一种以2-氰基吡嗪为受体的热活性延迟荧光有机化合物及其制备和应用的制作方法

文档序号:18733106发布日期:2019-09-21 00:48阅读:323来源:国知局
一种以2-氰基吡嗪为受体的热活性延迟荧光有机化合物及其制备和应用的制作方法

本发明涉及半导体技术领域,尤其是涉及一种以2-氰基吡嗪为受体的 具有小的激发态偶极矩的热活性延迟荧光化合物及其作为发光层客体材 料在有机电致发光器件上的应用。



背景技术:

有机发光二极管(OLEDs)在大面积平板显示和照明方面的应用引起了 工业界和学术界的广泛关注。然而,传统有机荧光材料只能利用电激发形 成的25%单线态激子发光,器件的内量子效率较低(最高为25%)。外量子 效率普遍低于5%,与磷光器件的效率还有很大差距。尽管磷光材料由于 重原子中心强的自旋-轨道耦合增强了系间窜越,可以有效利用电激发形 成的单线态激子和三线态激子发光,使器件的内量子效率达100%。但磷 光材料存在价格昂贵,材料稳定性较差,器件效率滚降严重等问题限制了 其在OLEDs的应用。

热激活延迟荧光(TADF)材料是继有机荧光材料和有机磷光材料之后 发展的第三代有机发光材料。该类材料一般具有小的单线态-三线态能级 差(ΔEST),三线态激子可以通过反系间窜越转变成单线态激子发光。这可 以充分利用电激发下形成的单线态激子和三线态激子,器件的内量子效率 可以达到100%。同时,材料结构可控,价格便宜无需贵重金属,在OLEDs 领域的应用前景广阔。

虽然TADF材料拥有以上所述优点,但是由于TADF分子一般为电荷 转移型分子,在激发态状态下电荷分离往往都会导致大的激发态偶极矩, 因此表现为溶液中光谱会受溶剂极性影响,在器件中光谱会受周围分子的 极性影响。TADF分子在器件中一般作为客体分子与强极性的主体分子掺 杂组成发光层,这样会使得器件中的光谱会发生红移,而光谱的红移和变 宽,进一步导致器件稳定性下降的问题。就当前面板制造企业的实际需求 而言,目前TADF OLED材料的发展还远远不够,作为科研院所开发更高 性能的TADF材料显得尤为重要与迫切。



技术实现要素:

针对现有技术存在的上述问题,本申请人提供了一种以2-氰基吡嗪为 受体的具有小的激发态偶极矩的热活性延迟荧光化合物及其在有机电致 发光器件上的应用。本发明化合物基于TADF发光机理,作为发光层材料 应用于有机电致发光器件,本发明制作的器件具有良好的光电性能,能够 满足面板制造企业的要求。

本发明的技术方案如下:

一种以2-氰基吡嗪为受体的热活性延迟荧光有机化合物,结构如通式 (1)所示:

通式(1)中,R表示为下列结构中的一种;

表示取代位置。

作为优选,所述的热活性延迟荧光有机化合物,为以下具体化合物中 的一种:

本发明还提供了一种有机电致发光器件,包括至少一层功能层;

所述功能层中含有所述热活性延迟荧光有机化合物。

本发明还提供了一种有机电致发光器件,所述发光器件含有发光层, 所述发光层以所述的热活性延迟荧光有机化合物作为主体材料或掺杂材 料。

作为优选,所述的发光层以mCP或者DPEPO作为主体材料,以所述 的热活性延迟荧光有机化合物作为客体材料,重量比为10~30:90~70。

作为进一步的优先,所述的热活性延迟荧光有机化合物为化合物19 或化合物24,结构式如下:

本发明还提供了一种所述的热活性延迟荧光有机化合物的制备方法, 包括以下步骤:

(1)将氟取代的溴苯与胺类化合物发生取代反应,得到胺基取代的 溴苯;

(2)胺基取代的溴苯与硼酸甲酯发生硼酸化反应,得到胺基取代的 苯硼酸;

(3)胺基取代的苯硼酸与2-氯-3-氰基吡嗪发生偶联反应,得到所述 的热活性延迟荧光有机化合物。

反应式如下:

同现有技术相比,本发明有益的技术效果在于:

本发明化合物是基于以2-氰基吡嗪为受体的TADF分子,此类分子受 体具有高T1,并且通过DFT模拟计算发现都只有很小的激发态偶极矩,这 样可以减少其在器件中受周围极性分子的影响,而阻止光谱的红移和变宽 带来的能量损失,可以进一步提高器件稳定性。与此同时本发明化合物都 具有高的荧光量子产率,2-氰基吡嗪受体具有好的的化学稳定性和热稳定 性,使得这类TADF分子作为发光层客体材料具有较好的工业应用前景。

附图说明

图1.19的OLED器件结构及各层用到的分子结构

图2.24的OLED器件结构及各层用到的分子结构

具体实施方式

下面结合附图和实施例,对本发明进行具体描述。

实施例1:化合物19TCzPZCN的合成:

合成路线:

(1)在100mL三口烧瓶中加入2.79g(10.0mmol)3,6-二叔丁基咔 唑,6.52g(20.0mmol)碳酸铯,充换氮气3次除氧,在氮气氛围下注入 1.31mL(12mmol)邻氟溴苯,15mL DMF超干溶剂,160摄氏度加热回流 24h。TCL监测反应结束后,将反应体系冷却至室温,用150mL乙酸乙酯 和300mL饱和食盐水进行萃取,随后饱和食盐水(100mL×3)洗涤有机 相3次,无水硫酸钠干燥10min,过滤、浓缩。将粗产物过硅胶柱(5×10 cm),分离纯产物、真空干燥,获得产物19-1 4.01g,产率92%。

1H NMR(400MHz,CDCl3):δ=8.14(s,2H),7.84(d,J=8Hz,1H), 7.51-7.31(m,5H),6.99(d,J=8Hz,2H),1.44(s,18H)

(2)在100mL Schlenk反应瓶中加入3.47g(8.0mmol)19-1,充 换氮气5次除氧,在氮气氛围下注入20mL THF超干溶剂,将体系放入低 温恒温反应器,降温冷却至-78℃并保持15min。磁子搅拌下缓慢滴加 7.27mL(2.2M)的正丁基锂己烷溶液,在1h内滴完,反应30min,随后 缓慢滴加2.32mL(24.0mmol)硼酸三甲酯,加完后维持-78℃反应4h, 并自然升温至室温。向反应体系内加入冰盐水淬灭反应,并滴加1M稀盐 酸调节pH至中性。用250mL乙酸乙酯和200mL去离子水萃取,有机相 用去离子水(100mL×3)洗涤3次,无水硫酸钠干燥10min,过滤、浓 缩。将粗产物过硅胶柱(5×8cm),分离纯产物、真空干燥,获得产物19-2 3.12g,产率78%。

1H NMR(400MHz,CDCl3):δ=8.14(s,2H),7.84(d,J=4Hz,1H), 7.51-7.31(m,5H),6.99(d,J=4Hz,2H),1.44(s,18H)

(3)在100mL三口烧瓶中加入2.78g(7.0mmol)19-2、1.12g(8.0 mmol)2-氯-3-氰基吡嗪、78.5mg(0.35mmol)醋酸钯、290mg(0.7 mmol)X-Phos、2.90g无水碳酸钾,充换氮气3次除氧,注入12mL DME 和6mL去离子水,氮气鼓泡30min,100℃加热回流8h。TCL监测反应 完全后,冷却至室温,100mL二氯甲烷和200mL去离子水萃取,有机相 用去离子水(100mL×3)洗涤三次,无水硫酸钠干燥10min,过滤、浓 缩,将粗产物过硅胶柱(5×10cm),分离纯产物、真空干燥,获得产物 19(TCzPZCN)4.01g,产率58%。

1H NMR(400MHz,CDCl3):δ=8.33(d,J=2Hz,1H),8.27(d,J=2Hz, 1H),7.99(d,J=2Hz,2H),7.82(dd,J=2,2Hz,1H),7.74(td,J=2,2, 2Hz,1H),7.69(td,J=1,1,1Hz,1H),7.63(dd,J=2,2Hz,1H),7.34(dd, J=1,1Hz,2H),7.09(d,J=4Hz,2H),1.40(s,18H).13C NMR(100MHz, CDCl3):δ=156.52,145.79,143.05,139.48,137.18,133.61,131.33, 129.76,129.51,128.34,123.60,123.40,116.02,115.49,109.50, 34.68,31.96.HRMS(FAB+):m/z calcd.for C31H30N4 458.2470,found 458.2455.Anal Calcd for C31H30N4:C,89.19%;H,6.59%;N,12.22%. Found:C,89.17%;H,6.57%;N,12.25%.

实施例2:化合物24 2TCzPZCN的合成:

(1)在100mL三口烧瓶中加入2.79g(10.0mmol)3,6-二叔丁基咔 唑,6.52g(20.0mmol)碳酸铯,充换氮气3次除氧,在氮气氛围下注入 0.78g(4mmol)2,5-二氟溴苯,15mL DMF超干溶剂,160摄氏度加热回 流24h。TCL监测反应结束后,将反应体系冷却至室温,用150mL乙酸 乙酯和300mL饱和食盐水进行萃取,随后饱和食盐水(100mL×3)洗涤 有机相3次,无水硫酸钠干燥10min,过滤、浓缩。将粗产物过硅胶柱(5×10 cm),分离纯产物、真空干燥,获得产物24-1 2.59g,产率91%.

1H NMR(400MHz,CDCl3):δ=8.18-8.17(m,4H),8.11(d,J=4Hz, 1H),7.75-7.72(m,1H),7.63(d,J=12Hz,1H),7.54(m,4H),7.52(d, J=4Hz,1H),7.50(d,J=4Hz,1H),7.21(d,J=8Hz,1H),1.49(s,18H), 1.43(s,18H).

(2)在100mL Schlenk反应瓶中加入2.85g(4.0mmol)24-1,充 换氮气5次除氧,在氮气氛围下注入20mL THF超干溶剂,将体系放入低 温恒温反应器,降温冷却至-78℃并保持15min。磁子搅拌下缓慢滴加 3.64mL(2.2M)的正丁基锂己烷溶液,在1h内滴完,反应30min,随后 缓慢滴加1.66mL(12.0mmol)硼酸三甲酯,加完后维持-78℃反应4h, 并自然升温至室温。向反应体系内加入冰盐水淬灭反应,并滴加1M稀盐 酸调节pH至中性。用250mL乙酸乙酯和200mL去离子水萃取,有机相 用去离子水(100mL×3)洗涤3次,无水硫酸钠干燥10min,过滤、浓 缩。将粗产物过硅胶柱(5×8cm),分离纯产物、真空干燥,获得产物24-2 2.29g,产率85%。

1H NMR(400MHz,CDCl3):δ=8.35(d,J=2Hz,1H),8.17(d,J=2Hz, 4H),7.78(dd,J=2,4Hz,1H),7.52-7.48(m,6H),7.42(d,J=8Hz,1H), 7.21(d,J=8Hz,2H),1.49(t,J=4Hz,36H).

(3)在100mL三口烧瓶中加入4.74g(7.0mmol)24-2、1.12g(8.0 mmol)2-氯-3-氰基吡嗪、78.5mg(0.35mmol)醋酸钯、290mg(0.7 mmol)X-Phos、2.90g无水碳酸钾,充换氮气3次除氧,注入12mL DME 和6mL去离子水,氮气鼓泡30min,100℃加热回流8h。TCL监测反应 完全后,冷却至室温,100mL二氯甲烷和200mL去离子水萃取,有机相 用去离子水(100mL×3)洗涤三次,无水硫酸钠干燥10min,过滤、浓 缩,将粗产物过硅胶柱(5×10cm),分离纯产物、真空干燥,获得产物 24(2TCzPZCN)2.32g,产率45%。1H NMR(400MHz,CDCl3):δ=8.33-8.30(m, 2H),8.18-8.17(m,2H),8.02-7.96(m,4H),7.84(d,J=8Hz,1H),7.67(d, J=8Hz,2H),7.57-7.55(m,2H),7.43-7.40(m,2H),7.24(d,J=8Hz,2H), 1.49(s,18H),1.43(s,18H).13C NMR(100MHz,CDCl3):δ=156.05, 145.85,143.70,143.33,139.59,138.83,138.28,138.21,135.16, 131.03,129.03,124.06,123.78,123.53,121.31,116.43,116.14, 109.48,109.28,34.82,34.72,32.01,31.96.HRMS(FAB+):m/z calcd. for C51H53N5 735.4301,found 735.4374.Anal Calcd for C51H53N5:C, 82.23%;H,7.26%;N,9.52%.Found:C,82.19%;H,7.28%;N,9.51%.

本发明化合物可以作为发光层客体材料使用,对本发明化合物19和 24甲苯溶液中和掺杂薄膜下的光化学及物理性质进行表征,结果如附图1 所示,表1为甲苯溶液中的数据。

表1

以下通过实施例3,4说明本发明合成的化合物在器件中作为发光层 客体材料的应用效果。

实施例3

发光器件的如图1所示,具体包括:透明基板层1/ITO阳极层2/空穴 注入层3(MoO3,厚度3nm)/空穴传输层4(mCP,厚度40nm)/发光层5(mCP 或DPEPO和化合物19按照10~30:90~70的重量比混掺,厚度30nm)/电 子传输层6(PPT,厚度40nm)/电子注入层7(Liq,厚度2nm)/阴极反射电极 层8(Al,厚度10nm)。涉及到的材料结构式如下:

具体制备过程如下:

透明基板层1为透明基材,如透明PI膜、玻璃等。对ITO阳极层2(膜 厚为150nm)进行洗涤,即依次进行碱洗涤、纯水洗涤、干燥,再进行紫 外线-臭氧洗涤以清除透明ITO表面的有机残留物。在进行了上述洗涤之 后的ITO阳极层2上,利用真空蒸镀装置,蒸镀膜厚为3nm的MoO3作为 空穴注入层3使用。紧接着蒸镀40nm厚度的mCP作为空穴传输层4。上 述空穴传输材料蒸镀结束后,制作OLED发光器件的发光层5,其结构包 括OLED发光层5所使用mCP或DPEPO作为主体材料,化合物19作为 客体材料,客体材料掺杂比例为70%重量比,发光层膜厚为30nm。在上 述发光层5之后,继续真空蒸镀电子传输层材料PPT。该材料的真空蒸镀 膜厚为40nm,此层为电子传输层6。在电子传输层6上,通过真空蒸镀装 置,制作膜厚为2nm的氟化锂(Liq)层,此层为电子注入层7。在电子注入 层7上,通过真空蒸镀装置,制作膜厚为10nm的铝(Al)层,此层为阴极 反射电极层8。

实施例4

发光器件的如图2所示,具体包括:透明基板层1/ITO阳极层2/空穴 注入层3(MoO3,厚度3nm)/空穴传输层4(mCP,厚度40nm)/发光层5(mCP 或DPEPO和化合物19按照10~30:90~70的重量比混掺,厚度30nm)/电 子传输层6(PPT,厚度40nm)/电子注入层7(Liq,厚度2nm)/阴极反射电极 层8(Al,厚度10nm)。

具体制备过程如下:

透明基板层1为透明基材,如透明PI膜、玻璃等。对ITO阳极层2(膜 厚为150nm)进行洗涤,即依次进行碱洗涤、纯水洗涤、干燥,再进行紫 外线-臭氧洗涤以清除透明ITO表面的有机残留物。在进行了上述洗涤之 后的ITO阳极层2上,利用真空蒸镀装置,蒸镀膜厚为3nm的MoO3作为 空穴注入层3使用。紧接着蒸镀40nm厚度的mCP作为空穴传输层4。上 述空穴传输材料蒸镀结束后,制作OLED发光器件的发光层5,其结构包 括OLED发光层5所使用mCP或DPEPO作为主体材料,化合物24作为 客体材料,客体材料掺杂比例为70%重量比,发光层膜厚为30nm。在上 述发光层5之后,继续真空蒸镀电子传输层材料PPT。该材料的真空蒸镀 膜厚为40nm,此层为电子传输层6。在电子传输层6上,通过真空蒸镀装 置,制作膜厚为2nm的氟化锂(Liq)层,此层为电子注入层7。在电子注入 层7上,通过真空蒸镀装置,制作膜厚为10nm的铝(Al)层,此层为阴极 反射电极层8。

如上所述地完成OLED发光器件后,用公知的驱动电路将阳极和阴极 连接起来,通过标准方法表征所述OLED,从呈现朗伯发射特性的电流/ 电压/发光密度特性线计算。化合物19器件的测试结果见表2。

从以上数据应用来看,本发明化合物作为发光层材料OLED发光器件 中具有良好的应用效果,具有良好的产业化前景。

虽然已通过实施例和优选实施方式公开了本发明,但应理解,本发明 不限于所公开的实施方式。相反,本领域技术人员应明白,其意在涵盖各 种变型和类似的安排。因此,所附权利要求的范围应与最宽的解释相一致 以涵盖所有这样的变型和类似的安排。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1