用于生产经有美感的侧面熔接部装饰的管壳的方法与流程

文档序号:13451063
用于生产经有美感的侧面熔接部装饰的管壳的方法与流程

本发明涉及:

-用于制造经装饰的柔性管壳(tube skirt)的方法;

-使得能够执行用于制造经装饰的柔性管壳的方法的工具。

在本发明的上下文中所使用的带传统地包括数个不同材料的层,这些层结合了管壳所必须实现的各种功能,即柔性、保持管壳的变形形状的能力、扩散阻隔物(对蒸汽的不可透过性)、用于进行装饰的印刷介质等等。

实际上,在尤其是用于化妆品和梳妆产品的柔性管的领域中,外观和装饰非常重要。管必须具有经装饰的外表面,包括有金属光泽效果、全息图效果、闪耀效果,以及具有广域色彩范围(broad color palette)。

柔性管由平直的多层的带制成,对该带进行缠卷来得到被称为管壳的套管。完成缠卷以使得带被赋予圆筒形的形状,所述带的侧面边界部被布置成彼此相对,之后被熔接到彼此并同时形成侧面熔接部。

接下来,将包括分配孔口的管头部熔接到所述管壳的一个端部。这样制成的管以倒置的以及其分配孔口被封闭(例如通过被旋拧在颈部上的盖)的方式被投送至包装机。包装机通过管的仍敞开的端部灌注待包装的制品,以对管进行充注。一旦管被充注,则该管的敞开的端部被压平,之后被熔合。

在平直的带被转化为管壳之前,管的装饰物存在于该带上。难点在于,得到尽可能在美感上令人满意的侧面熔接部,即,得到最小程度可见的以及具有尽可能接近于两侧的熔接部的装饰的侧面熔接部,同时还保留熔接部的牢固性以防止容纳在管中的制品在后续发生泄漏或者被水气或其它污染物所污染。



背景技术:

现有数种用于生产管壳的侧面熔接部的技术。

第一种技术在于,将带的两个侧端部边缘对边缘地定位,之后通过下述方式对这两个侧端部进行熔接:

-预先使边缘成斜面,以使得该边缘变成非对称地彼此配合,

-或者在边缘之间的接缝处添加胶带。

该技术对于边缘对边缘的定位需要较高的精度,遗憾的是,很少能实现这种情况,因为在管壳制造设备中不易于对带进行引导。

第二种技术在于,用一个边缘覆盖另一个边缘:这是一种进行交叠的工艺。在这种情况下,定位精度则不那么重要,这样使得工艺更为简单。主要的缺陷在于,通常必须避免在交叠区域中进行任何装饰,因为该装饰对熔接条件缺乏耐受性。这导致在熔接的区域中沿着管可见一具有一定宽度的未经装饰的线条。另外,通常从外部清晰可见熔接缝,并且该熔接缝在美感上并不令人满意。

为了解决这个问题,已知将装饰层置于可封接的上部层与下部支承层之间,使得该装饰层在侧面熔接步骤期间实际上未被破坏。在这种情况下,装饰层在带的整个表面区域上延伸。该装饰层还可被颠倒置于下部支承层下方,使得该装饰层被更好地保护,但这种技术昂贵并且因而仅被用于生产大量的管壳。在所有的情况下,这种装饰层仅使得能够在管壳上嵌入有颜色的和/或闪耀的和/或有金属光泽的“背景”。

下一步骤在于在带上实施印刷,使得经销商能够添附其品牌以及与被灌注到管内部的制品有关的各种信息。在形成套管的步骤以及在侧面熔接步骤之前执行该步骤。因此,这是一种被添加在可封接的上部层的顶部上的附加的层。然而该印刷层是脆弱的,并且在熔接期间,墨水在施加在交叠区域的顶部上的加热作用下趋于蠕变。因此,通常实行的是在带的将形成管壳的交叠区域的两个侧面边缘上不进行印刷,特别是考虑到存在不可进行熔接的许多种墨水。被涂覆在墨水上的保护清漆也同样如此,该保护清漆不可进行熔接。

更具体地,通常实行的是在交叠区域处加热管壳的外表面和内表面,使得不仅在交叠区域的表面上使材料熔融,而且还在交叠区域的厚度中使材料熔融,这样使得能够产生随时间经久耐用的牢固的熔接部。

传统地,施加在管壳的外表面上的加热温度T1高于施加在管壳的内表面上的加热温度T2。目标在于在内表面被熔融之前使外表面熔融,使得靠近内表面的层(尤其包括提供了管壳的密封性的阻隔层)没有时间混合并且因而在交叠区域中产生弱点。

实际上,对于传统的多层带结构,如果T2大于T1,则内层一旦熔融将发生混合并将破坏交叠区域处的带,由此产生弱点,该弱点例如导致不良的密封阻隔性,这不再能保证对将被灌注到管内部的化妆品进行最优的储存。

因此,本发明的目的在于提出一种用于管壳的带结构,该带结构使得能够形成侧面熔接部,该侧面熔接部从外部在美感上令人满意,并且足够牢固以保持所需的阻隔效果。该带结构必须还使得能够在管壳的交叠区域中涂覆广色域范围的墨水(broad ink pallet)。本发明的目的还在于提出一种用于产生这种在美感上令人满意的和牢固的侧面熔接部的方法,以及一种使得能够执行该方法的设备。



技术实现要素:

本发明通过下述方式与技术偏见相反:颠倒加热温度,使得比交叠区域中的外表面更多地加热管壳的内表面,以形成侧面熔接部。

在这种情况下,施加在管壳的外表面上的加热温度T1低于施加在管壳的内表面上的加热温度T2。考虑到施加在管壳的内表面上的加热温度T2高于现有技术中的,存在层(尤其是阻隔层和装饰层)退化的风险,以及管壳在侧面熔接区域处明显变形的风险。

为了避免层发生任何退化,研发了一种特定的结构以生产形成管壳的带。

因此,本发明涉及一种适于形成柔性的管壳的平直的带,该带包括装饰膜,该装饰膜被叠置在基层膜上,所述基层膜由一系列的聚合物层构成并且包括在带的下表面处的可封接的内层,所述装饰膜包括在带的上表面处的可封接的外层和装饰层。

该带的特征主要在于,基层膜包括用于对带进行加固和保护装饰层免于受热的装置。

结果是,加热温度T2被施加于其上的膜,即基层膜被加强以避免形成管壳的带变形并且以使装饰层即使在实施侧面熔接之后仍保持处于良好的状态。

所述加固和保护装置由至少两个加固层构成,该加固层由乙烯-乙烯醇(EVOH)构成。

由于EVOH更为刚硬,所以其机械特性不同于其它的层的机械特性。即使是在被加热之后以产生侧面熔接部的被软化状态下,EVOH仍保留了其结构并且不与相邻的层混合。因此,其被用作为带内的构架或加强部,并且使得能够在交叠区域的整个厚度中保持稳定性。

此外,EVOH为对于氧气和香味具有阻隔作用的聚合物层,这使得能够限制被包装的制品的香味或香料散失。因此,其在带内起到了双重的功能。

有利地,存在两个EVOH材质的层保证了膜的稳定性。

这些层的分布也是重要的。实际上,它们相对于基层膜的中央平面被对称地布置并且相互远离,使得被置于基层膜的上半部分和下半部分中并且不是处于中心而相邻的。这种布置使得加强部在基层膜的厚度中能够最优地分布。

优选地,加固阻隔层各自位于距基层膜的上表面和下表面相对小的距离处,通常为50μm至120μm。通过一方面减小被包括在上表面与邻近的加固阻隔层中的一个之间的层的累积厚度以及另一方面减小被包括在下表面与另一邻近的加固阻隔层之间的层的累积厚度,由此至少初步地大大减少了被容纳在管中的制品的水分(和香料)散失。即使最靠近管的内部的加固阻隔层最终被水分退化,该加固阻隔层仍减缓了水分和香料扩散到另一阻隔层,该另一阻隔层将更长时间地保持完全有效。

基层膜为由对称的层构成的膜并且是通过吹制得到的。

基层膜具有关于其中央平面完全对称的结构,即,具有对称的层,该对称的层具有大致相同的厚度并且由大致相同的材料构成。形成基层膜的所有的层被连续地彼此黏结。

本构想试图通过下述方式来限制不同的层的特性异质性:以关于膜的中央平面的可行的最完善的对称性为目标,不仅是通过几何形状,而且通过在组分材料方面不设定一种或多种基础单聚物(monomer)的化学成分的同一性(identity)。因此,对称的层具有大致相同的厚度,即,对于小于20μm的厚度,厚度彼此之间的差异小于2μm,对于更大的厚度,彼此之间的差异小于10%。

对称的层大致由下述同一种材料构成:即,由单聚物构成的聚合物,该单聚物不仅具有相同的化学成分而且具有有着相当的长度的大分子,这使得摩尔质量(平均数值)nM大致相等,即,彼此之间的差异小于10%,优选地小于5%。

关于膜的中央平面的对称性尤其使得发生在膜的一侧的层之间的差异性的收缩或变形与发生在膜的另一侧的层之间的差异性的收缩或变形能够抵消。

对于膜而言在EVOH层处具有对称性是重要的,该层是刚性的层,以避免产生任何不平衡的残余应力的风险。

为了得到对称的层,通常在实践中使用吹制的膜。

为了得到这样的膜,方法在于通过使用环形的共挤模具头来共挤出圆筒形的多层鞘状物并且使该鞘状物膨胀。鞘状物被膨胀以形成具有薄壁的泡状物,接下来该泡状物被刺破并且被压平,鞘状物的内层自身被并在一起(alongside)。

由此得到的双内层是通过使用下述材料而制成的:该材料在对泡状物的压平压力的作用下以及在泡状物的典型挤压温度(即,介于40℃到80℃之间)下能够粘合到自身。

该材料例如是热塑性材料,诸如线性聚乙烯、EVA(乙烯-乙酸乙烯酯共聚物)或接枝共聚物,该线性聚乙烯尤其是从以下当中选择的:聚乙烯己烯共聚物,更具体地是低密度线性聚乙烯己烯共聚物(LLDPE)、极低密度聚乙烯(PE-VLD,密度介于0.88g/cm3到0.93g/cm3之间)、用单位点(monosite)金属茂催化剂得到的聚乙烯,该接枝共聚物诸如EAA(乙烯-丙烯酸共聚物或乙烯-丙烯酸烷基酯共聚物),尤其是例如为Surlyn(由Dupont de Nemours公司注册的商标)的EAA离聚物,或者是诸如EBA(乙烯-丙烯酸丁酯共聚物)或EMA(乙烯-丙烯酸甲酯共聚物或乙烯-马来酸酐共聚物)的共聚物(乙烯-丙烯酸酯)。

所述可封接的内层和所述可封接的外层由中密度聚乙烯(MDPE)制成。

两个可封接的层由相同的材料制成有助于两个层之间的熔接,因为当这两个层彼此接触并且由于加热而被软化时,其趋于均匀地混合。实际上,在将带成形为套管的期间,可封接的外层与可封接的内层在交叠区域中发生接触。因此,这两个层必须能够被容易地封接到彼此。

此外,当产生侧面熔接部时,这些可封接的内层和可封接的外层还直接与内部加热装置和外部加热装置接触。因此,考虑到构成这些层的材料必须适合于加热温度,对该材料的选择甚至更加重要。

有利地,所选择的材料因此必须具有相对较高的熔点,而该熔点应低于被施加在管壳的外表面上的加热温度T1,以使得在侧面熔接期间不退化以及使得保留在美感上令人满意的和清洁的外观。实际上,重要的是要避免可封接的外层熔融以及附近的墨水裂解。特别地,MDPE具有相对较高的介于122℃到125℃之间的熔融温度,这使得能够将可能高达120℃的加热温度T1施加在管壳的外表面上,而不具有使可封接的外层退化的风险。

对于在190℃下完成、其中加载的活塞具有为2.16kg的标准质量的试验,MDPE的流动性指数介于0.9g/10分钟到3.5g/10分钟之间。

最后,MDPE的密度介于0.930到0.935之间。

将MDPE用于可封接的内层在产生管的最后步骤期间也是有利的,在该最后步骤中,一旦该管被充注待包装的制品,则管的敞开的端部被压平,这意味着圆形的可封接的内层变得被压平并且形成了双层MDPE,接下来该双层MDPE可被容易地熔接以封闭经充注的管。

装饰层包括聚对苯二甲酸乙二酯(PET)并且可设有有金属光泽的涂层、或全息图的涂层或者其它的涂层。在本说明书的其余部分中将使用金属的示例。

由于PET给予了装饰膜以稳定性,所以是尤其有利的。实际上,与PE或PP不同,PET明显更加刚硬并且具有高密度,使得与基层膜中的EVOH层类似能够使装饰膜硬化。然而,PET和金属是热敏性的并且当被加热时是脆弱的。这是限制其加热温度T1的一个额外的原因,因为考虑到目标是能够从带的外部看到装饰,该有金属光泽的PET装饰层位于带的上表面附近。在当形成管壳时带的被覆盖的部分处,两个EVOH材质的层位于有金属光泽的PET层下方,这样使得能够保护该PET层免于加热温度T2。

在有金属光泽的PET层的顶部上,装饰膜包括附加的装饰装置,诸如在可封接的外层的外表面的一部分上延伸的附加的印刷层。实际上,有金属光泽的PET层可形成均匀的装饰背景,而印刷层使得能够附加基于图案和文字的装饰,该装饰可被叠置和添加到均匀的背景上。

更具体地,带包括中心区域,该中心区域毗连两个侧面边界部,所述附加的印刷层在中心区域以及在两个侧面边界部中的一个上延伸。因此,印刷层不在带的整个表面区域上延伸。如之前所说明的,印刷层是不可封接的,因此不得覆盖当产生管壳的侧面熔接部时将被覆盖的带部分。

装饰膜包括附加的保护印刷层的层,该保护印刷层的层在印刷层的整个外表面上延伸。与印刷层相同,为清漆类型的保护层是不可封接的,因此不得覆盖当产生管壳的侧面熔接部时将被覆盖的带部分。

如之前所陈述的,本发明还涉及一种管壳,该管壳是通过缠卷如上所述的平直的带而形成的并且包括具有交叠部的侧面熔接部,所述侧面边缘中的第一侧面边缘与所述侧面边缘中的第二侧面边缘交叠。

以这种方式:

-印刷层在中心区域以及第一侧面边界部上延伸;

-处于第一侧面边界部的可封接的内层被直接封接到处于第二侧面边界部的可封接的外层,即,不通过置入额外的元件,诸如胶带、箍圈或舌状件。该额外的元件是指被置于交叠区域处处于可封接的内层与可封接的外层之间的一种窄小的带。

本发明还涉及一种柔性的管,该管用于储存和分配液态的到糊状的制品并且包括如上所述的管壳。

本发明还涉及一种用于生产柔性的管的管壳的方法,所述管壳由平直的带制成,该带包括装饰膜,该装饰膜被叠置在基层膜上,所述基层膜包括在带的下表面处的可封接的内层以及两个加固层,所述装饰膜包括在带的上表面处的可封接的外层和装饰层。

方法包括下述步骤:

-将平直的带缠卷成套管的形式,以形成管壳;

-将带的第一侧面边界部叠置在带的第二侧面边界部上,以形成交叠区域,第一侧面边界部的基层膜的可封接的内层与第二侧面边界部的装饰膜的可封接的外层相交叠;

-在交叠区域的内部面处将加热温度T2施加到管壳的内部,以产生管壳的侧面熔接部;

-在施加加热温度T2的同时,在交叠区域的外部面与内部面之间施压,以完成管壳的侧面熔接部。

有利地,加热温度T2比基层膜的可封接的内层的熔融温度和装饰膜的可封接的外层的熔融温度高,并且比装饰膜的装饰层的熔融温度和基层膜的两个加固层的熔融温度低。

因此选择之前所概述的结构,其中:

-基层膜的可封接的内层和装饰膜的可封接的外层由MDPE构成,其熔融温度大约为122℃到125℃

-装饰膜的装饰层由PET构成,其熔融温度大约为250℃

-基层膜的两个加固层由EVOH构成,其熔融温度大约为183℃

-基层膜的中间层(包括EVOH层)的熔融温度介于87℃到123℃之间。

因此,温度T2必须至少达到125℃,以熔融可封接的层和中间层,该可封接的层和中间层将混合并形成侧面熔接部的芯部。然而,温度T2不可达到183℃,以不使加固层和装饰层熔融,这使得管壳能够在交叠区域中保留稳定性和一定的刚性。总而言之,优选地,温度T2将介于125℃到180℃之间。

其它可选的和非限制性的特征被列举如下:

-与加热温度T2同时地,加热温度T1被施加在交叠区域的外部面上:使管壳的外部面轻微软化使得能够得到更柔和并且不明显的熔接线,并且因此该熔接线对于裸眼更加不可见。

-加热温度T1低于加热温度T2,换言之,当在交叠区域的外部面与内部面之间施压时,外表面所受到的加热温度T1低于内表面所受到的加热温度T2。目标是使热量的约80%来自于T2,而仅20%来自于T1,因为使得能够产生侧面熔接部的主加热必须来自于管壳的内部而不是外部,以使局部的熔接缝在管壳内部,并且因此从外部不可见。

-加热温度T1低于构成基层膜的可封接的外层的材料的熔融温度:实际上,单个外层不得熔融,以保持均匀并且保留从管外部在美感上令人满意的外观。

-基层膜的可封接的外层由聚乙烯构成,该聚乙烯的熔融温度高于120℃,加热温度T1低于120℃:该温度限制使得能够在装饰膜的可封接的外层上添加印刷(用于装饰),而不会在加热期间使墨水泄漏和裂解。

-加热温度T1优选地低于100℃:这使得能够使用更广泛的墨水。

-替代施加加热温度T1的,可行的是在叠置侧面边界部之前对交叠区域执行预加热步骤。

-预加热包括在叠置之前,将热空气吹到将第一侧面边界部和第二侧面边界部分开的间隙空间中。

-还可行的是不施加加热温度T1或不进行预加热,而是仅从管壳的内部以T2对交叠区域进行加热;

-在所述施压步骤之后完成用于使交叠区域冷却的步骤。

-所述冷却步骤包括使交叠区域的内部面冷却。

-交叠区域具有优选地介于1.5mm到2.5mm之间的宽度。

为了实行用于生产管壳以及尤其用于产生侧面熔接部的方法,确定了一种特定的制造设备。实际上,因为内部加热温度T2自此以后构成了用于产生侧面熔接部的主加热,所以和普通的做法一样,有必要接下来对交叠区域的内部面而不是交叠区域的外部面进行冷却。因此,有必要对传统的设备进行适应性修改。

传统地,因为T1高于T2,所以使用可移动的冷却带主要在管壳的交叠区域的外部面上完成冷却,该冷却带也对交叠区域施压并且在设备内推动管壳。该可移动的带可仅提供外部冷却部,或者还可提供处于外部冷却部上游的外部加热部。该可移动的带自身闭合、由皮带轮驱动并且与心轴平行地延展,构成管壳的柔性的带被围绕该心轴缠卷。使用带来进行加热和冷却的主要缺陷在于,由于带的移动性、厚度和组分材料而难于控制该带的温度。此外,这是一种要使用皮带轮实现的复杂的系统。

如在文件FR 1,571,778中公开的,还存在这样的设备:其中冷却系统被布置在心轴内、处于管壳的内侧。然而,这是一种被用于冷却心轴自身和间接冷却交叠区域的系统。因此,该冷却系统表现得不是很好。

根据本发明的制造设备包括框架、圆柱形的细长的心轴、被用于推进和引导柔性的带以使该带围绕心轴成形为套管的形式的装置、内部加热装置和内部冷却装置,该带的侧面边界部中的一个与另一侧面边界部交叠以形成待熔接的交叠区域,该内部加热装置位于心轴中以对交叠区域的内部面进行加热,该内部冷却装置位于心轴中以对交叠区域的内部面进行冷却,并且该内部冷却装置处于内部加热装置的下游。

该设备的特征主要在于,所述冷却装置被布置在交叠区域的对面并且被构造成与交叠区域直接接触。

因此,冷却装置直接作用在管壳的交叠区域上,而不被用作为对心轴进行冷却。该心轴仅被用作为冷却装置的支承件。

其它可选的和非限制性的特征被列举如下:

-所述冷却装置被固定在设备中。

-冷却装置由小的冷却带组成,该冷却带被插在形成于心轴中的对应的狭槽中。

-所述小的冷却带包括通道,冷却剂在该通道内部流通。

-小的冷却带包括封闭通道的平面的壁,该壁在上部部分中并且与交叠区域的内部面直接接触。

-所述通道限定出锯齿形的内部路径。

-所述通道包括一种使冷却剂的引导散热片呈交错的列的布置,该交错的列限定出所述锯齿形的内部路径。

-所述散热片从平面的壁朝向心轴的中心轴线正交地延伸。

-所述散热片形成了两个交错的列,这两个交错的列被定向成沿着与心轴的中心轴线平行的纵向方向。

-所述散热片对应于矩形的舌状件。

-所述狭槽限定出平行六面体的中空的空间。

-小的冷却带具有大体为平行六面体的外部形状,该外部形状与所述狭槽的壁的形状紧密结合。

附图说明

在参照附图对本发明的仅作为说明性和非限制性示例提供的至少一个实施例进行以下解释性详细说明期间,本发明将被更好地理解,并且本发明的其它目的、细节、特征和优点将更清楚地显现。

在这些附图中:

图1为根据本发明的带的俯视图;

图2为图1的带的横截面视图;

图3为由图1的带形成的管壳的横截面视图;

图4列出了图3的管壳的交叠区域处的不同的层;

图5示出了在产生侧面熔接部之前,图3的根据第一实施例的管壳的交叠区域;

图6示出了在产生侧面熔接部之前,图3的根据第二实施例的管壳的交叠区域;

图7示出了在产生侧面熔接部之后,图3的用于第一实施例和第二实施例的管壳的交叠区域;

图8为产生图3的管壳的侧面熔接部所需的工具的一部分的透视图;

图9为属于图8的工具的冷却设备的分解图;

图10示出了图9的冷却设备的小的冷却带的细节;

图11为属于图8的工具的加热设备的详细视图。

具体实施方式

使用术语“外”和“外部”来指示层被定向成朝向因此形成的管壳的外部。同样地,使用术语“内”和“内部”来指示层被定向成朝向因此形成的管壳的内部。

参照图1和图2,示出了一段根据本发明的平直的带1,该带接下来将被缠卷以形成管壳。

该带1包括中心区域4,该中心区域毗连第一侧面边界部2和第二侧面边界部2'。

已知通过使用由挤压或由轧制-粘合得到的多层膜来得到这种带1。

根据本发明的平直的带1包括一系列的层。

具体地,该带由基层膜16和处于基层膜的顶部的装饰膜15构成。

在每个实施例中,装饰膜15包括位于带1的上表面19处的可封接的外层7和由PET基体9构成的装饰层8、9,该装饰层位于可封接的外层7下方。

装饰层8、9被施加在装饰膜15的整个表面上并且位于可封接的外层7下方。换言之,不存在属于装饰膜15的区域未被装饰层8、9和可封接的外层7所覆盖。

取决于所选择的装饰类型,该装饰层8、9可包含有金属光泽的或全息图的膜8或者类似物。该膜构成了后续将形成的管的装饰的背景。

优选地,该膜8被施加在PET基体9的顶部上,使得该膜被定向成朝向带1的上表面19。在另一可行的构造中,该膜8可被施加在PET基体9的底部上。PET基体由高密度层构成,在形成管壳的期间,该高密度层起到加强的作用。在图2中该层9画有交叉阴影线。

装饰膜15的装饰层8、9具有介于5μm到50μm之间,优选地介于10μm到30μm之间的厚度。

在所有的情况下,可封接的外层7位于装饰层8、9的上方并且因此保护该装饰层免于与将来对因此形成的管壳进行处理有关的冲击/刮擦。优选地,可封接的外层7是透明的,使得装饰从将形成的管的外部能够清楚可见。

该可封接的外层7由PE制成,并且也可以具有多个层。优选地,可封接的外层7由三层PE构成。优选地,对于这三个层所选择的材料将会是MDPE,这是由于该材料的技术特性。

总体而言,装饰膜15的可封接的外层7具有介于5μm到90μm之间,优选地介于5μm到80μm之间的厚度。

可选地,在装饰层8、9的顶部上,装饰膜15可被直接印刷在可封接的外层7上,以添加装饰。因此,附加的印刷层6以及保护层5(类型为清漆)可在装饰膜8、9的外表面的一部分上延伸。更具体地,印刷层6和保护层5这两个层在带1的中心区域4和第一侧面边界部2上延伸。换言之,印刷层6和保护层5这两个层在带1的除第二侧面边界部2'之外的整个表面区域上延伸(见图1中的画有交叉阴影线的区域)。在形成管壳的期间,侧面边界部2'将被第一侧面边界部2所覆盖。因为墨水和清漆不可进行封接,所以强制性的不将该墨水和清漆置于将被交叠以产生侧面熔接部的第二边界部2'上。

基层膜16为多层膜,该多层膜包括位于带1的下表面20处的可封接的内层14以及两个加固层11、13,这两个加固层在基层膜16中相对于该基层膜的中央平面X对称地分布并且在图2中画有交叉阴影线,以示出这两个加固层的加强作用。

基层膜16可包括多达22个层。

由阻隔层构成的至少一个层使得能够进行密封免于湿气以及对于将被灌注到管(由这样的经缠卷的带1形成)内部的制品能够保留香味。

其它的层可从聚乙烯(例如为低密度聚乙烯(LDPE)、线性低密度聚乙烯(LLDPE)、中密度聚乙烯(MDPE)、高密度聚乙烯(HDPE)或这些聚乙烯的混合物)或乙烯醋酸乙烯酯(EVA)当中选择。在这些不同的层之间,可施加黏结层和/或粘合涂层,以改善层之间的粘合性。

基层膜16具有介于100μm到500μm之间,优选地介于200μm到350μm之间的厚度。

基层膜16可以是吹制的膜,以使其各个层之间具有对称性。

在这种情况下,双层中心层12将优选地由EVA构成,该双层中心层具有良好的可靠性以在对经吹制的鞘状物进行压平的期间自身相粘附。两个加固层11、13对称地分布在由EVA材质的双层层12制成的膜16的中央平面X的两侧。这些加固层11、13由EVOH构成。EVOH还被证实为能够作为密封阻隔物使用的材料。结果,EVOH材质的两个层11、13在基层膜16内实施了加强与密封的双重功能。最后,可封接的内层14还具有其对称地位于基层膜16中的衬层,该衬层对应于基层膜16的可封接的外层10,并且因此该衬层与装饰膜15的下层相接触。基层膜16的两个可封接的层10、14由MDPE构成,以对应于装饰膜15的可封接的外层7。

以下是构成根据本发明的带1的结构的详细示例。

示例1:

示例2

在通过缠卷带1形成管壳的期间,如图3所示,第一侧面边界部2与第二侧面边界部2'交叠。

图4示出了交叠区域3中的一系列层。

为了更清楚,位于第二侧面边界部2'处的层具有与位于第一侧面边界部2处的层对应的编号,因为它们是相同的层,但被用附加的“上撇号”来编号以对它们进行区分。

按照从管壳的外部朝向管壳的内部到的顺序,层为如下:

-5:第一侧面边界部的保护层

-6:第一侧面边界部的印刷层

-7:第一侧面边界部的装饰膜的可封接的外层

-8:第一侧面边界部的装饰膜的有金属光泽的涂层

-9:支承第一侧面边界部的装饰膜的有金属光泽的涂层的PET层

-10:第一侧面边界部的基层膜的可封接的外层

-11:第一侧面边界部的基层膜的加固EVOH层

-12:第一侧面边界部的基层膜的中心层

-13:第一侧面边界部的基层膜的加固EVOH层

-14:第一侧面边界部的基层膜的可封接的内层

-7':第二侧面边界部的装饰膜的可封接的外层

-8':第二侧面边界部的装饰膜的有金属光泽的涂层

-9':支承第二侧面边界部的装饰膜的有金属光泽的涂层的PET层

-10':第二侧面边界部的基层膜的可封接的外层

-11':第二侧面边界部的基层膜的加固EVOH层

-12':第二侧面边界部的基层膜的中心层

-13':第二侧面边界部的基层膜的加固EVOH层

-14':第二侧面边界部的基层膜的可封接的内层

为了更清楚,未示出粘合中间层。

应注意的是,第一侧面边界部2的基层膜16的可封接的内层14实际上直接位于第二侧面边界部2'的装饰膜15'的可封接的外层7'上。在进行侧面熔接期间,这两个可封接的MDPE层14、7'将被熔融并融合,由此使得两个侧面边界部2、2'能够被熔接到彼此。

图5精细地示出了在产生侧面熔接部并且根据第一实施例形成管壳之前已完成的交叠。在这种情况下,在管壳的内表面22上,更具体地是在第二MDPE侧面边界部2'的基层膜16'的可封接的内层14'上施加介于125℃到180℃之间的加热温度T2。

同时,在管壳的外表面21上,更具体地是在第一MDPE侧面边界部2的装饰膜15的可封接的外层7上施加远低于加热温度T2的并且低于120℃的加热温度T1。

在加热的同时,在交叠区域3的外部面21和内部面22处施压,以有助于熔融的层混合并且粘合到彼此,以产生管壳的侧面熔接部。

具体地,由于加热温度T2,以下的层将熔融:

-14:第一侧面边界部的基层膜的可封接的内层

-7:第二侧面边界部的装饰膜的可封接的外层

-10':第二侧面边界部的基层膜的可封接的外层

-12':第二侧面边界部的基层膜的中心层

-14':第二侧面边界部的基层膜的可封接的内层

中间黏结层也将熔融。

加固层11、11'、13、13'和有金属光泽的PET装饰层8、9、8'、9'将不熔融并且将不与其它的层混合,由此使得在熔接期间以及在熔接之后能够保留层的顺序,以及能够保持被加热的结构的稳定性。

第一侧面边界部2的基层膜16的两个EVOH加固层11、13还使得能够保护有金属光泽的PET装饰层8、9免于来自于加热温度T2的热量,因为有金属光泽的PET层对热量敏感并且会变得脆弱。

这在图7中尤其可见,其中示出了在产生侧面熔接部之后不同的层的变形。清楚可见的是,加固层11、11'、13、13'和有金属光泽的PET装饰层8、9、8'、9'未与其它的层混合并且在施压的作用下简单地发生变形。在加固层的上游、下游以及在该加固层之间的层已被混合和融合。实际上,熔接缝位于管壳内部。

应注意的是,第二侧面边界部2'的有金属光泽的PET层8'、9'也被第二侧面边界部2'的两个加固EVOH层11'、13'保护免于受热,尤其是在管壳的表面区域上的两个侧面边界部2、2'之间的新的结合区域17中。

该结合区域17非常窄小,两个边界部2、2'非常接近,因此管壳上的印刷层6的不连续性是最小化的。由此形成的管壳在美感上令人满意,并且具有牢固的熔接部。

在第二实施例中,替代在管壳的外表面21上施加加热温度T1的,如图6所示,可行的是在第一侧面边界部2和第二侧面边界部2'被叠置之前,通过将热空气18吹到将它们分开的间隙空间中来对交叠区域3进行预加热。

目标是使用于在侧面熔接期间被熔融的层(尤其是被定向成朝向管壳的外部的层)预先软化,以得到从管壳的外部具有均匀的外观的熔接部。

最终的结果与第一实施例的结果相似,并且对应于在图7中示出的结果。

图8示出了适于执行如之前所描述的制造方法的工具。

该工具主要涉及圆柱形的心轴30,该心轴沿着轴线Y纵向地延伸并且能够被紧固在框架(未示出)上。该心轴30由第一端部部段31、内部加热部段32、内部冷却部段33和第二端部部段34构成。

柔性的带(未示出)被引导以围绕心轴30缠卷,并且使得带的第一侧面边界部与带的第二侧面边界部交叠,由此形成位于心轴30的上部部分中的交叠区域。将不描述设备的使得带能够缠卷的部分,因为该部分是已知的并且已被广为使用了许多年。

在图11中更具体地示出了由此形成的管壳的交叠区域首先到达心轴30的内部加热部段32。该部段32包括形成在心轴30的上部部分中的狭槽35,被容纳在该狭槽中的隔热部件36能够容纳加热部件37,该加热部件将与交叠区域的内部面接触以产生侧面熔接部。

狭槽35具有平行六面体的形状。隔热部件36为U形的,该隔热部件的成角度的外壁与心轴30的狭槽35的形状紧密结合。

加热部件37由一圆柱形件构成,该圆柱形件的下部部分38和上部部分39分别包括平直部,该平直部使得该圆柱形件能够通过平面接触而被正确地定位在隔热部件36的底部处,以及能够使上部平面表面39具有至少与交叠区域的宽度对应的宽度L1。被如此定位的该加热部件37能够将交叠区域的内部面加热到加热温度T2,以产生侧面熔接部。同时,可移动的金属带(未示出)压在交叠区域的外部面上以在交叠区域上施压并且帮助各个熔融的层混合,以及确保在交叠区域处不存在断层(setback),即,确保管壳的外表面在其整个周界上是线性的。这种施压还使得能够减小侧面熔接部的最终厚度。

可选地,可在设备上设置位于心轴30对面的外部加热装置(未示出)来将交叠区域的外部面加热至加热温度T1。该加热装置可与可移动的带相关联。

当产生侧面熔接部时,管壳尤其通过可移动的金属带被推动到达心轴30的中心部分,铸型部40被布置在该中心部分处,该铸型部具有传统的在交叠区域处对管壳进行施压和成形的功能。

之后管壳到达心轴30的冷却部段33,在图9中更详细地示出了该冷却部段。该部段33也包括形成在心轴30的上表面处的狭槽41。该狭槽41形成了中空的平行六面体空间。

在该狭槽41内容纳有也是平行六面体的小的冷却带42。小的带42的尺寸与狭槽41一致,以确保彼此间最优的定位。因此,小的带42被固定在心轴30内。

该小的带42包括平直的上壁43,该上壁被布置成以及能够与交叠区域的内部面直接进行接触。因此,该交叠区域将通过与小的带42的平直的壁43的这种平面接触而被冷却。因此,根据在平直的壁43的表面上测量的温度来调节冷却温度。该上壁43具有至少与交叠区域的宽度一样大的宽度L2,以对整个侧面缝进行良好的冷却。

在该平直的壁43下方为通道44,冷却剂在该通道内部流通。在本示例中,如图10所示,该通道44具有锯齿形的形状。实际上,多个散热片45垂直于小的带42的平直的壁43朝向心轴30的中心轴线Y延伸。这些散热片45形成了两个纵向的列46、47,这两个列沿着与心轴30的轴线Y平行的轴线延展并且被布置成交错的列以形成锯齿形。因此,如通过箭头示出的,冷却剂沿着锯齿形的路径44在散热片45之间流通。该路径44迫使流体穿过小的带42并且因此在该带内耗费更多的时间,以有助于热交换。

散热片45使得能够增大一方面的在熔接之后仍是热的的交叠区域与另一方面的冷却剂之间的热交换表面。通过以这种方式来增大交换表面,还提高了冷却性能。因此,根据本发明的心轴30的冷却部段33的长度可被大大减小,而同时相对于不具有散热片45的和/或具有直线的冷却通道44的冷却设备得到了最优的冷却结果。因此,根据本发明的心轴30具有紧凑的优点。

优选地,散热片45由矩形的舌状件构成。然而,该散热片可具有其它的有利的形状。

冷却通道44也同样如此,其可采用其它的有利的形式。

在冷却步骤期间,交叠区域优选地继续被可移动的带施压。

再多了解一些
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1