一种无人机起落控制系统和控制方法

文档序号:9901574阅读:434来源:国知局
一种无人机起落控制系统和控制方法
【技术领域】
[0001 ]本发明涉及无人机技术领域,尤其涉及一种无人机起落控制系统和控制方法。
【背景技术】
[0002]无人机在侦查/监视、通信中继、电子对抗、灾害防治、应急搜索等应用领域需求广泛。现有技术中有人还提出了一种理念设计,将无人机应用于汽车,使其成为汽车可移动的“眼睛”。无人机不工作时停驻在车顶的停机坪中,同时可以进行无线充电。工作时,人们控制无人机侦查前方路段交通状况、同时可以充当倒车雷达的摄像头。
[0003]但是,由于工作环境、空气流动或操作难度大的原因,上述设计理念还无法实现。其中一个最主要的问题是无人机起飞或降落过程中容易受碰撞或倾斜坠落,使得无人机寿命短暂、实用性不高。而且,无人机起飞时,机翼须消耗大量电能以脱离停机坪,能耗较大,不利于持续使用。

【发明内容】

[0004]本发明提供一种无人机起落控制系统,旨在解决无人机起飞降落过程中容易损坏的问题。
[0005]本发明提供一种无人机起落控制系统,包括:
设置在无人机侧的磁体组件和设置在停机坪侧的磁场组件;所述磁场组件中设置有通电线圈;
所述通电线圈中通入电流,所述磁场组件在停机坪侧产生支撑磁场,形成作用于无人机的推力;所述推力与无人机起飞或降落过程中无人机的升力或作用于无人机的阻力形成合力,以补充所述升力或阻力。
[0006]进一步的,还包括转速测量装置、测距装置和控制器;所述转速测量装置测量无人机机翼的转速,所述测距装置测量无人机与预定停驻位置的距离;所述控制器根据转速测量装置测得的转速和/或测距装置测得的距离改变通入所述通电线圈中的电流方向和大小。
[0007]更进一步的,无人机接收起飞指令,所述通电线圈中通入正向电流并持续增大正向电流,所述支撑磁场产生作用于无人机的向上推力;支撑磁场作用于无人机的推力等于无人机的重力时,通入所述通电线圈上的正向电流最大,无人机与停机坪之间形成空气间隙。
[0008]进一步的,无人机与停机坪之间形成间隙后,无人机机翼开始转动;通入所述通电线圈中的正向电流随无人机机翼旋转转速的增加而减小;当无人机机翼的旋转转速等于设定转速时,通入所述通电线圈中的电流下降为零。
[0009]更进一步的,所述控制器接收降落指令,在所述通电线圈中通入正向电流并持续增大正向电流;无人机机翼转速为零且所述测距装置检测无人机与停机坪之间的距离为零时,所述控制器控制停止对所述通电线圈供电。
[0010]进一步的,所述控制器接收降落指令,测距装置检测无人机与停机坪之间的距离是否属于可降落范围;如果无人机与停机坪之间的距离属于可降落的范围,则保持无人机机翼转速不变,在所述通电线圈中通入反向电流,牵引无人机至预设停驻位置的正上方。
[0011]进一步的,还包括设置在无人机中的储能装置和设置在所述无人机起落架上的充电线圈,储能装置和充电线圈电连接;当无人机处于飞行状态时,储能装置与充电线圈断开;当无人机停驻在停机坪上时,所述通电线圈中通入充电电流,所述磁场组件在停机坪侧产生变化的充电磁场,储能装置与充电线圈连接为储能装置充电。
[0012]进一步的,所述测距装置包括设置在无人机上的红外测距装置和设置在停机坪侧的红外接收装置;所述红外接收装置的宽度大于红外测距装置宽度。
[0013]优选的,所述磁体组件包括永磁铁,所述永磁铁设置在无人机起落架与停机坪的对应接触面上;所述磁场组件包括设置在停机坪处的铁芯,所述通电线圈缠绕在所述铁芯外部。
[0014]本发明上述实施例所公开的无人机起落控制系统,在无人机的起飞和降落过程中通过改变通电线圈的电流,形成均匀的磁场,产生作用于无人机的推力,平衡无人机起落过程中的受力,提高了无人机的安全性能,降低了无人机的使用能耗,延长了无人机的使用寿命O
[0015]本发明还公开了一种无人机起落控制方法,具体包括以下步骤:
SI,控制器接收起飞指令,控制通电线圈中通入正向电流并持续增大正向电流;支撑磁场作用于无人机的推力等于无人机的重力时,通入所述通电线圈上的正向电流最大,无人机与停机坪之间形成空气间隙;
S2,无人机与停机坪之间形成间隙后,控制器控制通入所述通电线圈上的最大正向电流不变,无人机机翼开始旋转;控制器一路输入端输入转速检测装置反馈的转速检测信号,并根据输入的转速检测信号输出控制信号控制通入所述通电线圈中的正向电流随无人机机翼旋转转速的增加而减小;无人机机翼的旋转转速等于设定转速时,控制器控制通入所述通电线圈中的电流下降为零;
S3,控制器接收降落指令,测距装置检测无人机与停机坪之间的距离是否处于可降落的范围;
S4,如果无人机与停机坪之间的距离属于可降落的范围,控制器输入控制信号保持无人机机翼转速不变,并控制在通电线圈中通入反向电流,牵引无人机至预设停驻位置的正上方;
S5,控制器在通电线圈中通入正向电流并持续增大正向电流,形成作用于无人机的推力以补充无人机机翼转速下降而造成的阻力损失;无人机机翼转速为零且所述测距装置检测无人机与停机坪之间的距离为零时,所述控制器输入控制信号停止对所述通电线圈供电;
S6,无人机工作时,储能装置与充电线圈断开;无人机停驻在停机坪上时,控制器输出控制信号,所述通电线圈中通入充电电流,所述磁场组件在停机坪侧产生变化的充电磁场,储能装置与充电线圈连接为储能装置充电。
[0016]本发明所公开的控制方法,降低了无人机起飞降落过程中的能耗,提高了无人机的安全性能,具有可操作性好的优点。
【附图说明】
[0017]为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
[0018]图1为本发明所提出的无人机起落控制系统一种实施例的结构示意图;
图2为本发明所提出的无人机起落控制系统一种实施例的示意框图;
图3为本发明所提出的无人机起落控制方法一种实施例的流程图。
[0019]
【具体实施方式】
[0020]为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
[0021]参见图1至图2所示,本发明所公开的起落控制系统包括设置在无人机I侧的磁体组件和设置在停机坪侧的磁场组件。具体来说,磁体组件为设置在无人机起落架与停机坪接触面上的永磁铁5。永磁铁5重量轻且具有稳定的磁性。磁场组件中包括设置在停机坪处的铁芯和缠绕在铁芯外部的通电线圈2。对于设置在车顶等特殊环境中的磁场组件,通电线圈2设置在华司之中,避免底部磁泄漏对其它物品的影响。通电线圈2通电后在无人机侧形成磁场。由于停机坪侧的磁场强度远大于永磁铁5形成的磁场的磁场强度,所以磁场组件生成的磁场是一个相对于无人机的均匀磁场,不会使无人机出现倾翻或坠落的现象。
[0022]通电线圈2通入正向电流后,磁场组件在停机坪侧形成一个支撑磁场,产生作用于无人机的推力。在起飞的过程中,支撑磁场产生的推力与飞机起飞的升力形成合力,补充机翼旋转产生的升力,从而降低无人机起飞过程中的能耗。而在降落的过程中,由于无人机自身的重量较轻,在飞行速度较高时垂直降落,升力降低很快。为避免降落时出现坠机、支撑磁场作用于无人机的推力与阻力形成合力,使无人机受力均匀。
[0023]本实施例所述的无人机起落控制系统中,在无人机侧设置有转速测量装置6和红外测距装置7,在停机坪侧设置有信号收发模块10和控制器9。转速测量装置6生成的转速检测信号和红外测距装置7生成的距离信号通过信号收发模块10输出至控制器9,作为控制器9的两路独立的控制参数。
[0024]具体来说,无人机I接收起飞指令并输出起飞信号,信号收发模块10接收起飞信号并输出至控制器9。控制器9控制通电线圈2中通入正向电流。此时无人机I的机翼不旋转。正向电流形成的支撑磁场产生作用于无人机的向上推力。控制器9控制通电线圈2中通入的正向电流持续增大。当向上推力等于无人机I的重力时,通入通电线圈2上的正向电流最大,无人机I与停机坪之间形成空气间隙,使无人机I呈现磁悬浮状态。无人机I与停机坪之间形成空气间隙后,红外测距装置7生成无人机I与预定停驻位置之间距离的距离检测值并通过信号收发单元10反馈至控制器9的输入端。
[0025]无人机I和停机坪之间形成间隙后,无人机机翼开始转动,转速测量装置6生成转速检测值并通过信号收发单元10反馈至控制器9的输入端。也可以在红外测距装置7检测无人机I和预定停驻位置之间距离的距离检测值为某一特定值时控制无人机机翼开始转动,优选为0.5米以提高安全性。无人机机翼开始转动后,控制器9控制通入通电线圈2中的正向电流随无人机机翼旋转转速的增加而减小。无人机机翼的旋转转速等于设定转速时,控制器9控制通入通电线圈2中的电流下降为零。此时,停机坪侧产生的支撑磁场消失,无人机I按原有的控制模式运行。
[0026]无人机I准备降落时,遥控器发出降落指令。无人机I接收降落指令并输出降落信号,信号收发模块10接收降落信号并输出至控制器9。控制器9根据红外测
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1