一种客车多孔横向隧道铝合金腔梁结构车架的制作方法

文档序号:22398961发布日期:2020-09-29 18:09阅读:86来源:国知局
一种客车多孔横向隧道铝合金腔梁结构车架的制作方法

本发明涉及车身部件技术领域,具体是一种客车多孔横向隧道铝合金腔梁结构车架。



背景技术:

新能源客车、尤其是中大型客车,因为自重大、电池重、车辆负载需求大,对整车轻量化的需求更为迫切,减重空间也更大,因此越来越多的汽车企业相继推出了轻量化新能源客车产品。一种较成熟的轻量化结构方案是钢桁架全承载结构,即采用轻量化的空间桁架式车架代替传统的钢大梁式车架,该车架与钢车身骨架装配后形成全承载式车辆结构,从而实现整车轻量化。但是,受钢材料的限制以及车架高度尺寸的限制,其减重效果有限;在此基础上,从国外引进了一种“上铝下钢”的轻量化结构方案,即车辆的车身采用铝合金骨架结构进一步减重,车架仍采用桁架式钢结构,装配后仍然保持全承载车辆结构特点。由于车身重量在整车重中的占比不大,上铝下钢的轻量化效果也不明显,但是成本明显增加,同时面临钢铝结构在连接处易出现电化学腐蚀的新问题。因此,桁架式钢结构、或上铝下钢混合结构都不是新能源商用车轻量化的终极解决方案,未能在客车行业获得推广应用。

“上铝下铝”的全轻量化车辆结构在乘用车上已经获得应用及市场认可,但国内外鲜有“上铝下铝”的全铝合金的轻量化客车产品,主要的困难是没有开发出满足客车结构特点及工况要求的铝合金车架。在本发明的前续技术已公开有全铝车架,由两根大梁与一组小横梁采用榫卯结构连接,形成众多四边形桁架拓扑结构,但是该现有拓扑结构形式的车架存在以下问题:

1、现有全铝车架扭转刚度往往不足,只限于在小型商务车上应用;

2、现有全铝车架的空间利用率不高,尤其是用于储存电池的空间不多。

因此,客车如要实现全铝合金车架拓扑结构,亟待解决现有技术中铝合金车架结构的上述技术问题。



技术实现要素:

针对上述现有缺陷,本发明目的在于提供一种三维腔梁拓扑的轻量化车架,旨在重点解决现有技术中全铝车架扭转刚度不足、电池空间布局难的典型问题。

本发明的技术方案如下:

一种客车多孔横向隧道铝合金腔梁结构车架,包括两根平行设置的纵梁,所述纵梁为多腔铝型材结构,所述纵梁的顶部设置有顶部平面齐平的顶部型腔,顶部型腔横向外侧向下设置有下凸型腔,横向内侧向下设置有竖直的腹部型腔,在所述两纵梁的侧面对应位置分别设置有贯穿的隧道孔、横梁孔以及横臂孔;

两根所述纵梁之间横向设置有横向隧道腔,所述横向隧道腔截面为中空的薄壁腔体的结构,其两端分别横向贯穿所述两根纵梁的隧道孔并与隧道孔榫卯连接,纵梁与横向隧道腔之间设置有l形法兰板,l形法兰板两侧分别与横向隧道腔外表面、纵梁的腹部型腔的侧面连接;

两根所述纵梁之间横向设置有剪力墙,所述剪力墙包括由上至下平行设置的至少两根横梁,所述横梁横向贯穿两根纵梁的横梁孔并与横梁孔榫卯连接,横梁与横梁之间设置有加强筋板,剪力墙的两端设置有用于与侧围装配的收口连接板;

两根所述纵梁之间横向设置有横臂,所述横臂两端分别贯穿两根所述纵梁的横臂孔并与横臂孔榫卯连接,横臂两端部设置有法兰座,法兰座与纵梁固定连接。

作为优选地,与横向隧道腔连接的两根所述纵梁的对应的隧道孔至少一个为盲孔,横向隧道腔的至少一端设置有端盖,横向隧道腔带端盖端与纵梁腹部型腔上的盲孔榫卯连接,横向隧道腔的端盖与纵梁腹部型腔内壁固定连接,横向隧道腔的外表面通过l法兰板与纵梁的侧面连接。

作为优选地,所述横向隧道腔为整体挤压成型件。

作为优选地,所述横向隧道腔包括上腔体与下腔体,上腔体与下腔体通过焊接连接,或上腔体与下腔体通过h形型材搭接,并通过粘接或焊接或铆接固定。

作为优选地,两根所述纵梁的中后部对应轮眉位置分别对应设置有加强梁,所述加强梁沿纵梁延伸方向的顶面贴平,加强梁的宽度与纵梁的宽度齐平,加强梁通过螺杆螺母与纵梁顶面连接,加强梁的左右两侧设置有夹板,所述夹板表面与加强梁侧面及纵梁侧面贴合,并通过胶接和铆钉固定。

作为优选地,纵梁上装配有板簧硬点座,所述板簧硬点座的截面为多腔型材结构,所述剪力墙的至少一根横梁穿过所述板簧硬点座并与其榫卯连接;板簧硬点座上方为卡槽结构,所述卡槽结构与纵梁的下凹形腔卡接,并通过螺杆贯穿卡槽结构、下凹形腔与螺母连接固定;所述板簧硬点座底部通过螺杆、螺母与纵梁的腹部型腔连接。

作为优选地,所述纵梁为一体挤压成型件,或为至少两个子纵梁形成的复合拼接件。

本发明的有益效果:

1、本发明的轻量化车架由两根纵向大梁、若干个横向隧道腔、若干剪力墙、若干横臂所构成,这些结构成分通过卯榫、螺接、粘接、铆接等有效装配连接构成一个多孔横向隧道腔式铝合金腔梁车架拓扑结构,该结构稳定性好,车架的扭转刚度、纵向弯曲刚度、横向弯曲刚度高,特别是扭转刚度可达到同级别钢车架的扭转刚度;

2、本发明的轻量化车架设置的若干孔横向隧道腔,与纵梁之间综合采用榫卯结构加法兰结构进行连接,可采用粘接加铆接或之外的工艺进行固定,将纵梁和横向隧道腔牢牢的固接在一起,由于纵梁和横向隧道腔的截面刚度大,并且装配连接以后进一步互相加强,最终形成高强度高刚度的车架主拓扑结构,同时,隧道腔可用于收纳电池包,与同级别车型相比,有效地提高车架空间利用率,大大扩展了电池包的储放能力,有利于增加车辆的续航里程;

3、本发明设置了若干条横臂,纵梁和横臂之间可采用榫卯结构加法兰结构进行连接,也可采用铆接或之外等工艺进行固定,将纵梁和横臂牢牢的固接在一起,既可以进一步提升车架整体刚度,又提供了底盘平衡杆的硬点;

4、本发明设置了若干片剪力墙,纵梁和剪力墙之间采用榫卯结构进行连接固定,既可以进一步提升车架的横向刚度,又在纵向上对车门、轮眉等区段提供了有效隔断,有利于车架的分段密封;

5、本发明的若干个横向隧道腔、若干剪力墙、若干横臂以及板簧硬点座可以根据需求布置在车架的不同地方,各个部件可以形成组合搭配,对于薄弱位置的适配性强,从而提高了车架的整体扭转刚度;

6、本发明的轻量化车架的平台化程度高,可支持配置板簧悬架系统或气弹悬架系统,可支持前、中、后乘客门的布置,可支持二级踏步平地板车身、二级三级混合地板车身、三级踏步平地板车身;车架结构紧凑、模块化程度高,易于装配制造。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为本发明一种客车多孔横向隧道铝合金腔梁结构车架整体结构示意图;

图2为本发明纵梁的截面图;

图3为本发明纵梁的侧视图;

图4为本发明横向隧道腔、加强梁与纵梁的连接结构示意图;

图5为本发明l形法兰板与纵梁、横向隧道腔连接结构示意图;

图6为本发明剪力墙结构示意图。

图7为本发明实施例3的横梁与纵梁连接结构示意图。

图8为本发明横臂与纵梁连接结构示意图;

图9为本发明实施例2单侧盲孔横向隧道腔与纵梁连接结构示意图;

图10为本发明实施例2双侧盲孔横向隧道腔与纵梁连接结构示意图;

图11为图4的a处局部放大示意图;

图12为实施例5板簧硬点座的结构示意图;

图13为实施例6横梁与加强梁、板簧硬点座、纵梁连接结构示意图;

图14为本发明横向隧道腔的上腔体与下腔体连接示意图及i处放大图。

图中,1-两根纵梁;101-横梁孔;102-隧道孔;103-横臂孔;104-下凸型腔,105-腹部型腔;110-左纵梁;120-右纵梁;2-横臂;3-加强梁;4-横向隧道腔;401-上腔体;402-下腔体;5-剪力墙;510-第一横梁;520-第二横梁;530-第三横梁;6-板簧硬点座;601-空心结构;602-卡槽结构;7-收口连接板;8-加强筋板;9-夹板;10-l形法兰板;11-法兰座;12-h形型材。

具体实施方式

为了使本发明的目的,技术方案及优点更加清楚明白,以下结合附图通过具体实施例对本发明进一步详细说明。在实施例的描述中,需要理解的是,指示方位或位置关系的术语为基于附图所示的方位或位置关系,仅是为了便于描述本实施例和简化描述,而不是指示或暗示所指的设备或元件必须具有特定的方位、以特定的方位构造和操作因此不能理解为对本发明的限制。

实施例1

如图1所示,根据本方案具体实施方式的一种客车多孔横向隧道铝合金腔梁结构车架,包括:两根纵梁1,以及设置在两根纵梁1之间的若干孔横向隧道腔4、若干剪力墙5以及若干横臂10;

两根纵梁1为沿车身长度方向平行布置的左纵梁110与右纵梁120,所述左纵梁110与右纵梁120为多腔铝型材,参考图2所示,其截面设置为多腔的结构,所述左纵梁110与右纵梁120的顶部设置有顶部为平面的顶部型腔,顶部型腔横向外侧边缘设置有下凸型腔104,内侧边缘向下设置有竖直的腹部型腔105,参考图3所示,在所述左纵梁110和右纵梁120的侧面对应位置分别设置有贯穿的隧道孔102、横梁孔101以及横臂孔103。纵梁采用全铝的多腔型材结构,起到了对车架整体减重的作用,腹部型腔105有利于减重的同时提高最大高度形成横向隧道腔4通过的空间,纵梁1通过下凸型腔104设计保留了足够强度,也形成了与其他零件如板簧硬点座6的卡槽结构602装配的卡接位置;

如图4所示,在左纵梁110与右纵梁120之间横向设置所述横向隧道腔4,所述横向隧道腔4截面为带圆角矩形的中空薄壁腔体的结构,优选为铝制件,其两端分别横向贯穿所述左纵梁110与右纵梁120的隧道孔102并与隧道孔102榫卯连接,如图5所示,纵梁与横向隧道腔4之间设置有l形法兰板10,l形法兰板10的两侧分别与横向隧道腔4外表面、纵梁的腹部型腔105的侧面连接。横向隧道腔4为薄壁中空的铝结构,减轻车架整体重量的同时,纵梁和横向隧道腔4的截面刚度大,有利于车架整体的扭转刚度、纵向弯曲刚度、横向弯曲刚度高的提高,通过装配连接以后进一步互相加强,横向隧道腔4可用于收纳电池包,提升了空间利用率;原则上,横向隧道腔4可根据需要和空间条件分布于纵梁的前、中和后任意位置,而用于储存电池的横向隧道腔4通常布置于前后轮眉之间;

如图6所示,在左纵梁110与右纵梁120之间横向设置所述剪力墙5,本实施例的剪力墙5包括由上至下平行设置的第一横梁510、第二横梁520、第三横梁530,参考图7,每根所述横梁横向贯穿左纵梁110与右纵梁120的横梁孔101并与横梁孔101榫卯连接,横梁与横梁之间设置有加强筋板8,剪力墙5的两端设置有用于与车身侧围装配的收口连接板7。剪力墙5通过横梁与纵梁的不同上下不同位置连接,进一步提升了车架的横向刚度,又可以在纵向上对车门、轮眉等区段提供了有效隔断,有利于车架的分段密封;车架上有多个剪力墙5,用以提升整个车架的抗弯、抗扭能力,剪力墙5通常分布于轮眉、车门两侧结构的位置;

如图8所示,在左纵梁110与右纵梁120之间横向设置所述横臂2,横臂2的两端分别贯穿左纵梁110与右纵梁120的横臂孔103并与横臂孔103榫卯连接,横臂2两端部设置有法兰座11,法兰座11通过螺接与左纵梁110、右纵梁120固定。横臂2进一步提升车架的整体刚度,又提供了部分底盘的硬点;横臂2通常设置在前轮眉和/或后轮眉附近。

本实施例通过采用发明的轻量化车架由两根纵梁1、若干个横向隧道腔4、若干剪力墙5、若干横臂2所构成,这些结构首先通过榫卯装配连接构成一个箱式的横向隧道铝合金腔梁车架拓扑结构,榫卯结构之间接触面积大,来自车架四面的受力稳定性好,然后再通过铆接等方式进行固定,车架的扭转刚度、纵向弯曲刚度、横向弯曲刚度高,特别是扭转刚度可达到同级别钢车架的扭转刚度;此外横向隧道腔4可用于收纳电池包,与同级别车型相比,有效地提高车架空间利用率,大大扩展了电池包的储放能力,有利于增加车辆的续航里程;最后,相比较传统的轻量化铝车身底架的整体扭转刚度更高、更轻,同时更易于制造;因此,本车架能够满足客车实现全铝合金化,车架整体重量轻且又有相当高的强度和刚度,能够形成既能承载又能减重的双重功能,达到本发明的目的。

实施例2

本实施例提供又一种客车多孔横向隧道铝合金腔梁结构车架,本实施例与实施例1的不同之处在于,如图9所示,与横向隧道腔4连接的两根纵梁1对应的隧道孔102至少一个为盲孔,可以适应车架两侧的空间需求,其孔深大概为腹部型腔105的厚度,横向隧道腔4的至少一端设置有端盖,横向隧道腔带端盖端与纵梁1腹部型腔105上的盲孔榫卯连接,横向隧道腔4的端盖与纵梁1腹部型腔105内壁固定连接,横向隧道腔4的外表面通过l法兰板10与纵梁的腹部型腔105的侧面连接。同理,如图10所示,也可以设置为双盲孔的横向隧道腔4,连接方式和单侧盲孔横向隧道腔4类似。

实施例3

本实施例提供又一种客车多孔横向隧道铝合金腔梁结构车架,本实施例与实施例1、实施例2的不同之处在于,如图7所示,所述最上方的第一横梁贯穿左纵梁110与右纵梁120的顶部型腔,因此进一步增加了剪力墙5与纵梁的横向接触面积,即提升了车架的横向刚度。

实施例4

本实施例又提供一种客车多孔横向隧道铝合金腔梁结构车架,如图11所示,在左纵梁110与右纵梁120的中后部缺口较大的薄弱位置分别对应设置有加强梁3,所述加强梁3沿纵梁延伸方向的顶面贴平,加强梁3的宽度与纵梁1的宽度齐平,加强梁3中部通过螺杆螺母与纵梁顶面连接,加强梁3的左右两侧设置有夹板9,所述夹板9上设置有与多腔铝型材凹条相配的凸条,夹板9通过凸条卡接定位在加强梁3与纵梁1的侧面上,并通过铆钉固定。通过设置加强梁3用来弥补左纵梁110与右纵梁120在该部位的强度不足,可极大的增强纵梁的纵向载荷性能。

实施例5

本实施例又提供一种客车多孔横向隧道铝合金腔梁结构车架,如图12所示,本实施例在上述实施例的基础上,加强梁3与纵梁的连接处增加设置有板簧硬点座6,所述板簧硬点座6的截面为多腔型材结构601,穿过所述剪力墙5的横梁穿过所述板簧硬点座6并与其榫卯连接;板簧硬点座6上方为卡槽结构602,所述卡槽结构602与纵梁的下折弯部104卡接,并通过螺杆贯穿卡槽结构602、下折弯部104与螺母连接固定;所述板簧硬点座6底部通过通过螺杆、螺母与纵梁的腹部型腔105连接。板簧硬点座6在提升硬点和纵梁整体性的同时,板簧硬点座6受力可均匀地分散传递到左纵梁110和右纵梁120上,避免了集中传力路径,提高了底盘硬点承受大硬点载荷能力;此外板簧硬点座6的截面为较大的空心型材,在满足强度要求的同时,可有效的减轻车架的重量。

实施例6

结合实施例4、实施例5的基础上,如图13所示,位于加强梁3、与板簧硬点座6附近设置的所述剪力墙5的第一横梁510穿过加强梁3侧边的夹板9与夹板9榫接,剪力墙5的第二横梁520穿过所述板簧硬点座6并与其榫卯连接,剪力墙5的第三横梁530穿过两根纵梁1并与其榫卯连接。通过剪力墙5的三根横梁将加强梁3、板簧硬点座6、两根纵梁1连接在一起,进一步增强车架的整体刚度。

此外,在一些实施例中,横向隧道腔4为整体挤压成型件,或如图14所示,横向隧道腔4包括上腔体401与下腔体402,上腔体401与下腔体402通过焊接连接,或上腔体401与下腔体402通过h形型材12搭接,并通过粘接或焊接或铆接固定。

上述实施例中横臂2、剪力墙5、横向隧道腔4、簧硬点座6、加强梁3也可以根据不同的需求在不同的部位进行合理布置,整体操方便,通过按需改变上述部件位置有利于加强纵梁薄弱处的强度,进一步增强车架整体的刚度。

上述实施例之间的部件的组合连接方式除了描述的连接方式外,还可采用粘接或焊接或铆接或螺接等方式。

除上述实施例外,在一些实施例中,纵梁腹部型腔105侧面间隔设置有走线孔,可为车身电器件的线路走线提供便利。

除上述实施例外,在一些实施例中,纵梁为一体挤压成型件,也可以为类似加强梁3与纵梁拼接方式的至少两个子纵梁形成的复合拼接件。

除上述实施例外,纵梁俯视的形态可以是直的、也可以是弯曲的,根据底盘件的安装需求来定。

虽然,上文中已经用具体实施方式,对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1