用于制备陶瓷摩擦材料的复合纤维和制备方法及陶瓷摩擦材料和制备方法及陶瓷制动盘与流程

文档序号:14359059阅读:223来源:国知局

本发明涉及摩擦材料领域,具体涉及一种在高温下硬度高的陶瓷摩擦复合材料和其制备方法以及含有该陶瓷摩擦复合材料的制动盘及其制备方法。



背景技术:

制动盘又名刹车盘,是汽车制动系统的重要组成部件。制动盘在汽车运动时与车轮一起转动,刹车时制动卡钳夹住制动盘,与制动盘的摩擦面产生摩擦,进而起到减速的作用。所以制动盘的制动性能优良直接关系到行车的安全性。铁铸制动盘由于其价格低廉、原料来源广泛而被普遍应用。但是随着对汽车速度以及安全性能的要求不断提升,对制动盘的要求也不断提高。而铁铸制动盘由于其易热裂、耐磨性差已经渐渐不能满足高性能汽车的要求。为了弥补铁铸制动盘的缺陷,市场上出现许多新型材料制得的制动盘,其中,以陶瓷摩擦材料为原料制成的陶瓷制动盘由于摩擦性能优良、质量轻而得到了广泛应用。这里所述的陶瓷材料制动盘中所用的陶瓷材料并非普通的陶瓷材料,其是以碳化硅和碳纤维为原料,在1700℃下焙烧得到的。虽然高温焙烧可以使碳化硅和碳纤维很好的粘合,但是在焙烧过程中,碳化硅的晶型不可控,导致陶瓷摩擦材料的结构不可控,进而导致其陶瓷摩擦材料硬度低,容易断裂。

为此,中国专利cn105041921a公开了一种基于编织纤维的陶瓷摩擦复合材料及其制备方法,其公开了基于编织纤维的陶瓷摩擦复合材料包括有机弹性体、编织纤维、增强填料、摩擦调节剂和偶联剂。其中增强填料包括氧化铜、氧化铝、碳化硅、氮化硅、碳纳米管、氧化铬、氧化钛、氧化硅、铜金粉、钛酸钾、氧化锌和氮化硼中的一种或几种。有机弹性体为橡胶类。该陶瓷摩擦复合材料以编织纤维作为骨架,增强了陶瓷摩擦复合材料的断裂韧性;并且加入了橡胶类材料作为有机弹性体调节陶瓷摩擦复合材料的硬度,避免材料硬度过高对对偶的损伤过大。并且上述陶瓷摩擦材料在制备工艺中,采用偶联剂和聚氨酯,在低温下固化制成陶瓷摩擦材料,避免了高温焙烧对结构的不可控性。但是,由于上述陶瓷摩擦材料中使用了大量的有机物质,并且是通过低温固化得到的,所以该陶瓷摩擦材料的热稳定性存在着较大的隐患。由于制动盘在制动的过程中,盘面的温度经常会达到300℃左右,这样就会导致上述陶瓷摩擦材料中橡胶等有机物质软化或挥发,出现结构失稳,导致该陶瓷摩擦复合材料的硬度以及摩擦性能下降。



技术实现要素:

因此,本发明要解决的技术问题在于克服现有技术中的陶瓷摩擦复合材料的热稳定差,导致其硬度以及摩擦性能下降的缺陷。

一种用于制备陶瓷摩擦材料的复合纤维,包括:

纤维和包覆在所述纤维外部的陶瓷材料;

所述陶瓷材料包括氧化镁、二氧化硅、氧化铝、胶黏剂和成核剂。

优选的是,所述的复合纤维中,所述成核剂为五氧化二磷、氧化锌、氧化锂、氧化铈、三氧化二硼、氧化钙、二氧化钛、五氧化二钒、氧化铬、氧化锰、三氧化二铁、氧化钴、氧化镍、氧化锆和氧化锶中的一种或几种。

优选的是,所述的复合纤维中,所述氧化镁、所述二氧化硅、所述氧化铝和所述成核剂的质量比为(13-32):(40-70):(9-25):(0.5-15)。

优选的是,所述的复合纤维中,所述胶黏剂为二氧化硅、氧化铝、二氧化钛和磷酸二氢铝中一种或几种。

优选的是,所述的复合纤维中,所述纤维为碳纤维线。

优选的是,所述的复合纤维中,所述陶瓷材料与所述纤维的质量比为(50-75):(25-50)。

优选的是,所述的复合纤维中,所述胶黏剂的量为所述陶瓷材料的总质量的0.5%-8%。

一种制备所述用于制备陶瓷摩擦材料的复合纤维的方法,包括如下步骤:

(1)将氧化铝、氧化镁、二氧化硅、成核剂、胶黏剂和溶剂混合,得到陶瓷浆液;

(2)将纤维浸泡在陶瓷浆液中,取出包覆有所述陶瓷浆液的纤维,干燥,得到所述复合纤维。

优选的是,所述的制备方法中,所述陶瓷浆液中,所述陶瓷浆液的固含量为20%-40%;

所述溶剂为水或无水乙醇。

优选的是,所述的制备方法中,在温度为50-90℃下,所述纤维在所述陶瓷浆液中的浸渍0.5-2h。

一种本发明所述的复合纤维制成的陶瓷摩擦材料。

一种所述的陶瓷摩擦材料的制备方法,包括如下步骤:

s1.所述的复合纤维编织成纤维布;

s2.堆垛或层叠所述纤维布,形成陶瓷摩擦材料预制体;

s3.所述陶瓷摩擦材料预制体在温度为1400-1600℃、压力为20mpa-200mpa热压处理,得到所述陶瓷摩擦材料。

优选的是,所述的制备方法中,所述s2中还包括将所述陶瓷摩擦材料预制体在温度为200-600℃下热处理的步骤。

14.一种陶瓷制动盘,包括环状的第一盘体、第二盘体以及设置在所述第一盘体和所述第二盘体之间的若干加强筋,若干所述加强筋与所述第一盘体和所述第二盘体的相对两侧面形成若干冷却气体通道;沿所述第一盘体圆周均匀设置有若干第一排屑槽;

所述陶瓷制动盘由权利要求1-7任一所述的复合纤维或权利要求8-10任一所述制备方法制备得到的复合纤维或权利要求11所述的陶瓷复合材料材制成。

优选的是,所述的陶瓷制动盘中,沿所述第二盘体圆周均匀设置有若干第二排屑槽。

优选的是,所述的陶瓷制动盘中,所述第一盘体和所述第二盘体上均开设有若干消音孔;

所述加强筋中设置有两条消音通道,每一所述消音通道与所述第一盘体和所述第二盘体上的一所述消音孔连接。

优选的是,所述的陶瓷制动盘中,所述消音通道纵剖面为齿状。

优选的是,所述的陶瓷制动盘中,所述消音孔的孔径为3-5mm;位于同一所述加强筋中的消音通道之间相距1-2cm;所述消音通道的宽度为3-5mm。

优选的是,所述的陶瓷制动盘中,所述第一盘体上设置有若干第一通气孔。

优选的是,所述的陶瓷制动盘中,所述第二盘体上设置有若干第二通气孔。

优选的是,所述的陶瓷制动盘中,所述加强筋与所述第一盘体和所述第二盘体垂直设置。

优选的是,所述的陶瓷制动盘中,所述第一盘体的中心开口处连接有法兰。

本发明技术方案,具有如下优点:

1.本发明提供了一种用于制备陶瓷摩擦材料的复合纤维,包括,纤维和包覆在所述纤维外部的陶瓷材料;所述陶瓷材料包括氧化铝、氧化镁、二氧化硅、胶黏剂和成核剂。上述复合纤维中,采用成核剂,不仅可以调节陶瓷材料的晶体的种类和大小,从而有效的提高了陶瓷材料了硬度和断裂韧性,而且能有效的增加陶瓷材料与纤维的粘合性。

2.本发明提供了一种陶瓷摩擦材料,采包覆有陶瓷材料的复合纤维制成的陶瓷摩擦材料,摒弃了有机物质,通过氧化铝、氧化镁、二氧化硅、胶黏剂和成核剂复配使用,提高了陶瓷摩擦材料的热稳定性;

经过检测,在20℃布氏硬度可达到62,在400℃布氏硬度可以达到59,在1000℃下的热失重<5wt%。

3.本发明提供了一种陶瓷制动盘,通过在第一盘体上设置第一排屑槽,使陶瓷制动盘表面的产生的碎屑及时的落入到排屑槽中,有效防止碎屑对陶瓷制动盘盘面的磨损。

4.本发明提供了一种陶瓷制动盘,通过在加强筋中设置消音通道,并将消音通道的纵截面设置为齿状,延长了噪音、声波传播的路径,从而使噪音减弱或消失;

本申请中每个加强筋中设置两条消音通道,并且设置位于同一加强筋中的消音通道之间相距1-2cm,以及所述消音通道的宽度为3-5mm;这样设置既保证消音的效果,又不会降低陶瓷制动盘的结构稳定性。

附图说明

为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为本发明所述的第一盘体的结构示意图;

图2为本发明的一种实施方式的结构示意图;

图3为本发明的另一种实施方式的结构示意图;

图4为本发明的结构示意图。

附图标记:

1-第一盘体;2-第二盘体;3-加强筋;4-消音通道;5-第一排屑槽;6-第一排气孔;7-法兰;

具体实施方式

下面将对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。

实施例1

本实施例提供了一种陶瓷摩擦材料制备方法,包括如下步骤:

(1)将陶瓷原料和水混合,配制固含量为20%的陶瓷浆液;陶瓷原料包括氧化镁、二氧化硅、氧化铝、五氧化二磷、二氧化钛;

氧化镁、二氧化硅、氧化铝和五氧化二磷的质量比为:13:70:9:15;二氧化钛的用量为陶瓷原料总质量的0.5%;

(2)在50℃下将碳纤维线浸泡在陶瓷浆液中2h,取出包覆有陶瓷浆液的纤维,干燥,得到复合纤维;其中复合纤维中,陶瓷材料与碳纤维线的质量比为50:25;

(3)将复合纤维编织成纤维布,堆垛纤维布,形成多层结构的陶瓷摩擦材料预制体;纤维预制体可以采用复合纤维缝合,使陶瓷摩擦材料预制体层与层之间结合更加牢固;

(4)所述陶瓷摩擦材料预制体在温度为1400℃、压力为200mpa热压处理,得到陶瓷摩擦材料a。

实施例2

本实施例提供了一种陶瓷摩擦材料制备方法,包括如下步骤:

(1)将陶瓷原料和无水乙醇混合,配制固含量为40%的陶瓷浆液;陶瓷原料包括氧化镁、二氧化硅、氧化铝、成核剂、磷酸二氢铝;成核剂由质量比为1:1的氧化锌和氧化钴组成;

氧化镁、二氧化硅、氧化铝和成核剂的质量比为:32:40:25:0.5;磷酸二氢铝的用量为陶瓷原料总质量的8%;

(2)在90℃下将纤维浸泡在陶瓷浆液中0.5h,取出包覆有陶瓷浆液的纤维,干燥,得到复合纤维;其中复合纤维中,陶瓷材料与纤维的质量比为50:50;

(3)将复合纤维编织成纤维布,层叠纤维布,形成多层结构的陶瓷摩擦材料预制体;纤维预制体可以采用复合纤维缝合,使陶瓷摩擦材料预制体层与层之间结合更加牢固;

(4)陶瓷摩擦材料预制体在温度为200℃下热处理1h,排出陶瓷摩擦预制体中的气泡和无水乙醇;

(5)陶瓷摩擦材料预制体在温度为1600℃、压力为20mpa热压处理,得到陶瓷摩擦材料b。

实施例3

本实施例提供了一种陶瓷摩擦材料制备方法,包括如下步骤:

(1)将陶瓷原料和无水乙醇混合,配制固含量为30%的陶瓷浆液;陶瓷原料包括氧化镁、二氧化硅、氧化铝、成核剂、胶黏剂;成核剂由质量比为2:1的氧化钙和三氧化二铁组成;胶黏剂由质量比为3:1的氧化硅和氧化钛组成;

氧化镁、二氧化硅、氧化铝和成核剂的质量比为:20:50:13:7;胶黏剂的用量为陶瓷原料总质量的5%;

(2)在80℃下将碳纤维线浸泡在陶瓷浆液中1h,取出包覆有陶瓷浆液的碳纤维线,干燥,得到复合纤维;其中复合纤维中,陶瓷材料与碳纤维线的质量比为75:25;

(3)将复合纤维编织成纤维布,层叠纤维布,形成多层结构的陶瓷摩擦材料预制体;纤维预制体可以采用复合纤维缝合,使陶瓷摩擦材料预制体层与层之间结合更加牢固;

(4)陶瓷摩擦材料预制体在温度为600℃下热处理1h,排出陶瓷摩擦预制体中的气泡和无水乙醇;

(5)陶瓷摩擦材料预制体在温度为1500℃、压力为100mpa热压处理,得到陶瓷摩擦材料c。

实施例4

本实施例提供了一种陶瓷摩擦材料制备方法,包括如下步骤:

(1)将陶瓷原料和水混合,配制固含量为25%的陶瓷浆液;陶瓷原料包括氧化镁、二氧化硅、氧化铝、成核剂、胶黏剂;成核剂为氧化锂;胶黏剂为三氧化二铝;

氧化镁、二氧化硅、氧化铝和成核剂的质量比为:19:47:19:3;胶黏剂的用量为陶瓷原料总质量的3%;

(2)在70℃下将碳纤维线浸泡在陶瓷浆液中1h,取出包覆有陶瓷浆液的碳纤维线,干燥,得到复合纤维;其中复合纤维中,陶瓷材料与碳纤维线的质量比为75:50;

(3)将复合纤维编织成纤维布,层叠纤维布,形成多层结构的陶瓷摩擦材料预制体;纤维预制体可以采用复合纤维缝合,使陶瓷摩擦材料预制体层与层之间结合更加牢固;

(4)陶瓷摩擦材料预制体在温度为500℃下热处理1h,排出陶瓷摩擦预制体中的气泡和水;

(5)陶瓷摩擦材料预制体在温度为1600℃、压力为50mpa热压处理,得到陶瓷摩擦材料d。

实施例5

本实施例提供了一种陶瓷摩擦材料制备方法,包括如下步骤:

(1)将陶瓷原料和水混合,配制固含量为35%的陶瓷浆液;陶瓷原料包括氧化镁、二氧化硅、氧化铝、成核剂、胶黏剂;成核剂为三氧化硼;胶黏剂为二氧化硅;

氧化镁、二氧化硅、氧化铝和成核剂的质量比为:27:61:21:11;胶黏剂的用量为陶瓷原料总质量的1%;

(2)在60℃下将碳纤维线浸泡在陶瓷浆液中2h,取出包覆有陶瓷浆液的纤维,干燥,得到复合纤维;其中复合纤维中,陶瓷材料与碳纤维线的质量比为59:37;

(3)将复合纤维编织成纤维布,层叠纤维布,形成多层结构的陶瓷摩擦材料预制体;纤维预制体可以采用复合纤维缝合,使陶瓷摩擦材料预制体层与层之间结合更加牢固;

(4)陶瓷摩擦材料预制体在温度为400℃下热处理1h,排出陶瓷摩擦预制体中的气泡和水;

(5)陶瓷摩擦材料预制体在温度为1400℃、压力为150mpa热压处理,得到陶瓷摩擦材料e。

实施例6

本实施例提供了一种陶瓷摩擦材料制备方法,包括如下步骤:

(1)将陶瓷原料和水混合,配制固含量为22%的陶瓷浆液;陶瓷原料包括氧化镁、二氧化硅、氧化铝、成核剂、胶黏剂;成核剂为氧化铬;胶黏剂为由质量比为5:1的氧化铝和氧化硅组成;

氧化镁、二氧化硅、氧化铝和成核剂的质量比为:31:43:11:6;胶黏剂的用量为陶瓷原料总质量的7%;

(2)在60℃下将碳纤维线浸泡在陶瓷浆液中2h,取出包覆有陶瓷浆液的碳纤维线,干燥,得到复合纤维;其中复合纤维中,陶瓷材料与碳纤维线的质量比为63:47;

(3)将复合纤维编织成纤维布,层叠纤维布,形成多层结构的陶瓷摩擦材料预制体;纤维预制体可以采用复合纤维缝合,使陶瓷摩擦材料预制体层与层之间结合更加牢固;

(4)陶瓷摩擦材料预制体在温度为300℃下热处理1h,排出陶瓷摩擦预制体中的气泡和水;

(5)陶瓷摩擦材料预制体在温度为1400℃、压力为170mpa热压处理,得到陶瓷摩擦材料f。

实施例7

如图1-4所示,本实施例提供了一种陶瓷制动盘,包括环状的第一盘体1、第二盘体2以及设置在所述第一盘体1和所述第二盘体2之间的若干加强筋3,若干所述加强筋3与所述第一盘体1和所述第二盘体2的相对两侧面形成若干冷却气体通道;沿所述第一盘体1圆周均匀设置有若干第一排屑槽5;所述陶瓷制动盘由实施例3制备陶瓷复合材料材制成。

通过在第一盘体上设置第一排屑槽,使陶瓷制动盘上表面的产生的碎屑及时落入到第一排屑槽中,有效防止碎屑对陶瓷制动盘盘面的磨损。

进一步地,沿所述第二盘体2圆周均匀设置有若干第二排屑槽。通过在第二盘体上设置第二排屑槽,使陶瓷制动盘的下表面产生的碎屑及时落入第二排屑槽中,防止碎屑对陶瓷制动盘盘面的磨损。

进一步地,所述第一盘体1上和所述第二盘体2上均开设有若干消音孔;所述加强筋3中设置有两条消音通道4,每一所述消音通道4与所述第一盘体1和所述第二盘体2上的一所述消音孔连接;一种实施方式如图2所示,所述消音通过4的纵剖面为直线;作为在一种替代方式,如图3所示,所述消音通道4的纵剖面为齿状。通过在加强筋中设置消音通道,并将消音通道的纵截面设置为齿状,延长了噪音、声波传播的路径,从而使噪音减弱或消失。

进一步地,所述消音孔的孔径为3-5mm;位于同一所述加强筋3中的所述消音通道之间相距1-2cm;所述消音通道4的宽度为3-5mm。

进一步地,所述第一盘体1上设置有若干第一通气孔6。第一通气孔的设置能更好的起到散热的效果。

进一步地,所述第二盘体上设置有若干第二通气孔。第二通气孔的设置能更好的起到散热的效果。

进一步地,所述加强筋3与所述第一盘体1和所述第二盘体2垂直设置。

进一步地,所述第一盘体1的中心开口处连接有法兰7。

效果验证

1.在高温和常温下对陶瓷摩擦复合材料的硬度测试;

用thb-3000mdx触摸屏布氏硬度计,选用压痕法对实施例1-6制备的陶瓷摩擦材料a-f在温度为20℃和400℃下的布氏硬度(hbw)进行检测;测试结果见表1。

具体为:将陶瓷摩擦材料a-f切割成尺寸为20mm×20mm×10mm的试验块,压头直径10mm。

表1

2.对陶瓷摩擦复合材料在高温和常温下的摩擦系数的检测

按照《saej2522》测功圆盘制动器效能标准对实施例1-6制备的陶瓷摩擦材料a-f的摩擦系数进行检测,检测结果见表2。

表2

3.对陶瓷摩擦复合材料的导热系数进行检测

采用德国耐驰lfa447激光导热系数测量仪对实施例1-6制备的陶瓷摩擦材料a-f的摩擦系数进行检测,检测结果见表3。

具体测试为:陶瓷摩擦材料a-f切割成尺寸为φ12.6mm×3.0mm的测试样,测试标按照国际标准astme1461,测试温度为20℃。

表3

4.对陶瓷摩擦材料的断裂韧性、膨胀系数、杨氏弹性模量、抗弯强度进行检测

对实施例1-6制备的陶瓷摩擦材料a-f的断裂韧性、膨胀系数、杨氏弹性模量、抗弯强度检测,检测结果见4。

表4

5.对陶瓷摩擦复合材料热失重进行检测

对实施例1-6制备的陶瓷摩擦材料a-f热失重进行检测,具体测试方法为:

将陶瓷摩擦材料a-f切割成尺寸为φ30mm×10mm的样品,在室温20℃,对样品在分析天平上对质量进行称量。之后将样品放入中温炉中,空气环境下加热至1000℃,保温1h后,取出待冷却至室温后,干态样品再次在分析天平上进行称量,测试结果见表5。

表5

显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1