利用玻璃钢废料再生制备的仿木型材及其制备工艺的制作方法

文档序号:13753858阅读:469来源:国知局

本发明涉及复合材料技术领域,尤其涉及一种利用玻璃钢废料再生制备的仿木型材及其制备工艺。



背景技术:

玻璃钢复合材料是一种以热固性树脂为粘合剂的玻纤、碳纤增强复合材料,随着玻璃钢制品在工业及民用领域的广泛使用,使得此类玻璃钢制品退役废料或产品生产所产生的冗余料不断增多。

我国此类废物每年产生的数量以几十万吨计,并且大多以生活垃圾的方法处理。据调查,今后5~10年内,统计风电行业每年退役玻璃钢风电叶片超过5万吨。此类热固性废弃物难以被再次利用,焚烧成本每吨高达2000元以上。填埋处理会随着时间推移,风化后的玻璃纤维或碳纤维会对环境造成极大的潜在隐患。如何有效再生循环利用将是关系重大的社会课题。

专利申请号为CN201410048917.9的中国专利文献公开了一种聚乙烯基包覆共挤木塑复合材料,属于木塑复合材料技术领域,其特征是,它由包覆层和芯层组成,通过共挤工艺,包覆层包覆于芯层上,包覆层的厚度为0.3-0.6mm,其中,所述芯层由如下重量份的原料制成:再生聚乙烯25-35,生物质粉65-75,偶联剂1-3,润滑剂1-6;所述包覆层由如下重量份的原料制成:钠锌离子化树脂95-98,高密度聚乙烯2-5,偶联剂1-3;专利申请号为CN201410538457.8的中国专利文献公开一种聚氯乙烯基包覆共挤木塑橱柜板,其特征是,它由包覆层和芯层组成,其中,所述芯层原料是:聚氯乙烯、生物质粉、无机阻燃剂、复合增塑剂、复合发泡剂、润滑型加工助剂、超高熔体强度型加工助剂、轻质碳酸钙、钙锌稳定剂、聚乙烯蜡、硬脂酸;所述包覆层的原料包括:ASA/PMMA共挤料,包覆层的厚度为0.3-0.5mm。

虽然此类发明通过调整配方解决了木塑橱柜板的阻燃性、强度、芯层密度、表层色彩等问题或提高了一些木塑复合材料耐磨性、耐冲击性以及耐低温性等,但此发明包覆层表面不规则,易出现包覆缺陷,同时包裹材料选择受到工艺局限。

专利申请号为CN201020516825.6的中国专利文献公开了一种玻璃纤维网格芯层聚丙烯微发泡塑料建筑模板,它是由聚乙烯表层、玻璃纤维网格中间层、微发泡聚丙烯芯层、玻璃纤维网格中间层和聚乙烯表层五层压塑而成。该实用新型的最大优点是重量轻,抗冲击强度高,木工操作容易,可锯可钉,抗跌落、成本低,可以回收再生,周转次数为30次以上。但是此类板材的制作工艺复杂,且板材表面强度、耐磨性较差。



技术实现要素:

本发明提供了一种利用玻璃钢废料再生制备的仿木型材及其制备工艺,该仿木型材以玻璃钢废料作为芯材,以高分子热缩管作为包覆层,具有较高的力学性能,同时具有耐磨、高强、耐老化等优点。

一种利用玻璃钢废料再生制备的仿木型材,包括包覆层和芯材,所述包覆层为薄壁高分子热响应收缩管,按重量份数计,所述芯材包括以下组分:

按重量份数计,所述的发泡母粒包括以下组成:

分散润滑剂A和分散润滑剂B可以相同,也可以不同。作为优选,分散润滑剂A和分散润滑剂B均为N,N’-乙撑双硬脂酰胺。

玻璃钢材料中玻纤、碳纤增强材料占整个复合材料质量份比70%以上。本发明利用玻璃钢材料粉碎后特殊尺寸的改性玻璃纤维或碳纤维材料的增强性能、表面亲油性能、结构稳定性、比表面积大等特点,将经过粉碎后特殊分级、处理的玻璃钢粉料与聚烯烃树脂再生料或聚烯烃树脂新料、助剂等经混合后挤出成型,将其当作仿木型材的增强芯材,提高芯材力学性能、结构热稳定性、耐久性。

高分子热响应收缩管是形状记忆高分子材料在实际运用的一种较成熟产品。形状记忆高分子SMP(Shape Memory Polymer)材料是指具有初始形状的制品,在一定的条件下改变其初始形状并固定后,通过外界条件(如热、光、电、化学感应)等的刺激,又可恢复其初始形状的高分子材料。本发明将高强、耐磨、耐老化的高分子材料经过形状记忆处理后加工成薄壁高分子热响应收缩管,然后将上述处理的芯材颗粒灌装后,加热使得热缩管收缩并同时使得芯材颗粒微发泡,最后经模压制备得到四面均匀包裹的多层耐磨仿木型材。

本发明制备的多功能、高强度多层仿木型材结构稳定,不翘曲、不剥落,同时有效阻隔回收材料因原料环保问题引起仿木型材的人体友好性和环保性。包覆层包覆完美,因此不必担心玻璃纤维因老化问题裸露而造成的环境伤害性,并且本发明的仿木型材能够进行不断的回收循环使用。本发明的技术,不仅具有很高的市场经济价值,并能为今后玻璃钢制品报废后处理提供思路。

作为优选,所述的薄壁高分子热响应收缩管为:利用聚氯乙烯、聚烯烃、聚酯树脂、聚氨酯树脂、聚酰胺树脂和其改性树脂中的一种或多种材料生产的热缩管。上述热缩管具有很好的耐磨性,并且韧性好、强度高。

薄壁高分子热响应收缩管的外壁可以根据需要选择具有本色或带有装饰花纹,管径和壁厚根据具体需要进行确定。

作为优选,所述的玻璃钢废料再生粉料为以针须状纤维为主的破碎精选粉碎料,其粒径为40~120目,所述的针须状纤维的长径比大于30。

玻璃钢废料再生粉料的制备方法包括对玻璃钢废料的切割、破碎、精细粉碎、旋风粗分离、振动筛选。

本发明对玻璃钢废料进行粉碎即后处理得到玻璃钢废料再生粉料,并进一步利用硅烷偶联剂和酯键原位加工活性催化剂进行改性加工,使玻璃钢废料再生粉料与聚烯烃树脂再生料或聚烯烃树脂新料、助剂等经混合后发生交联并挤出成型,使芯材的力学性能、结构热稳定性得到增强。

玻璃钢废料再生粉料的粒径为40~120目可以保证玻璃钢废料再生粉料能够充分地与聚烯烃树脂再生料或聚烯烃树脂新料、助剂等混合均匀,针须状纤维的长径比优选大于30。该长径比及粒径分布的再生粉料对于芯材的力学性能提高最有利,同时不影响及其加工性能。

酯键原位加工活性催化剂的作用是将玻璃钢废料再生粉料中的酯键打开,使其能够与芯材中其余组分发生化学交联反应,作为优选,所述的酯键原位加工活性催化剂为乙酰丙酮锌(Zinc(II)Acetylacetonate)、1,5,7-三氮杂二环[4.4.0]癸-5-烯(TBD)、辛酸亚锡[Sn(Oct)2]和醋酸锌(Zinc acetate)中的一种或几种。

进一步优选的,所述的酯键原位加工活性催化剂为乙酰丙酮锌或1,5,7-三氮杂二环[4.4.0]癸-5-烯。

硅烷偶联剂用于改善树脂与无机填充剂或增强材料的界面性能,作为优选,所述的硅烷偶联剂为γ-氨丙基三乙氧基硅烷、氨基丙基三甲氧基硅烷、γ-缩水甘油醚氧丙基三甲氧基硅烷和γ-(甲基丙烯酰氧)丙基三甲氧基硅烷中的一种或几种。

进一步优选的,所述的硅烷偶联剂为γ-(甲基丙烯酰氧)丙基三甲氧基硅烷。

作为优选,所述的发泡促进剂为纳米氧化锌。

促粘树脂的作用是增强芯材和包覆层之间的粘结效果,一般选择粘性大,软化点较低的树脂,在芯材塑性变形前,促粘树脂已经软化,具有较高粘性,在外力的压合下粘合芯材与包覆层。作为优选,所述的促粘树脂为POE弹性体或EVA树脂。

本发明一种优选的技术方案为:

一种利用玻璃钢废料再生制备的仿木型材,包括包覆层和芯材,所述包覆层为薄壁高分子热响应收缩管,按重量份数计,所述芯材包括以下组分:

按重量份数计,所述的发泡母粒包括以下组成:

本发明还提供了上述仿木型材的制备工艺,包括以下步骤:

(1)预混:将芯材以配比量按顺序加入预混机,在60~120℃温度下搅拌下偶联活化,搅拌分散得预混料;

(2)挤出成型:将预混料在螺杆成型机中挤出发泡、成型,螺杆温度为165~200℃,成型模具温度为140~175℃,处理后得芯材;

(3)套膜:将薄壁高分子热响应收缩管套装在芯材外,通过加热薄壁高分子热响应收缩管使得其收缩紧贴在芯材表面,制得仿木型材坯料;

(4)预热、定型:将仿木型材坯料预热升温到温度为80~160℃,再通过花纹定型模具热压成型,花纹定型模具温度高于薄壁高分子热响应收缩管的软化点5~30℃;

(5)后处理:将定型后的仿木型材根据薄壁高分子热响应收缩管的结晶温度进行退火处理,最后冷却、切断、包装。

本发明的制备工艺选择在60~120℃温度下偶联活化,是因为在此温度下能有效除水、液化改性剂、促进活性成分均匀分散在颗粒表面。

步骤(1)中,偶联活化时使用高速搅拌,分散时使用低速搅拌。

高速搅拌预混机具有高速段和低速段两种速度,根据搅拌釜的大小而采用不同速度,高速搅拌的速度为:一般100升釜2000转/min,25升釜3000~5000转/min,5升釜5000~10000转/min,低速搅拌的速度为高速搅拌速度的1/3~1/5。

步骤(4)中,预热温度为80~160℃时,可以使促粘树脂粘结。

普通的采用共挤压成型的包覆材料的包覆层和芯材必须具有一定相容性,否则会发生相分离,本发明仿木型材的制备工艺采用薄壁高分子热响应收缩管套装在芯材外,预热时芯材膨胀而套管收缩,同时在促粘树脂的粘结作用下,芯材与作为包覆层的套管不相容时也可以紧密的粘接在一起,该制备工艺拓宽了包覆型材料包覆层和芯材的选择范围。

本发明采用薄壁高分子热响应收缩管作为包覆层,热压成型后,该包覆层包覆完美,没有包覆缺陷,避免了芯材中危险物质的迁移。

与现有技术相比,本发明的有益效果为:

(1)本发明利用玻璃钢材料粉碎后特殊尺寸的改性玻璃纤维或碳纤维材料的增强性能、表面亲油性能、结构稳定性、比表面积大等特点,将经过粉碎后特殊分级、处理的玻璃钢粉料与聚烯烃树脂再生料或聚烯烃树脂新料、助剂等经混合后挤出成型,将其当作仿木型材的增强芯材,提高了芯材力学性能、结构热稳定性、耐久性,同时也将玻璃钢废料再生回收利用,节约资源并且防止了玻璃钢废料对环境的污染;

(2)本发明将高强、耐磨、耐老化的高分子材料经过形状记忆处理后加工成薄壁高分子热响应收缩管,作为仿木型材的包覆层,该包覆层包裹均匀,与芯材协同作用,使得本发明的仿木型材力学性能优良;

(3)本发明的制备工艺采用薄壁高分子热响应收缩管套装在芯材外,预热时芯材膨胀而套管收缩,同时在促粘树脂的粘结作用下,芯材与作为包覆层的套管不相容时也可以紧密的粘接在一起,该制备工艺拓宽了包覆型材料包覆层和芯材的选择范围。

具体实施方式

实施例1

(1)发泡母粒的制备

按重量份计,发泡母粒包括以下组分:

POE3300为美国陶氏ENGAGE 3300TPO,其熔体流动速率:0.5g/10min,密度:0.87g/cm3

按以上配方用南京科亚化工成套设备有限公司生产的双螺杆挤出机挤出,风冷造粒得发泡母粒;

(2)芯材成型

按重量份计,芯材包括以下组分:

本实施例所采用的玻璃钢废料是由吉林重通成飞新材料股份公司提供退役风电叶片玻璃钢材料。

玻璃钢废料经切割后用常熟市首誉机械有限公司玻璃钢双轴撕碎机进行破碎,然后用嵊州市冠奇粉碎机械科技有限公司的气流涡旋分级微粉机进行精细粉碎及旋风粗分离,最后用新乡市万达机械制造有限公司的WZ-600-3F旋转振动筛进行筛选。得到粒径为60~80目,平均长径比>45的微青色粉末。

将上述粉末用张家港市永利机械有限公司高低速预混机将玻璃钢废料再生粉料和酯键原位加工活性催化剂加入进行高速搅拌活化混料,活化温度为90~110℃,活化后低速搅拌加入其它配方组分混料,最后用上海金纬机挤出械制造有限公司生产的锥形双螺杆成型机组在螺杆加料段温度为165~170℃,熔融段温度为160~165℃,计量段温度为170~175℃,合流芯温度为165℃,模具温度为160℃挤出成型,得玻璃钢再生材料增强芯材。

(3)仿木型材制备

本实例选用自生产LLDPE改性超分子聚乙烯热缩管,管子外径120mm,壁厚1.8mm,收缩比1.5/1,收缩温度100~135℃。

(3.1)套管

将上述高分子热缩管套装在芯材外,通过加热套管使得热缩管收缩紧贴在芯材表面得仿木型材坯料。

(3.2)加热定型

将仿木型材坯料传送带进入加热区中预热升温,将芯材加热到温度125~135℃,控制超分子聚乙烯热缩管表面温度,通过115℃花纹定型模具热压成型。

(3.3)后处理

将定型后的仿木型材进经紫外光照射交联,冷却后,820mm切断,包装。得宽128mm、厚18mm超分子聚乙烯包覆再生仿木板材。

实施例2

(1)发泡母粒的制备

按重量份计,发泡母粒包括以下组分:

EVA550为日本三井化学生产,其熔体流动速率:15g/10min,密度:0.93g/cm3

按以上配方用南京科亚化工成套设备有限公司生产的双螺杆挤出机挤出,风冷造粒得发泡母粒;

(2)芯材成型

按重量份计,芯材包括以下组分:

本实施例所采用的玻璃钢废料是由吉林重通成飞新材料股份公司提供退役风电叶片玻璃钢材料。

玻璃钢废料经切割后用常熟市首誉机械有限公司玻璃钢双轴撕碎机进行破碎,然后用嵊州市冠奇粉碎机械科技有限公司的气流涡旋分级微粉机进行精细粉碎及旋风粗分离,最后用新乡市万达机械制造有限公司的WZ-600-3F旋转振动筛进行筛选。得到粒径为60~80目,平均长径比>45的微青色粉末。

将上述粉末用张家港市永利机械有限公司高低速预混机将玻璃钢废料再生粉料和酯键原位加工活性催化剂加入进行高速搅拌活化混料,活化温度为90~110℃,活化后低速搅拌加入其它配方组分混料,最后用上海金纬机挤出械制造有限公司生产的锥形双螺杆成型机组在螺杆加料段温度为185~190℃,熔融段温度为180~185℃,计量段温度为190~195℃,合流芯温度为185℃,模具温度为180℃挤出成型,得玻璃钢再生材料增强芯材。

(3)仿木型材制备

本实例选用自生制聚酰胺(尼龙66)热缩管,管子外径210mm,壁厚1.2mm,收缩比2/1,收缩温度180~250℃。

(3.1)套管

将上述高分子热缩管套装在芯材外,通过加热套管使得热缩管收缩紧贴在芯材表面得仿木型材坯料。

(3.2)加热定型

将仿木型材坯料传送带进入加热区中预热升温,将芯材加热到温度155~165℃,控制超分子聚乙烯热缩管表面温度,通过185℃花纹定型模具热压成型。

(3.3)后处理

将定型后的仿木型材进经80~100℃段结晶后处理段退火处理冷却后,2400mm切断,包装。得宽150mm、厚25mm聚酰胺树脂包覆再生仿木板材。

实施例3

(1)发泡母粒的制备如实施例2。

(2)芯材成型如实施例2。

(3)仿木型材制备

本实例选用自生制聚对苯二甲酸乙二醇酯(PET)热缩管,管子外径190mm,壁厚1.2mm,收缩比1.5/1,收缩温度150~250℃。

(3.1)套管

将上述高分子热缩管套装在芯材外,通过加热套管使得热缩管收缩紧贴在芯材表面得仿木型材坯料。

(3.2)加热定型

将仿木型材坯料传送带进入加热区中预热升温,将芯材加热到温度155~165℃,通过预热辊控制热缩管表面温度高于变形温度,通过185℃花纹定型模具热压成型。

(3.3)后处理

将定型后的仿木型材进经80℃段结晶后处理段退火处理,冷却后,2400mm切断,包装。得宽150mm、厚25mm聚酰胺树脂包覆再生仿木板材。

对比例1

按实施例2制备玻璃钢再生材料增强芯材,不加高分子热缩管包覆。

对比例2

(1)发泡母粒的制备

按重量份计,发泡母粒包括以下组分:

发泡母粒按以上配方用南京科亚化工成套设备有限公司生产的双螺杆挤出机挤出,风冷造粒得发泡母粒。

(2)芯材成型

按重量份计,芯材包括以下组分:

将上述配比的原料用张家港市永利机械有限公司高低速预混机低速搅拌后用上海金纬机挤出械制造有限公司生产的锥形双螺杆成型机组在螺杆加料段温度为185~190℃,熔融段温度为180~185℃,计量段温度为190~195℃,合流芯温度为185℃,模具温度为180℃挤出成型,得微发泡仿木型材芯材。

试验例1

性能测试:以上示例样本均按照原样结构按试样要求同比例缩小进行测试。

试验方法:

材料密度:采用重量-体积法测定,单位g/cm3

弯曲性能,参照GB/T9341-2000,采用REGER-300型微机控制电子万能材料试验机(深圳瑞格)测试;

冲击性能,参照GB/T1043-1993采用XCJ-4型冲击试验机(承德金建)测试。

测试结果见表1。

表1实施例1~3、对比例1、对比例2制备的产品的测试结果

从表1的结果可以看出,采用高分子热缩管作为包覆层的仿木型材,其弯曲强度和冲击强度得到大大的提高。

以上所述的实施例对本发明的技术方案和有益效果进行了详细说明,应理解的是以上所述仅为本发明的具体实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充和等同替换等,均应包含在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1