一种具有微孔结构超高比表面树脂球的制备方法

文档序号:9641538阅读:369来源:国知局
一种具有微孔结构超高比表面树脂球的制备方法
【技术领域】
[0001]本发明属于吸附分离材料领域,涉及一种具有微孔结构超高比表面树脂球的制备方法。
【背景技术】
[0002]多孔聚合物微球作为重要的吸附分离材料,在化工、生物医药及水处理领域有着广泛的应用。决定其使用性能的关键包括如下两个:一是比表面积,直接影响材料的吸附量;二是孔径分布,其主要对传质速度产生影响,进而影响吸附效果。比表面积方面,尚的比表面积有利于吸附量的提尚,目如具有1000m2/g以上比表面积的超尚比表面积材料的研究主要集中在活性炭(ZL201110382339.9、ZL201210455610.1)、有机金属骨架(ZL200480034680.3、ZL200580002383.5)方面,鲜少见到关于超高比表面积多孔聚合物微球制备的报道,两步法的后交联技术被主要用于该类材料的合成,ZL201210086596.2和ZL201310113977.X分别报道了悬浮法后交联与乳液法后交联制备超高比表面积多孔聚合物微球。孔道方面,由于比表面积与孔径存在相互制约关系,即孔径越小比表面积越大,因此,上述超高比表面积材料平均孔径都很小(一般小于3nm),如此小的孔径在使用过程中极大的限制了传质速度,使得并不是所有的表面都是有效表面,一定程度降低了超高比表面积带来的使用优势。因此,具有合理孔道结构的超高比表面积聚合物微球材料的获得一直是科研工作者努力的目标。
[0003]合理的孔道结构既要有有利于快速传质的较大孔道,也要有保证吸附量的较小孔道,因此,复合型或梯度型孔道的多孔聚合物微球具有明显的使用优势,但较大孔道引起比表面积的降低使得具有上述孔道特征的超高比表面积聚合物微球制备成为难题。

【发明内容】

[0004]要解决的技术问题
[0005]为了避免现有技术的不足之处,本发明提出一种具有微孔结构超高比表面树脂球的制备方法,采用无稳定剂存在下的一步悬浮法制得梯度孔道结构的高交联聚合物树脂球,所得树脂球比表面积在1000m2/g之上,是一种超高比表面积多孔聚合物微球。
[0006]技术方案
[0007]—种具有微孔结构超高比表面树脂球的制备方法,其特征在于步骤如下:
[0008]步骤1:将单体溶解在溶剂I中形成溶液,其中单体浓度为1?2mol/L ;所述单体为1,4-对二氯苄及其衍生物、对苯二甲醇或对苯二甲醇的衍生物;
[0009]步骤2:将溶液和硅油混合搅拌10?30min,其中溶液与硅油的体积比为1:8?15 ;
[0010]步骤3:再加入溶有催化剂的溶剂I,其中催化剂与单体的物质的量比为1:1?2,催化剂的浓度为1?2mol/L ;
[0011]步骤4:再温度为75?85°C之下保温持续反应6?18h,冷却至室温后,离心分离得到黑褐色固体;
[0012]步骤5:将黑褐色固体采用溶剂II进行清洗,直至抽滤时滤液呈无色透明,再用水清洗3?5遍,得到红褐色固体;
[0013]步骤6:将得到的红褐色固体装入纱布袋,采用溶剂III对其进行索氏提取,提取12?24h后,经真空干燥即得具有微孔结构超高比表面树脂球。
[0014]所述步骤1和步骤3的溶剂I为1,2- 二氯乙烷、氯仿或环己烷。
[0015]所述步骤5的溶剂II为是甲醇或乙醇。
[0016]所述步骤5的溶剂III为甲醇、乙醇、正丙醇、异丙醇或氯仿。
[0017]所述硅油为25°C下动力学粘度大于1000CPS的甲基硅油、乙基硅油、甲基含氢硅油、甲基苯基硅油、甲基羟基硅油或乙基含氢硅油。
[0018]所述催化剂为无水三氯化铁或无水三氯化铝。
[0019]有益效果
[0020]本发明提出的一种具有微孔结构超高比表面树脂球的制备方法,采用无稳定剂存在下的一步悬浮法制备得到具有微孔结构的高比表面树脂球,制得的树脂球以苯基化合物为基体,表现为高交联结构。树脂球比表面积高,具有梯度孔道分布结构,且方法简单、易于工业化,该类树脂球在环境、食品、制药、化工等涉及吸附分离的行业具重要的应用价值。
【附图说明】
[0021]图1是具有微孔结构超高比表面树脂球的制备工艺流程图
[0022]图2是具有微孔结构超高比表面树脂球的SEM照片
[0023]图3是具有微孔结构超高比表面树脂球的孔径分布曲线
[0024]图4是具有微孔结构超高比表面树脂球制备的BET曲线
【具体实施方式】
[0025]现结合实施例、附图对本发明作进一步描述:
[0026]实施例1:具有微孔结构超尚比表面树脂球的制备
[0027]称取0.88g的1,4-对二氯苄,将其溶解在5mL的1,2_ 二氯乙烷中,得到溶液A,将其加入到盛有50mL甲基硅油(25°C,1000cps)的三口瓶内,开启搅拌。25min后,向其中加入溶有0.81g无水三氯化铁的1,2- 二氯乙烷溶液5mL。将体系温度升至75°C,保温反应18h0冷却至室温后,离心分离得到黑褐色固体,用甲醇对其进行清洗,直至抽滤时滤液呈无色透明,再用水清洗3遍,得到红褐色固体。将得到的红褐色固体装入纱布袋,采用甲醇对其进行索氏提取16h后,经真空干燥即得具有微孔结构超高比表面树脂球。
[0028]实施例2:具有微孔结构超尚比表面树脂球的制备
[0029]称取1.38g的对苯二甲醇,将其溶解在5mL的1,2_ 二氯乙烷中,得到溶液A,将其加入到盛有40mL甲基硅油(25°C,1500cps)的三口瓶内,开启搅拌。20min后,向其中加入溶有0.67g无水三氯化铝的1,2- 二氯乙烷溶液5mL。将体系温度升至85°C,保温反应8h。冷却至室温后,离心分离得到黑褐色固体,用甲醇对其进行清洗,直至抽滤时滤液呈无色透明,再用水清洗3遍,得到红褐色固体。将得到的红褐色固体装入纱布袋,采用乙醇对其进行索氏提取22h后,经真空干燥即得具有微孔结构超高比表面树脂球
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1