重量,存在于本文所述的组合物中的聚乙酸乙烯酯聚合物的总量为至少约10重量%,并且通常不大于约50重量%、45重量%或40重量%。在一些实施方案中,聚乙酸乙烯酯聚合物的浓度的存在量为至少15重量%或20重量%。

在一些实施方案中,该组合物具有小于30℃、29℃、28℃、27℃、26℃、25℃、24℃、23℃、22℃、21℃或20℃的tg,并且在于80℃下老化24小时的情况下未表现出增塑剂迁移(根据实施例中所述的测试方法)。此特性可归因于包含了聚乙酸乙烯酯聚合物。

该组合物还包含增塑剂。基于pla聚合物、聚乙酸乙烯酯聚合物和增塑剂的总重量,增塑剂在该组合物中的总量的范围通常为约5重量%至约35重量%、40重量%、45重量%或50重量%。

能够增塑pla的各种增塑剂已经在本领域中有所描述。增塑剂在25℃下通常为液态并且通常具有在约200g/mol至10,000g/mol的范围内的分子量。在一些实施方案中,增塑剂的分子量不大于5,000g/mol。在其它实施方案中,增塑剂的分子量不大于4,000g/mol、3,000g/mol、2,000g/mol或1,000g/mol。可利用增塑剂的各种组合。

增塑剂优选地包含一种或多种烷基或脂肪族酯或醚基团。多官能酯和/或醚通常是优选的。这些包括磷酸烷基酯、二烷基醚二酯、三羧酸酯、环氧化油和酯、聚酯、聚二醇二酯、烷基烷基醚二酯、脂族二酯、烷基醚单酯、柠檬酸酯、二羧酸酯、植物油及它们的衍生物、以及甘油酯。此类增塑剂通常缺少芳香族基团和卤原子,并且期望是可生物降解的。此类增塑剂通常还包含具有c2至c10的碳链长度的直链或支链烷基末端基团。

在一个实施方案中,增塑剂是由以下式(i)表示的生物基柠檬酸基增塑剂:

其中

r独立地为可能相同或不同的烷基基团;并且

r'为h或(c1至c10)酰基基团。

r通常独立地为具有c1至c10的碳链长度的直链或支链烷基基团。在一些实施方案中,r为c2至c8或c2至c4直链烷基基团。在一些实施方案中,r’为乙酰基。在其它实施方案中,至少一个r为具有c5或更长碳链长度的支链烷基基团。在一些实施方案中,支链烷基基团具有不大于8的碳链长度。

代表性柠檬酸基增塑剂包括例如柠檬酸三乙酯、乙酰基柠檬酸三乙酯、柠檬酸三丁酯、乙酰基柠檬酸三丁酯、柠檬酸三己酯、乙酰基柠檬酸三己酯、柠檬酸三辛酯、乙酰基柠檬酸三辛酯、丁酰基柠檬酸三己酯、乙酰基柠檬酸三-3-甲基丁酯、乙酰基柠檬酸三-2-甲基丁酯、乙酰基柠檬酸三-2-乙基己酯以及乙酰基柠檬酸三-2-辛酯,

在另一个实施方案中,增塑剂包含聚乙二醇主链和酯烷基末端基团。聚乙二醇链段的分子量通常为至少100克/摩尔、150克/摩尔或200克/摩尔并且不大于1,000克/摩尔。在一些实施方案中,聚乙二醇链段具有不大于900克/摩尔、800克/摩尔、700克/摩尔或600克/摩尔的分子量。示例包括可以商品名“tegmertm809”从伊利诺伊州芝加哥的浩斯特公司(hallstar,chicago,il)获得的聚乙二醇(400)二乙基己酸酯以及可以商品名“tegmertm804”从伊利诺伊州芝加哥的浩斯特公司获得的四乙二醇二乙基己酸酯。

在一些实施方案中,增塑剂化合物通常具有很少或没有羟基基团。在一些实施方案中,羟基基团相对于增塑剂化合物的总重量的重量%不大于10重量%、9重量%、6重量%、7重量%、6重量%、5重量%、4重量%、3重量%、2重量%、1重量%。在一些实施方案中,增塑剂化合物不含羟基基团。因此,在此实施方案中,增塑剂不是甘油或水。

为了促进结晶速率,成核剂也可存在于pla组合物中。合适的成核剂包括例如无机矿物质、有机化合物、有机酸和酰亚胺的盐、具有高于pla的加工温度的熔点的细分的结晶聚合物以及前述中的两种或更多种的组合。合适的成核剂通常具有至少25纳米或至少0.1微米的平均粒度。也可以使用两种或更多种不同成核剂的组合。

可用的成核剂的示例包括例如滑石(水合硅酸镁-h2mg3(sio3)4或mg3si4o10(oh)2)、二氧化硅(sio2)、二氧化钛(tio2)、氧化铝(al2o3)、氧化锌、糖精的钠盐、硅酸钙、苯甲酸钠、钛酸钙、芳香族磺化衍生物、氮化硼、铜酞菁、酞菁、糖精的钠盐、全同立构聚丙烯、聚对苯二甲酸丁二醇酯等等。

当有机成核剂存在时,基于该组合物的总重量,成核剂的浓度通常在至少0.01重量%、0.02重量%、0.03重量%、0.04重量%、0.05重量%、0.1重量%、0.15重量%或0.2重量%至约1重量%、2重量%、3重量%、4重量%或5重量%的范围内。当成核剂为无机氧化物填料诸如二氧化硅、氧化铝、氧化锌以及滑石时,浓度可能更高。

在一个实施方案中,成核剂可表征为含磷芳香族有机酸的盐,诸如苯基膦酸锌、苯基膦酸镁、4-叔丁基苯基膦酸二钠以及二苯基次膦酸钠。

一种有利的成核剂为具有以下化学式的苯基膦酸锌:

可以商品名“ecopromote”从尼桑化学工业有限公司(nissanchemicalindustries,ltd)获得。

在一些实施方案中,无机填料可用于防止在储存和运输过程中层的结块或粘着或者膜的卷曲。无机填料包括表面改性的或未改性的黏土和矿物质。示例包括滑石、硅藻土、二氧化硅、云母、高岭土、二氧化钛、珍珠岩以及硅灰石。

有机生物材料填料包括改性或未改性的多种林产品和农业产品。示例包括纤维素、小麦、淀粉、改性淀粉、甲壳质、脱乙酰壳多糖、角蛋白、衍生自农业产品的纤维素材料、麸质、面粉以及瓜尔胶。术语“面粉”通常涉及具有来源于一种且同一种植物源的含蛋白质级分且含淀粉的级分的组合物,其中含蛋白质级分和含淀粉级分彼此未分开。存在于面粉中的典型蛋白质为球蛋白、白蛋白、麦谷蛋白、黑麦碱、醇溶谷蛋白、谷蛋白。在典型的实施方案中,该组合物包含很少或不包含有机生物材料填料诸如面粉。因此,有机生物材料填料(例如,面粉)的浓度通常小于总组合物的10重量%、9重量%、8重量%、7重量%、6重量%、5重量%、4重量%、3重量%、2重量%或1重量%。

该组合物和膜可任选地包含一种或多种常规添加剂。添加剂包括例如抗氧化剂、稳定剂、紫外线吸收剂、润滑剂、加工助剂、抗静电剂、着色剂、抗冲击助剂、填料、消光剂、阻燃剂(例如,硼酸锌)、颜料等等。

当该膜为单片膜时,膜的厚度通常为至少10微米、15微米、20微米或25微米(1密耳)至500微米(20密耳)厚度。在一些实施方案中,膜的厚度不大于400微米、300微米、200微米、150微米或50微米。该膜可呈单个片材的形式,对于大于20密耳的厚度尤其如此。(例如,较薄的)膜可呈卷状物品的形式。

当该膜为多层膜的膜层时,多层膜通常具有刚才所描述的厚度。然而,膜层的厚度可小于10微米。在一个实施方案中,包含本文所述的组合物的膜层为外部层或换言之表层。第二膜层设置在表层上。第二膜层通常具有与表层不同的组合物。

在制备如本文所述的组合物中,对pla、pvac、增塑剂、成核剂等加热(例如,180℃-250℃),并且使用本领域普通技术人员已知的任何合适的手段进行完全混合。例如,可通过使用(例如,brabender)搅拌器、挤出机、捏合机等来混合该组合物。

在混合之后,考虑工艺和可用设备的规模,可使用已知的膜形成技术来使该组合物形成为(例如,流延)膜。在一些实施方案中,将pla组合物转移到压机中,然后压缩并固化以形成pla膜的单个片材。在其它实施方案中,可将pla组合物通过模具挤出到维持在合适冷却温度下的浇铸辊上,以形成连续长度的pla膜。在一些实施方案中,在膜挤出过程中,浇铸辊温度优选地维持在80℃至120℃下,以在浇铸辊上获得pla膜的结晶。

本文所述的pla组合物和膜可用于多种产品中。在一些实施方案中,pla膜具有与聚氯乙烯(pvc)膜类似或比它甚至更好的特性,并且因此可用于取代pvc膜。

该膜和组合物可具有各种特性,如通过在实施例中列出的测试方法所测定的。

该膜和组合物通常具有在约-20℃、-15℃或-10℃至40℃范围内的玻璃化转变温度;低于pla聚合物和聚乙酸乙烯酯聚合物两者的tg。在一些实施方案中,该膜和组合物具有至少-5℃、-4℃、-3℃、-2℃、-1℃或0℃的玻璃化转变温度。在一些实施方案中,该膜和组合物具有小于35℃或30℃或25℃的玻璃化转变温度。在一些实施方案中,该膜和组合物具有小于20℃、19℃或18℃的玻璃化转变温度。

该膜和组合物通常具有在至少约150℃或155℃至约165℃或170℃范围内的熔融温度tm1或tm2。此外,该组合物可具有在100℃至120℃范围内的结晶峰温度tc。

净熔融吸热为熔融吸热能量减去结晶放热的能量(如在下述实施例中进一步详细描述的)。组合物(即,取自微配混机的未熔融压制成膜的组合物)的净熔融吸热通过第二加热扫描测定;而(例如,熔融压制)膜的净熔融吸热通过第一加热扫描测定。根据美国专利6,005,068,如果pla膜表现出小于约10j/g的净熔融吸热,则它被认为是无定形的。在有利的实施方案中,诸如当该组合物和膜包含成核剂时,该组合物和膜的净熔融焓δhnm2和δhnm1分别大于10j/g、11j/g、12j/g、13j/g、14j/g或15j/g并且小于40j/g、39j/g、38j/g、37j/g、36j/g或35j/g。

在一个实施方案中,该膜具有-10℃至30℃的tg和大于10j/g并且小于40j/g的净熔融吸热δhnm1,如刚才所描述的。此类膜在室温下为柔性的并且在加热至高温后具有相对高的力学特性,诸如模量,如由图3中的动态力学分析(dma)结果所示。在此实施方案中,该膜在以2℃/min的速率加热时,对于-40℃至125℃的温度范围具有至少10mpa且通常小于10,000mpa的拉伸储能模量(即,在以2℃/min的速率加热时,当从-40℃加热至125℃时,拉伸储能模量未降至低于10mpa)。在一些实施方案中,该膜在以2c°/min的速率加热时,对于25℃至80℃的温度范围具有如通过动态力学分析所测定的至少5mpa、6mpa、7mpa、8mpa、9mpa或10mpa的拉伸储能模量。相比之下,如图4所示,当该膜具有非常低的净熔融吸热时,随着温度增加至高于室温23℃,发生力学特性诸如模量的急剧下降。

该膜可利用如在下述实施例中进一步描述的标准拉伸测试来评价。该膜的拉伸强度通常为至少5mpa或10mpa,并且通常小于制备该膜所利用的pla和聚乙酸乙酯聚合物的拉伸强度。在一些实施方案中,拉伸强度不大于34mpa、33mpa、32mpa、31mpa或30mpa。该膜的伸长率通常大于制备该膜所利用的pla和聚乙酸乙酯聚合物的伸长率。在一些实施方案中,伸长率为至少30%、40%或50%。在其它实施方案中,伸长率为至少100%、150%、200%、250%或300%。在一些实施方案中,伸长率不大于600%或500%。该膜的拉伸模量通常为至少50mpa、100mpa或150mpa。在一些实施方案中,拉伸模量为至少200mpa、250mpa或300mpa。在一些实施方案中,拉伸模量不大于750mpa或650mpa。

本文所述的基于pla的膜适于用作压敏粘合剂带材或片材的背衬。

可对基于pla的膜进行惯常的表面处理,以便与相邻的压敏粘合剂层更好地粘附。表面处理包括例如暴露于臭氧、暴露于火焰、暴露于高电压电击、使用电离辐射的处理以及其它化学或物理氧化处理。

各种压敏粘合剂可施加至基于pla的膜,该压敏粘合剂诸如基于天然橡胶或合成橡胶的压敏粘合剂、丙烯酸类压敏粘合剂、乙烯基烷基醚压敏粘合剂、有机硅压敏粘合剂、聚酯压敏粘合剂、聚酰胺压敏粘合剂、聚氨酯压敏粘合剂以及基于苯乙烯嵌段共聚物的压敏粘合剂。压敏粘合剂在室温(25℃)下在1hz的频率下通常具有如可通过动态力学分析测量的小于3×106达因/厘米的储能模量(e’)。

压敏粘合剂可以为基于有机溶剂的、水基乳液的、热熔融的、可热活化的、以及光化辐射(例如,电子束、紫外线)的固化性压敏粘合剂。

丙烯酸类压敏粘合剂可通过自由基聚合技术诸如溶液聚合、本体聚合或乳液聚合来制备。丙烯酸类聚合物可以为任何类型,诸如无规共聚物、嵌段共聚物或接枝聚合物。聚合可采用通常所使用的聚合引发剂和链转移剂中的任一种。

丙烯酸类压敏粘合剂包含衍生自(例如,非叔)醇的一种或多种(甲基)丙烯酸酯单体的聚合单元,该醇包含1至14个碳原子并且优选4至12个碳原子的平均值。单体的示例包括丙烯酸或甲基丙烯酸与非叔醇的酯,这些非叔醇为诸如乙醇、1-丙醇、2-丙醇、1-丁醇、2-丁醇、1-戊醇、2-戊醇、3-戊醇、2-甲基-1-丁醇、3-甲基-1-丁醇、1-己醇、2-己醇、2-甲基-1-戊醇、3-甲基-1-戊醇、2-乙基-1-丁醇;3,5,5-三甲基-1-己醇、3-庚醇、1-辛醇、2-辛醇、异辛醇、2-乙基-1-己醇、1-癸醇、2-丙基庚醇、1-十二烷醇、1-十三烷醇、1-十四烷醇等等。

丙烯酸类压敏粘合剂包含一种或多种低tg(甲基)丙烯酸酯单体(即在反应形成均聚物时(甲基)丙烯酸酯单体具有不大于0℃的tg)的聚合单元。在一些实施方案中,该低tg单体具有不大于-5℃或不大于-10℃的tg。这些均聚物的tg常常大于或等于-80℃、大于或等于-70℃、大于或等于-60℃或大于或等于-50℃。

低tg单体可具有下式

h2c=cr1c(o)or8

其中r1为h或甲基,并且r8为具有1至22个碳的烷基或具有2至20个碳和1至6个选自氧或硫的杂原子的杂烷基。该烷基或杂烷基基团可为直链的、支链的、环状的、或它们的组合。

示例性低tg单体包括例如丙烯酸乙酯、丙烯酸正丙酯、丙烯酸正丁酯、丙烯酸异丁酯、丙烯酸叔丁酯、丙烯酸正戊酯、丙烯酸异戊酯、丙烯酸正己酯、丙烯酸2-甲基丁酯、丙烯酸2-乙基己酯、丙烯酸4-甲基-2-戊酯、丙烯酸正辛酯、丙烯酸2-辛酯、丙烯酸异辛酯、丙烯酸异壬酯、丙烯酸癸酯、丙烯酸异癸酯、丙烯酸月桂酯、丙烯酸异十三烷基酯、丙烯酸十八烷基酯和丙烯酸十二烷基酯。

低tg杂烷基丙烯酸酯单体包括但不限于丙烯酸2-甲氧基乙酯和丙烯酸2-乙氧基乙酯。

在典型的实施方案中,丙烯酸类压敏粘合剂包含具有6至20个碳原子的烷基基团的至少一种低tg单体的聚合单元。在一些实施方案中,低tg单体包括具有7或8个碳原子的烷基基团。示例性单体包括但不限于(甲基)丙烯酸2-乙基己酯、(甲基)丙烯酸异辛酯、(甲基)丙烯酸正辛酯、(甲基)丙烯酸异癸酯、(甲基)丙烯酸月桂酯以及(甲基)丙烯酸与衍生自可再生源的醇的酯,诸如(甲基)丙烯酸2-辛酯。

基于聚合单元的总重量(即,排除无机填料或其它添加剂),丙烯酸类压敏粘合剂通常包含至少50重量%、55重量%、60重量%、65重量%、70重量%、75重量%、80重量%、85重量%、90重量%或更多的具有小于0℃的tg的单官能(甲基)丙烯酸烷基酯单体的聚合单元。

丙烯酸类压敏粘合剂还可包含至少一种高tg单体即在反应形成均聚物时(甲基)丙烯酸酯单体具有大于0℃的tg。该高tg单体更典型地具有大于5℃、10℃、15℃、20℃、25℃、30℃、35℃或40℃的tg。高tg单官能(甲基)丙烯酸烷基酯单体包括例如丙烯酸叔丁酯、甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸异丙酯、甲基丙烯酸正丁酯、甲基丙烯酸异丁酯、甲基丙烯酸仲丁酯、甲基丙烯酸叔丁酯、甲基丙烯酸硬脂酸酯、甲基丙烯酸苯酯、甲基丙烯酸环己酯、丙烯酸异冰片酯、甲基丙烯酸异冰片酯、(甲基)丙烯酸降冰片酯、甲基丙烯酸苄酯、3,3,5三甲基环己基丙烯酸酯、丙烯酸环己酯、n-辛基丙烯酰胺和甲基丙烯酸丙酯或组合。

丙烯酸类压敏粘合剂还可包含极性单体的聚合单元。代表性极性单体包括例如酸官能单体(例如,丙烯酸)、羟基官能((甲基)丙烯酸酯)单体、含氮单体(例如,丙烯酰胺)以及它们的组合。在一些实施方案中,丙烯酸类压敏粘合剂包含至少0.5重量%、1重量%、2重量%或3重量%并且通常不大于10重量%的极性单体诸如丙烯酰胺的聚合单元。

压敏粘合剂还可根据需要包含一种或多种合适的添加剂。添加剂通过以下各项举例说明:交联剂(例如,多官能(甲基)丙烯酸酯交联剂、环氧交联剂、异氰酸酯交联剂、三聚氰胺交联剂、氮丙啶交联剂等)、增粘剂(例如,苯酚改性萜烯和松香酯诸如松香的甘油酯和松香的季戊四醇酯,以及c5和c9烃类增粘剂)、增稠剂、增塑剂、填料、抗氧化剂、紫外线吸收剂、抗静电剂、表面活性剂、匀染剂、着色剂、阻燃剂以及硅烷偶联剂。

压敏粘合剂层可通过各种惯常的涂覆方法设置在该膜上,这些涂覆方法包括辊涂、流涂、浸涂、旋涂、喷涂、刮涂、模涂以及印刷。粘合剂可直接施加至本文所述的pla膜或通过使用离型衬垫转移涂覆。

示出以下实施例以描述本发明的附加特征和实施方案。除非另外指明,所有份数均按重量计。

材料

pla,ingeo4032d(“4032”)和ingeo4060d(“4060”)从奈琪沃克有限责任公司(natureworks,llc)购买。聚乙酸乙烯酯“pvac”以商品名“vinnapastmuw4fs”从瓦克公司获得。ecopromote成核剂从尼桑化学工业有限公司(日本)获得。

所利用的可商购获得的增塑剂包括citroflexa4(凡特鲁斯性能材料公司(vertellusperformancematerials))、可分别以商品名“tegmer809”和“tegmer804”从浩斯特公司获得的peg400二乙基己酸酯和四乙二醇二乙基己酸酯增塑剂、可以商品名“admex6995”从伊士曼公司(eastman)获得的聚酯增塑剂(3200分子量聚合物己二酸酯)。

样品制备-熔融配混

通过在dsmxploretm15cm3双螺杆微配混机中在100rpm、200℃下将pla、pvac、增塑剂和成核剂混合10分钟,然后通过打开混合室上的阀门收集样品来制备样品。对配混样品进行80℃下的老化测试、dsc表征并且熔融压制成膜以用于拉伸测试。

老化测试

将配混样品(0.2克)放置在封闭的闪烁小瓶中以防止在老化测试过程中增塑剂蒸发,并且在80℃下在烘箱中老化24小时。然后,在80℃下老化之后,检查样品的表面以观察是否存在增塑剂迁移。具有湿表面或油表面的样品被认为不合格;而具有干表面的样品被认为合格。

dsc-差示扫描量热法

除非另外指明,否则根据astmd3418-12使用ta仪器公司的差示扫面量热仪来测量每个样品的玻璃化转变温度、结晶温度、熔融温度等。在第一加热扫描中以10℃/min将每个样品(4mg~8mg)从-60℃加热至200℃并保持2分钟以擦除其热历程,然后在第一冷却扫描中以10℃/min冷却至-60℃,并且在第二加热扫描中以10℃/min加热至200℃。第二加热扫描用于测定组合物和膜的tg。如下定义的各种参数来源于dsc:tg–是指第二加热扫描的中点温度,在astmd3418-12中描述为tmg。tc–是指第一冷却扫描的结晶峰温度,在astmd3418-12中描述为tpc。tm1和tm2-分别是指第一加热扫描和第二加热扫描的熔融峰温度,在astmd3418-12中描述为tpm。

组合物结晶的能力通过计算与在第二冷却扫描过程中形成的结晶材料相关联的净熔融吸热δhnm2来确定,该净熔融吸热δhnm2使用以下公式计算,

δhnm2=δhm2-δhcc2

其中δhm2为第二加热扫描的熔融吸热质量归一化焓,并且δhcc2为第二加热扫描的结晶放热质量归一化焓(如在astmd3418-12的章节11中所描述的)。对于包含成核剂的组合物,未检测到δhcc2并且因此δhnm2=δhm2。

净熔融吸热δhnm1与膜(例如,通过熔融压制制备的)的结晶度相关联。δhnm1使用以下公式来计算,

δhnm1=δhm1-δhcc1

其中δhm1为第一加热扫描的熔融吸热质量归一化焓,并且δhcc1为第一加热扫描的结晶放热质量归一化焓(如在astmd3418-12的章节11中所描述的)。对于包含成核剂的膜,未检测到δhcc1并且因此δhnm1=δhm1。

在计算中使用与放热和吸热相关联的焓的绝对值(即,δhm1、δhm2、δhcc1和δhcc2)。

熔融压制

将配混样品放置在两个特氟隆(teflon)片材之间,在所述两个特氟隆片材之间具有10密耳厚的间隔物。将特氟隆片材放置在两个金属片材之间。将中间设置有样品的金属片材放置在液压压机(可从卡弗公司(carver)获得)的压板之间,并且将压板加热至340℉。将每个样品在没有压力的情况下预加热8分钟,然后在300磅/平方英寸的压力下压制5分钟。然后,将金属板从卡弗压机移除并且使其空气冷却。对熔融压制的膜进行dsc表征和拉伸测试。

拉伸测试

将熔融压制样品切割成0.5英寸宽条。在室温下使用instron4501拉伸测试仪进行拉伸测试。初始夹持件距离为在1英寸处,并且拉伸速度为1英寸/分钟或100%应变/分钟。将测试结果报告为3-5次样品重复的平均值。测定拉伸强度(标称的)、模量和断裂伸长率,如由astmd882-10的11.3和11.5所描述的。

动态力学分析(dma)

利用可以“dmaq800”从ta仪器公司获得的膜张力固定装置进行动态力学分析(dma)以将膜的物理特性表征为温度的函数。在2℃/分钟的速率、1弧度/秒的频率和0.1%的拉伸应变下将样品从-40℃温度加热至140℃。

180度剥离强度测试方法

使用辊将粘合剂的0.5英寸(~1.3cm)×6英寸(~15cm)长条层合至不锈钢板上。在调节在23℃/50%rh下的cth(恒定温度和湿度)室中保压时间为10分钟。使用在12英尺/分钟(~30cm/min)下的180度剥离模式进行剥离强度测量。将数据记录为6次测量的平均值。

在实施例和对照例(由“c”指示)的组合物中所利用的每个组分的重量%在表1中给出。例如,实施例8含有基于聚乳酸聚合物、聚乙酸乙酯聚合物和增塑剂的总重量的70重量%的pla4032、15重量%的pvac、15重量%的citroflexa4。实施例8还含有基于组合物的总重量的0.2重量%的ecopromote。组合物的tg和老化结果也在表1中如下报告:

表1

如表1所示,比较例c1、c4和c5通过了老化测试,而比较例c2、c3、c6和c7未通过老化测试。样品的tg可降低至25℃(如由比较例c5所示),而不低于25℃,但仍然通过老化测试(如由比较例c6和c7所示)。当组合物包含pla、增塑剂和pvac时,tg可减小至低于25℃并且通过老化测试。

在实施例和对照例(由“c”指示)的组合物中所利用的每个组分的重量%、dsc结果在表2中如下描绘:

表2

在图1中描绘实施例12的组合物的代表性dsc曲线。此dsc曲线在冷却过程中表现出尖锐的结晶放热峰。实施例16的组合物在冷却过程中未表现出任何结晶,如图2所描绘的。

在用于制备熔融压制膜实施例和对照例(由“c”指示)的组合物中所利用的每个组分的重量%、这些膜的dsc和拉伸测试结果在表3中如下描绘:

表3

表3的膜的tg也通过dsc来测量并且将与表2的组合物相同。根据先前所述的动态力学分析来测试实施例12和16。实施例12的结果在图3中描绘并且实施例16的结果在图4中描绘。

实施例22(ex-22)

将含有44.8重量%的pla4032、35重量%的pvac和20重量%的citroflexa4以及0.2重量%的ecopromote的一片实施例17膜在室温下用1密耳厚聚丙烯酸酯压敏粘合剂覆膜,该聚丙烯酸酯压敏粘合剂衍生自97重量%的丙烯酸异辛酯和3重量%的丙烯酰胺,并且具有约1,000,000g/mol的重均分子量。随后,测量180度剥离强度为25盎司/英寸。在剥离测试过程中,聚丙烯酸酯粘合剂与基于pla的背衬附着良好,并且观察到粘合剂从不锈钢板移除干净。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1