生产一种基于塑料的微孔结构的方法

文档序号:4478380阅读:268来源:国知局
专利名称:生产一种基于塑料的微孔结构的方法
生产一种基于塑料的微孔结构的方法 本发明涉及用于生产一种基于塑料的微孔结构的方法,更具体地
是一种基于塑料的不等轴微孔结构(anisometric cellular structure)。
在许多(汽车的,土木工程的,海军的,等等)行业所遇到的一 种要求在于优化所使用的结构的机械性能/重量比。为达到此目的,并 且特别是为减轻塑料结构,已经开发了多种方法。这些方法大多或者 釆用机械形成的宏观泡室(由固体或熔体流的组装以形成作为"蜂窝" 结构已知的微孔结构),或者通过由气体的释放或膨胀而物理形成的 微观泡室(使用物理或化学发泡剂的膨胀或发泡)。还想到了这两类 方法的组合。
在专利EP-B -1009625 (1)和在2005年8月19日提交的专利申 请FR 05/08635 (2)中已经提出了通过连续的挤出用于生产微孔结构 的方法,其内容通过引用结合在本申请中。
在专利(1)中所描述的方法包括
使用一个多缝隙的模具将热塑性材料的多个平行的片连续挤出到 一个冷却室中,通过在这些片的纵向边缘以及室的壁之间产生一个密 封,不同的片在它们自己之间并与室的各个壁之间限定多个分隔间;
在此室中并从位置最接近模具的端部,以每隔开一个分隔间的方 式产生真空,以此使挤出的片变形并且成对的吸引以便在它们的整个 高度上进行局部的焊接;
从位置最接近模具的端部,对与先前的分隔间相交替的每个隔开 的分隔间使用一种冷却剂进行填充,该冷却剂实际上是水;并且
在每个分隔间中,交替地产生真空并且使用一种冷却剂进行填充,
以便在冷却室中获得一种固化的微孔结构,其中这些泡室是垂直于挤出方向的。
根据这个方法,得到的微孔结构在离开冷却室时是固体,并且此 外考虑模具下游存在的一个脱去单元时,它们的几何形状是它们的纵 向轴定向在挤出方向上。结果,所有微孔结构的挠曲模量在横向方向 (垂直于挤出方向)比在纵向("机器"方向,平行于挤出方向)上实质 性地更高,限制了它们对某些应用的利益并且阻止它们缠绕到一个巻 轴上。这是因为,当希望纵向地弯曲他们时,它们在横向上变形,当 长的微孔结构被连续挤出时,这构成一个严重的实际缺点。
根据在专利申请(2)中所描述的方法
基于至少一种塑料材料的组合物的多个平行薄片在一个大致水平 的方向通过一个模具连续地挤出,该模具包括位于一种绝缘材料的直 接临近区的多个平行的缝隙;
在离开模具时,在二个相邻薄片之间的多个空间,在顺序的多次 替换中,受到压縮气体的注入并受到真空,同一薄片的两侧在一侧上 受到压縮气体的作用而在另一侧受到真空的作用,并且在随后的替换 过程中反转过来,以此产生这些薄片的变形并且将它们成对地焊接, 在大致地平行于该挤出方向的一个平面中形成一种微孔结构,组成该 微孔结构的多个泡室垂直于该挤出方向而延伸;
将所述微孔结构在它形成以后受到空气喷射的作用。
根据这个方法,在离开模具时仍然处于融化或糊状的状态的这些 所得到微孔结构最经常是具有一个椭圆的截面,其主轴定向在挤出方 向上。其结果是,所有微孔结构的挠曲模量在横向方向比在纵向方向 ("机器"方向)实质性地更高;形成每个泡室壁的旋转的椭圆表面的高
度因而受到限制并且通常实质性地低于所述泡室的纵向轴。根据这个 方法得到的微孔结构因此遭受根据在专利(1)中描述的方法所获得的 那些结构的同样缺点。本发明的目的是解决这些问题并且尤其是使之有可能获得基于一 种塑料的不等轴的微孔结构,其性质是更加各向同性的,这些结构比 已知的微孔结构密度更小,并且它们可以缠绕到一个圆形巻轴上。
因此本发明主要地涉及用于生产一种基于塑料的微孔结构的方 法,包括
一个步骤(a),在其过程中,将基于至少一种热塑性聚合物(P) 的一种组合物的多个平行的薄片通过包括多个平行缝隙的一个模具连 续地挤出,该热塑性聚合物选自无定形的以及半结晶的聚合物类;
一个步骤(b),在其过程中,在离开该模具时并在顺序的多次替 换中,二个相邻薄片之间的多个空间经受一个流体(f)的注入并且经 受一个真空,同一薄片的两侧是在一侧受到该流体(f)的作用而在另 一侧受到该真空的作用,并且在随后的替换中反转过来,以此产生这 些薄片的变形并且将它们成对地焊接,在大致平行与该挤出方向的一 个平面中形成一种微孔结构,构成该微孔结构的多个泡室垂直于该挤
出方向而延伸;
一个步骤(c),在其过程中,在步骤(b)中获得的该微孔结构
垂直于该挤出方向而受到拉伸。
在本说明中,术语"塑料"应理解为是指任何无定形的或半结晶
的热塑性聚合物(p),包括热塑性弹性体以及还有它们的掺合物。术 语"聚合物"应理解为是指均聚物类以及共聚物类(尤其是二聚物类
或三聚物类)。这样的共聚物的实例是,以一种非限制性方式无规 共聚物类、直链嵌段共聚物类、其他嵌段共聚物类以及接枝共聚物类。
在本说明中,术语"无定形的聚合物"应理解为是指主要具有形 成它的大分子的一种无序排列的任何热塑性聚合物(P)。换句话说,
此术语被应理解为是指包含按重量计小于30%,优选按重量计小于10%
的晶相的任何热塑性聚合物(也就是说,相的特征为在差示热分析
(DSC)测量过程中是一条熔化吸热谱线)。在本说明中,术语"半结晶的聚合物"应理解为是指具有处于一 个大比例的化学上以及几何学上形成它的大分子的一个规则排列的任 何热塑性聚合物(P)。换句话说,此术语被应理解为是指包含按重量
计大于30%,优选按重量计大于50%的晶相的任何热塑性聚合物(也 就是说,相的特征为在差示热分析(DSC)测量过程中是一条熔化吸热 谱线)。
两个特征温度与热塑性聚合物(P)相关联它们是玻璃化转变温 度(Tg)和熔化温度(Tm) 。 Tg是低于此温度一个聚合物的物质具有 若干无机玻璃的性质(包括硬度和刚度)的温度。在Tg之上,聚合物 的物质具有塑料或有弹性的特性并且称之为处于橡胶样或弹性状态。 Tm在无定形的聚合物情况下也被称为流动温度并且在它是一个半结晶
聚合物的情况时它是直截了当的熔点。在Tm时(它实际上更是一个温
度区或范围),存在聚合物物质的固体元素以及熔化元素之间的平衡 的并且因此在此温度范围内后者物质更是一个黏性的液体。
其Tm在分解温度之下的任何热塑性聚合物或共聚物都可以用于 根据本发明的方法。具有超过至少10。C的熔化范围的合成热塑性材料 是特别合适的。这样的材料的实例是那些其分子量具有多分散性的材 料。
尤其有可能使用聚烯烃类、聚乙烯基卤化物类(例如PVC)或聚 偏二卤乙烯类(例如PVDF)、热塑性聚酯类、聚芳基醚砜类例如聚苯 砜类(PPSU)、聚酮类、聚酰胺类(PA)以及它们的共聚物。聚烯烃 类[并且特别是聚丙烯(PP)和聚乙烯(PE)]、聚芳基醚砜类例如聚 苯砜类(PPSU)、 PA、 PVC和PVDF以及给出了良好的结果。
为了本发明的目的, 一种聚芳基醚砜表示任何聚合物,其中按重 量计至少5%的重复单元是重复单元(R),它对应一个或多个化学式,该化学式包括至少一个亚芳基、至少一个醚基团(-0-)以及至少一个 砜基团[-S^0)2-]。
聚芳基醚砜可以特别是一种聚二苯基醚砜、 一种聚砜、 一种聚醚 砜、 一种聚亚胺基醚砜或者另外由选自上述聚芳基醚砜的聚芳基醚砜 类构成的一种掺合物。
在本发明的范围内非常合适的这样的聚合物是
来自Solvay Advanced Polymers, L丄.C.的RADEL R聚苯砜类
是PPSU均聚物的实例;
在UDEI^商标下由Solvay Advanced Polymers, L丄.C.出售的聚砜 均聚物类;以及
在UDEI^的名称下由Solvay Advanced Polymers, L丄.C.出售的聚 醚砜类。
在根据本发明的方法中使用的基于至少一种热塑性聚合物(P)的 组合物(在下文中更加简单地称为"组合物")可以从一个单独的聚 合物,从聚合物类或共聚物类的一个掺合物或者从一种或多种聚合材
料与不同的添加剂(稳定剂;增塑剂;无机、有机和/或者天然或聚合 物的填充剂,等等)的一个掺合物形成。此组合物可以受到不同的处 理例如膨胀、定向等等。还可以存在发泡剂,使之能产生膨胀的或发 泡的微孔结构。根据本发明的这个变体的发泡剂可以是任何已知的类 型。它可能是一种"物理"发泡剂,也就是说气体在压力下溶解在塑
料中,并且当塑料离开挤出机时引起它膨胀。此类气体的例子的是C02、 氮气、蒸汽、氢氟垸类或者HFC(例如作为SOLKANE XG87由Solvay 出售的87/13 wt % CF3-CH2F/CHF2-CH3混合物),烃类(例如丁烷和 戊垸)或它们的一个混合物。它还可以是一种"化学"发泡剂,也就 是说在,溶解或分散在塑料中的一种物质(或物质的一个混合物)在 温度的作用下释放出用于塑料的膨胀的一种气体或多种气体。这样的 物质的例子是偶氮二酰氨以及碳酸氢钠与柠檬酸的混合物。后者产生良好的结果。
在根据本发明的这个变体的方法中所使用的发泡剂的量对于存在 的聚合物的特性(尤其是动态粘度)以及对于所希望的最终密度必须 是优化的(尤其是根据它的性质)。大体上,该含量是大于或等于0.1%, 优选0.5%,甚至是1%。
应理解,以上列出的聚合物中可以加入与后者相容或不相容的其 他的聚合物并且除任选的增塑剂类之外,还包括用于处理聚合物的通 常添加剂,例如像内部和外部润滑剂、热稳定剂、光稳定剂、无机、 有机和/或者天然的填充剂、颜料等等。
根据本发明的方法的实施意味着基于至少一种热塑性聚合物(P)
的组合物的平行的薄片在一个步骤(a)的过程中通过包括多个平行缝 隙的一个模具连续被挤出。在专利(1)以及在专利申请(2)中描述 了适用于此实施的挤出装置的例子。
在专利(1)中描述的装置包括一种挤出机,它将熔化的组合物送 到包括多个平行缝隙的一个衣架式模具中,每一个缝隙旨在用于连续 形成一个薄片,每一个缝隙由锥体的形状的两个部件所限定,这些部 件由一种热绝缘的材料生产,在每一个之中都切入一个凹槽。
在专利申请(2)中描述的装置本质上包括
(A) —个片材模具,优选地具有一个扩大的开口,该开口将熔化 的组合物送到多个刀片上,用于形成必须被焊接的熔化的组合物的多 个薄片。这个模具被设置为使熔化的组合物在一个大致地水平的方向 被挤出;
(B) 多个刀片,这些刀片使之有可能形成必须进行焊接的熔化的 组合物的这些薄片。这些刀片可以由任何耐受熔化的组合物的处理温 度的材料构成。它们可以至少部分地由一种热传导材料例如钢、铜或者金属合金或者至少部分地由一种热绝缘的材料,例如陶瓷或任选地 用玻璃纤维增强的聚酰亚胺树脂类,或者具有令人满意的机械强度以 及耐热性的任何其他的材料制成。因为模具的前面事实上包括上述的 刀片组,它们或者整个地由一种热绝缘的材料制成,或者让它们的下 游端(也就是说它们的外部的面)基于或嵌入到一种热绝缘材料中。
这些刀片通常定位在多个平行的垂直面中并且大致地等距离地分 开。在它们之间,它们限定了流动通道,这些通道在熔化的组合物的 流动方向上具有一个会聚的第一部分以及此后的一个基本上直的部 分,后者形成模具的每个组成缝隙的侧壁。
然后根据本发明的方法的实施意味着进行一个步骤(b),在其过 程中,在离开该模具时并在顺序的多次替换中,在二个相邻薄片之间 的多个空间受到一个流体(f)的一个注入并且受到一个真空,同一薄 片的两侧在一侧受到该流体(f)的作用而在另一侧受到该真空的作用, 并且在随后的一次替换中反转过来,以此产生这些薄片的变形并且将 它们成对地焊接,在大致地平行于该挤出方向的一个平面中形成一种 微孔结构,组成该微孔结构的多个泡室垂直于该挤出方向而延伸。
例如,在专利(1)和专利申请(2)中也描述了步骤(b)的实际 的实施方案。
在该流体(f)是用于微孔结构的形成过程中的一种冷却剂并且特 别是水的情况下,优选专利(1)中描述的实施方案。它意味着切入模 具的每个缝隙的每个圆锥形部件的每一个凹槽被依次相连到一个真空 源以及一个冷却剂源。微孔结构的成型是通过两个成型组件来进行, 包括附加到模具的圆锥形部件上的并且垂直地安装在模具上(也就是 说在所要形成的结构的泡室的方向上)的多个圆锥形部件,以便允许 控制它的厚度。两个成型组件由它们的相对的表面限定了垂直于这些 泡室的微孔结构的两个面的支持区域。这些表面从模具的出口向一个
1室汇聚用于微孔结构的成型以及冷却,该室是管状具有一个长方形截 面并且具有与所获得的结构的高度相等高度(在后者泡室的方向上), 并且具有等于该结构的一个宽度。
一个冷却剂池(用一个泵从其中抽
出该流体), 一个真空泵以及一个分配器(它连接至这两个泵并且还 连接至一个网络,该网络将它连接到位于薄片两侧的不同分隔间上, 旨在顺序地将每一个分隔间与真空源以及冷却源相连接)使该装置完 整,这使得本实施方案能够实施。
在该流体(f)是一种气体,例如一种惰性气体、惰性气体的混合 物或空气的情况下,优选专利申请(2)中描述的实施方案。它要求在
用于挤出组合物的装置中存在两个短的定尺寸单元(sizing unit),这 些定尺寸单元总体上是以金属块的形式置于包括由垂直刀片所确定的
多个缝隙的模具的前面,如上所述该前面可以用绝缘材料的片材覆盖。 这些定尺寸单元被置于这些模具缝隙的每一侧, 一个在它们之上而另 一个在它们之下。它们总体上可以在相对的方向上垂直运动,以便限 定挤出的薄片的高度并因此限定最终的微孔结构的高度。
在这些定尺寸单元的每一个中切出两个室,多个管状的通道从这 些室开始,它们终止在以大体上圆形孔口中,这些孔口出现在这些模 具缝隙之间的空间附近,并且因此在根据本发明的方法的实施的过程 中在挤出的薄片之间的空间的附近。
每一个定尺寸单元的每个室被交替地连接到一个真空泵或到一个 压縮气体回路上。因此,二个相邻的挤出薄片之间的空间在顺序的多 次替换中受到一个压縮气体的注入以及受到一个真空,任何一个薄片 的两侧是在一侧受到该压縮空气的作用而在另一侧受到该真空的作 用,并且在随后的一次替换中反转过来,以此产生这些薄片的变形并 且将它们成对地焊接,在大致地平行于该挤出方向的一个平面中形成 一种微孔结构,组成该微孔结构的多个泡室垂直于该挤出方向而延伸。每个定尺寸单元优选被设置在低于Tstniet,但高于T化uet- 80。C的
一个温度,优选地高于Tstniet - 50°C,甚而高于T
struct
-25。C,其中Tstruct
是对应于Tg的一个结构温度(如果该组合物包含一种无定形的聚合物)
并且是对应于Tm (如果该组合物包含一种半结晶的聚合物)。
根据这一实施方案,可以将气体加热。气体的温度优选大于或等
于塑料的处理温度(Tp) - 100°C,优选地大于或等于Tp-50°C,甚至 大于或等于Tp- 20°C。
在专利(1)中所描述的步骤(b)的实用实施方案优选应用于无 定形的热塑性聚合物(P),该无定形热塑性聚合物在其处理温度(也 就是说在它们挤出以转换成微孔结构时所处的温度)并且以小于0.1 rad/s的角速度时具有2000 Pa.s,优选小于1000 Pa.s.的动态熔体粘度(常 规地通过在流变仪上的剪切应力和张力的测量来测出)。此外,优选 地,这些聚合物具有常规地由DSC (根据ISO 11357-2标准)测量的小 于60。C的一个温度Tg,优选地小于50。C。
适合以上定义和限制的无定形的聚合物的非限制实例是热塑性弹 性体以及它们的惨合物;热塑性聚酯类以及从氯乙烯衍生的均聚物和 共聚物类,以及它们的掺合物。在可以使用的从氯乙烯衍生的均聚物 和共聚物之中,由单聚的或多聚的增塑剂增塑的均聚物和共聚物是更 特别优选的。作为这样增塑剂的非限制的实例可以提及邻苯二甲酸酯 类、癸二酸酯类、己二酯类、偏苯三酸酯类、均苯四酸酯类、柠檬酸 酯类以及聚酯类例如聚(e-己内酯)以及它们的掺合物。这些均聚物和 共聚物通常按重量计每100份聚合物包含按重量计至少10份并且多达 75份增塑剂。还有可能使用由氯乙烯与增塑剂共聚单体类共聚得到的 氯乙烯聚合物,称为"内部增塑聚合物",例如像,丙烯酸乙基己基 酯,或者另外通过共聚接枝到作为"弹性剂"已知的聚合物类例如聚(e-己内酯)上。在专利申请(2)中所描述的步骤(b)的实用实施方案优选应用
于热塑性聚合物(P),该热塑性聚合物具有大于或等于2500 Pa.s,优 选地大于或等于3000 Pa.s的熔体粘度(在处理温度和在0.1 rad/s下测 量)。这一实用实施方案还有利地应用于组合物,其半结晶的或无定 形的组成聚合物(P)具有玻璃化转变温度(Tg),该温度可以达到并 且甚而超过80。C,优选在大约40之间和大约60。C之间。这一实用实 施方案用包括例如以上提到的那些发泡剂的塑料组合物也产生了良好 的结果,这些发泡剂使之能够产生膨胀的或发泡的微孔结构。这是因 为使用一个压縮气而不是水作为流体(f)的事实使之有可能通过最少 冷却来改进泡沫的泡室的拉伸并且通过这样做来改进它的质地。
根据本发明的方法的步骤(a)以及(b)的操作条件特别与基于 塑料的组合物的性质相适配。尤其应该确保这一组合物在模具出口处 的温度被调适为在没有因重力而变形的情况下能够焊接这些泡室、适 当时能够膨胀该组合物,等等。还应该保证交替的压力和真空值、并 且还有周期的持续时间被调适为使焊接最佳化。实际上,优选使用大 于或等于0.5巴相对值或甚至大于或等于1.5巴的压力。此压力总体上 小于或等于6巴,甚至小于或等于4巴或甚至更小于或等于2巴。关 于真空,这总体上大于或等于lOOmmHg绝对值,甚至大于或等于400 mmHg。最终,周期的持续时间(压力/真空交替)通常是大于或等于 0.3 s,甚而大于或等于0.4s,并且优选地大于或等于0.5 s。这一持续 时间优选地是小于或等于3 s,甚而小于或等于2 s并且甚至更小于或 等于ls。
根据本发明方法的实施可以有利地包括,在进行的步骤(b)之后 和在进行的步骤(c)之前, 一个任选的步骤(b2),在其过程中使步 骤(b)中所获得的微孔结构达到一个温度(T。,使得Tg《Ti^Tg十 40。C,Tg是该热塑性聚合物(P)的玻璃化转变温度(如果它是无定形),
或者达到一个温度(T2),使得Tm^T^Tm-50。C, Tm是该热塑性聚
合物(P)的熔点(根据ASTM D 3417标准测量的)(如果它是半结晶的)。
步骤(b2)可以在静态或动态的条件下进行,也就是说,它可以 在微孔结构挤出(以及其成型)之后固定的微孔结构上或在其挤出以 及其成型之后保持移动的微孔结构上进行。步骤(b2)可以通过使用 任何已知的用于对塑料加热的装置来进行例如,有可能使用一个电 烘箱,具有一种液体或固体燃料的烘箱,并且有可能通过辐射,通过 红外辐射等等加热塑料。
在一种无定形的热塑性聚合物(P)的情况下,优选L在(Tg + 10°C)
和(Tg + 35。C)之间。如果T^太低(典型地,小于聚合物的Tg),聚合 物则太粘,而如果Ti太高,聚合物太具流体性以至于不能由根据本发 明的方法正确地使用。在一个连续方法(步骤(b2)在步骤(b)之后 不久进行)的情况下,本发明的这个变体总体上意味着将该结构在其 挤出(步骤(b))之后重新加热。
在半结晶热塑性聚合物(P)的情况下,优选丁2在0 - 10°C)和 Crm-40°C)之间。如果L太高,聚合物的熔体行为不允许它被正确地 转换成根据本发明的方法的最终微孔结构。典型地,它必须接近聚合 物的结晶温度。在一个连续方法情况下,可以进行本发明的这个变体 而无需在该结构挤出以后重新加热。
根据本发明的方法包括一个步骤(c),在其过程中,优选地根据 可任选的步骤(b2)进行热调节的微孔结构横向地被拉伸,也就是说 垂直于挤出方向拉伸。应该理解,根据本发明的方法不限于以所述的 顺序依次进行该可任选的步骤(b2)(当它进行时)以及步骤(c); 这些步骤可以至少部分地同时地进行,而没有多达以致处于本发明的 范围之外。本发明的范围还扩展到那些方法,其中将根据顺序的步骤 (a)以及(b)连续地生产的一个微孔结构首先储备或存储以便然后将 其顺序地或,至少部分地,同时地进行步骤(b2)以及步骤(c)。最后,本发明的范围还扩展到那些方法,其中在步骤(C)的过程中,顺 序地或同时地进行一个横向的拉伸(垂直于挤出方向)以及一个纵向 拉伸(平行于挤出方向)。
无论对于步骤(C)使用何种实用实施方案,微孔结构在步骤(C) 的过程中所受到的横向拉伸比(表达为拉伸之后该微孔结构最终的加
工宽度与其初始宽度之比)是至少等于1.2/1,优选地1.5/1,特别是2/1, 甚致2.5/1。拉伸可以通过任何已知的技术进行。例如,有可能使用由 BriicknerMaschinenebauGmbH出售的拉制线(drawing lines),其中
横向拉伸或纵向拉伸可以同时地或顺序地进行。这些拉制线一般由多 个链的一个体系组成,在这些链上设置有多个爪,这些爪通过其两侧 的端部夹紧该微孔结构,并且在所述微孔结构前进的过程中一旦该微 孔结构已经达到在步骤(b2)中所设定的温度(当后一步骤进行时, 如已经说明的,在步骤(c)之前或过程中有可能达到此温度)这些爪 即移动分开。术语"拉伸后的加工宽度"应该理解为是指无这些拉伸 爪时可销售的宽度。
在步骤(c)过程中所施加的横向以及可任选地纵向的实际拉伸条 件优选被选择为使在最终微孔结构上测量的(根据ISO 1209-2标准的 三点弯曲试验)的平行于挤出方向(纵向方向)、以及垂直于挤出方 向(横向方向)的表观挠曲模量之比小于10,优选地小于5,最特别 地小于2。在基于某些半结晶的热塑性聚合物(P),例如像PP的微孔 结构的情况下,这个比率可以甚至是小于一的。对于本领域的普通技 术人员一些常规测试即足以确定取决于所希望表观模量比例这些实际 的拉伸条件。
在拉伸骤(c)之后,微孔结构的厚度可以使用任何适当的装置 (例如,像加热的圆筒)来整平(也就是说使这些构造泡室的高度统 一)。得到的微孔结构可以通过环境空气、通过用冷空气的喷射来吹 扫,通过喷洒水雾等等进行冷却。冷空气的喷射产生良好的结果。在冷却之后,可能被拉制线的爪咬合的边缘可以进行切除并且回收。
得到微孔结构然后可以由一个取出单元取走。尤其是根据这些泡 室的大小和厚度以及还有根据所希望的形状对拖出速度和挤出比率进
行最佳化。
在离开取出单元时,最终的微孔结构可以容易地缠绕到一个轴上。 可替换地,它可以经受一种表面处理(例如电晕处理),以便特别是 改进其粘附性质,并且用一个非纺织布的或用顶部或底部的面层来衬 垫。在这些可任选的操作结束之后,将最终板材在纵向以及横向上切 成所希望的尺度的片并且进行存放。
生产碎料可以在最终处理操作之前或之后取走并在生产中再循环 利用。
由本发明的方法形成的结构的泡室的形状最经常是大致多边形 的,优选大致地六边形的,所形成的多角形的边被是非等量的,也就 是说边的长度是不等的。
这些大体上六边形的泡室最经常具有的它们的长度L (在挤出方 向)与它们的宽度l(在挤出平面上但沿一个与挤出方向垂直的方向)
之比是小于2.5,优选小于1.5,甚至等于l。
泡室的长度L总体上是大于或等于10mm,甚至大于或等于甚而 15 mm,但总体上小于或等于30 mm。
关于泡室的壁厚度,这通过基本的微孔结构的壁的厚度以及通过 在横向以及可任选地纵向的拉伸过程中施加的拉伸比进行调整。实际 上,它总体上是大于或等于100 pm,甚至大于或等于200或者250 pm。 然而有利的是,它不超出lmm,甚至0.8并且优选0.6mm,从而不至于使结构过重。实事上下限取决于能够产生基本的微孔结构的模具的 实施方案,并取决于所使用的拉伸比。
根据本发明的方法的优点之一在于,事实上,无论什么拉伸条件, 拉伸的微孔结构的壁的厚度不小于基础微孔结构壁厚度的90%,优选
地它是不小于该厚度的95%。
从上文中可以得出本发明使之有可能得到微孔结构,其长度可以 在一个非常大的尺寸上进行改变,并且对于一个宽范围的基于塑料的 组合物以及已经调配过的组合物也是如此。
根据本发明的方法得到的微孔结构有利地用于建筑业(地板、轻 质天花板、隔板、门、混凝土箱,等等),用于家具,用于包装(侧 向保护,物体包裹等等),用于机动车辆(包裹架、门衬层,等等) 等等。这些结构特别适合于家具和建筑物,例如用于永久性遮蔽体(居 所)或临时性遮蔽体(例如硬质的帐篷或人道救助遮蔽体)。它们也 适合作为体育馆地板的组成物。
它们可以在其中直接使用,或者作为夹层板使用,其中它们被安 置在叫做面层的两个片材之间。后一变体是有利的,并且在这种情况 下有可能的通过焊接,粘合等等,或者组装面层以及适合于塑料的芯 板(使用冷的或刚挤出的热的)的任何其他方法来生产夹层板。生产 所述夹层板的一个有利的方法包括将面层焊接到多孔芯板上。任何焊 接方法都可以适用于此目的,在对电磁辐射至少是部份地透明的结构 /面层的情况下使用电磁辐射的方法产生良好的结果。申请
FR 03/08843中描述了这样一种方法,为此目的将其内容通过引用结合 在本申请中。
本发明以一种非限制性的方式通过以下实例进行说明 实例1R (比较实例,并非根据本发明)在以下说明的条件下并且使用以下所描述的装置挤出宽25 cm和 高10mm的一个微孔结构
■ SCAMEX45挤出机,配备有五个分离的加热区域(Z1到Z5) 并且装备有一个260mm宽的片材模具,装备有多个不锈钢刀片,其前 面用聚酰亚胺绝缘材料进行涂敷,使用多个18 mm长的不锈钢定尺寸 单元,使用一台压縮空气发生器以及一台真空泵。这些刀片之间的距 离是0.3 mm。
■挤出机中的温度轮廓线
Zl: 130°C
Z2: 180°C
Z3: 1卯。C
Z4: 190°C
Z5: 192。C
■ 组合物基于PVC,由Solvin在BENVIC IR047名称下出售; ■在模具入口处的材料温度190°C;
■模具的温度包括4个区
侧颊面192°C
中央区182°C;以及
唇缘192°C; ■挤出压力134巴;
■ 螺旋速度40rpm;■压縮空气压力1.2巴绝对值;
■ 真空700mmHg;
■压力/真空周期的持续时间1.25s/1.25s;以及
■ 纵向拖出速度lm/min。
得到了具有以下特性的 一 种微孔结构
■ 堆密度0.185 kg/dm3;
泡室的长度21mm;以及
■ 泡室的宽度8mm。在这个结构上平行于挤出方向并且垂直于挤出方向进行根据ISO 1209-2标准的三点弯曲试验。所测量的表观挠曲模量是
平行于挤出方向(纵向方向)2.6MPa;以及 垂直于挤出方向(横向方向)135.6MPa。
因此可见微孔结构的挠曲模量在横向方向是实质性地更高于在纵 向方向上,妨碍了它们缠绕到轴上,因为当希望纵向地弯曲它们时, 它们横向地变形。
实例2 (根据本发明)
在实例1描述的装置的出口处形成的微孔结构在一个KARO拉制 机中在以下条件下横向地被拉伸
炉温U0。C;
材料温度107。C;
调节时间8分钟;以及 . 拉伸比100%。
获得的产品具有以下特征
堆密度0.098 kg/dm3;
泡室的长度21mm;以及
泡室的宽度16mm。
在这个结构上平行并且垂直于挤出方向进行的三点弯曲试验(ISO 1209-2标准)给出以下的结果
平行于挤出方向所测量的挠曲模量12MPa;以及 垂直于挤出方向所测量的挠曲模量8.7MPa。
因此可见根据本发明的方法使之有可能获得一种更轻的微孔结 构,其中构造泡室的尺寸更均等并且其中在横向方向以及在纵向方向上的挠曲模量具有同样的数量级大小,使它们能缠绕到一个轴上。 实例3R (对比实例,并非根据本发明)
在通常的条件下并且使用在实例1R中所描述的装置挤出宽25 cm 和高5mm的一个微孔结构,但是在以下的具体条件下
■ 挤出压力142巴;
■ 压縮空气压力1.4巴绝对值;
■ 压力/真空周期的持续时间0.7S/0.7S;以及
■ 纵向拖出速度1.8m/min。
得到了具有以下特性的一种微孔结构
■ 堆密度0.193 kg/dm3;
■泡室的长度22 mm;以及
■ 泡室的宽度8mm。
在这个结构上平行并且垂直于挤出方向进行的三点弯曲试验(ISO 1209-2标准的)给出以下的结果
平行于挤出方向测量的挠曲模量1.3MPa;以及 垂直于挤出方向测量的挠曲模量181.5 MPa。
因此再一次注意到该微孔结构的挠曲模量在横向方向是实质性地 高于纵向方向。
实例4 (根据本发明)
在实例3R中描述的装置的出口处形成的微孔结构在一个KARO 拉制机中在实例2所确定的条件下进行横向拉伸。
获得的产品具有以下特征
堆密度0.108 kg/dm3;
泡室的长度22 mm;以及 泡室的宽度14mm。
在这个结构上平行并且垂直于挤出方向进行的三点弯曲试验(ISO 1209-2标准)给出以下结果
平行于挤出方向所测量的挠曲模量26.8 MPa;以及 垂直于挤出方向所测量的挠曲模量22.5 MPa。
由根据本发明的方法获得的优点再一次可见更轻的微孔结构,
更均等的构造泡室的尺寸,在纵向方向和横向方向上的挠曲模量具有 同样的数量级大小。
实例5R (对比实例,并非根据本发明)
在通常的条件下并且使用在实例1R中所描述的装置挤出宽25 cm 和高10mm的一个微孔结构,但是在以下的具体条件下 ■在挤出机中的温度轮廓线 Zl: 130。C Z2: 180。C Z3:湧。C Z4: 190°C Z5: 192°C
■ 组合物基于PP,由Innovene在201 GB 02的名称下出售; ■在模具入口处的材料温度1S0。C;
■模具的温度包括4个区域
侧颊面180°C
中央区180°C;以及
唇缘180°C; ■挤出压力95巴; ■压縮空气压力1巴绝对值;
■ 真空800mmHg;
压力/真空周期的持续时间1.9S/1.9S;以及■ 纵向拖出速度0.5m/min。
得到了具有以下特性的一种微孔结构-
■ 堆密度0. 108 kg/dm3;
■泡室的长度20 mm;以及
■ 泡室的宽度8mm。
在这个结构上平行并且垂直于挤出方向进行的三点弯曲试验(ISO 1209-2标准)给出以下的结果
平行于挤出方向测量的挠曲模量0.2MPa;以及 垂直于挤出方向测量的挠曲模量40.3 MPa。
实例6 (根据本发明)
在实例5中描述的装置的出口所形成的微孔结构在一个KARO拉 制机上在以下条件下横向地被拉伸 . 炉温130°C;
材料温度127°C;
. 调节时间8分钟;以及
拉伸比100%。
所获得的产品具有以下特征-
堆密度0.060 kg/dm3;
泡室的长度17 mm;以及
泡室的宽度17 mm。
在这个结构上平行并且垂直于挤出方向进行的三点弯曲试验(ISO 1209-2标准)给出以下的结果
平行于挤出方向所测量的挠曲模量1.4MPa;以及 垂直于挤出方向所测量的挠曲模量2.6 MPa。再一次,这个实例说明了根据本发明的方法所获得的优点,这次 是在半结晶聚合物情况下微孔结构更轻,泡室的尺寸是更加均等, 并且在纵和横方向上的挠曲模量具有相同的数量级大小。
权利要求
1. 用于生产一种基于塑料的微孔结构的方法,包括步骤(a),在其过程中,将基于至少一种热塑性聚合物(P)的组合物的多个平行的薄片通过包括多个平行缝隙的模具连续地挤出,该热塑性聚合物选自无定形的以及半结晶的聚合物;步骤(b),在其过程中,在离开该模具时并在顺序的多次替换中,二个相邻薄片之间的多个空间经受流体(f)的注入并且经受真空,同一薄片的两侧在一侧受到该流体(f)的作用而在另一侧受到该真空的作用,并且在随后的替换中反转过来,以此产生这些薄片的变形并且将它们成对地焊接,在大致平行于该挤出方向的平面中形成微孔结构,构成该微孔结构的多个泡室垂直于该挤出方向而延伸;步骤(c),在其过程中,在步骤(b)中获得的该微孔结构垂直于该挤出方向而受到拉伸。
2. 根据前项权利要求所述的用于制造一种微孔结构的方法,其特 征在于该流体(f)是用于该微孔结构的形成过程中的冷却剂。
3. 根据前项权利要求所述的用于制造一种微孔结构的方法,其特 征在于该冷却剂是水。
4. 根据权利要求l所述的用于制造一种微孔结构的方法,其特征 在于该流体(f)是气体。
5. 根据以上任一权利要求所述的用于制造一种微孔结构的方法, 其特征在于它此外还包括步骤(b2),在其过程中,如果该热塑性聚 合物(P)是无定形的,使步骤(b)中获得的微孔结构达到一个温度(T。,使得Tg^T^Tg + 40。C, Tg是它的玻璃化转变温度,或者如 果该热塑性聚合物(P)是半结晶的,达到一个温度(T2),使得 Tm2T22Tm —50°C, 丁m是半结晶它的熔点。
6. 根据前项权利要求所述的用于制造一种微孔结构的方法,其特 征在于该热塑性聚合物(P)是无定形的,并且该温度(Ti)使得Tg+ 10°C《T^Tg+35。C。
7. 根据权利要求5所述的用于制造一种微孔结构的方法,其特征 在于该热塑性聚合物(P)是半结晶的,并且该温度(T2)使得Tm —10°C^T"Tm— 40。C。
8. 根据以上权利要求中任一项所述的用于制造一种微孔结构的 方法,其特征在于在步骤(d)的过程中平行于该挤出方向进行拉伸, 顺序地或同时地垂直于该挤出方向拉伸。
9. 根据以上权利要求中任一项所述的用于制造一种微孔结构的 方法,其特征在于,垂直于在步骤(c)的过程中该微孔结构所受到的 垂直于该挤出方向的拉伸比,表达为拉伸之后该微孔结构最终的加工 宽度与其初始宽度之比,至少等于1.2/1。
10. 根据以上权利要求中任一项所述的用于制造一种微孔结构的 方法,其特征在于选择在步骤(c)的过程中所施用的拉伸条件使得在 最终微孔结构上,平行于该挤出方向(纵向方向)与垂直于该挤出方 向(横向方向),微孔结构所测量的表观挠曲模量之比小于10。
全文摘要
生产一种基于塑料的微孔结构的方法,包括一个步骤(a),在其过程中将基于至少一种热塑性聚合物(P)的一种组合物的多个平行的薄片连续地通过包括多个平行缝隙的一个模具挤出,该热塑性聚合物选自无定形的以及半结晶的聚合物类;一个步骤(b),在其过程中,在离开该模具时并在顺序的多次替换中,在二个相邻薄片之间的多个空间受到一个流体(f)的一个注入并且受到一个真空,同一薄片的两侧是在一侧受到该流体(f)的作用而在另一侧受到该真空的作用,并且在随后的一次替换中反转过来,以此产生这些薄片的变形并且将它们成对地焊接,在大致地平行于该挤出方向的一个平面中形成一种微孔结构,组成该微孔结构的多个泡室垂直于该挤出方向而延伸;一个步骤(c),在其过程中在步骤(b)中获得的该微孔结构垂直于该挤出方向而受到拉伸。
文档编号B29C47/12GK101415532SQ200780011704
公开日2009年4月22日 申请日期2007年3月22日 优先权日2006年3月29日
发明者克洛德·德埃诺, 多米尼克·格朗让, 菲利普-杰克斯·莱恩, 费德里克·布里肯斯 申请人:索维公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1