保持通过冶金炉的鼓风口无炉渣的方法

文档序号:4592498阅读:311来源:国知局
专利名称:保持通过冶金炉的鼓风口无炉渣的方法
技术领域
本发明涉及一种通过使含氧气体间歇性地通过鼓风口来熔解炉渣,保持通过冶金炉的鼓风口无炉渣的方法。
背景技术
在例如冶金炉的容器内,测量熔融金属的温度的常用方法,是利用高温计。通常,非接触式的辐射高温计设置在喷嘴的末端,该喷嘴是气体鼓风口的一部分。鼓风口设置在冶金炉的底部或侧壁上。高温计也可设置在从冶金炉的顶端引入熔料的测量通道的一端。这些装置例如在DE-OS 964 991,DE-A-4 025 909,EP-A-0 362 577,US-A-3 161 499,EP-A-0 162 949,DE-OS-2 438 142,US-A-4 400097以及JP-A-62 207 814中被公开。
通常,非活性气体被通过鼓风口吹到熔料内部,以保持其风口没有炉渣。然而,由于金属在鼓风口的出口处凝固,因此炉渣可能在测量通道内堵塞,从而使测量通道有时被阻塞。在鼓风口的出口处凝固的金属可利用吹过通道的氧气熔化。这样,可以防止鼓风口的阻塞,然而,氧气会使测量值显著失真,并增进测量通道的磨损。因此,氧气必须间歇地吹过该通道。

发明内容
本发明的一个目标是通过一种用于间歇地使含氧气体通过鼓风口来分解炉渣,来保持通过冶金炉的鼓风口没有炉渣的方法来解决,其中以下地确定该方法,使所述含氧气体通过鼓风口的时间间隔需要通过利用双波长高温计,来检测从熔料内部的一点发射的电磁辐射,并对高温计信号的强度和高温计信号比进行比较来起动,而且在信号的复合强度降到预定阈值之下,并且信号比保持基本恒定的条件下,起动所述用于使所述含氧气体通过鼓风炉的时间间隔。优选地,所述阈值的确定,是通过使用与高温计设置在一个光路上的摄像机,并通过把高温计信号的强度与摄像机的图像联系起来,根据视频信号判定是否是遇到阻碍的状态,并确定复合高温计信号的相应的强度值。
另一个目标是通过提供一种装置来解决,该装置包括
(a)双波长高温计,(b)自聚焦摄像机,与所述双波长高温计一起沿着一个光路设置,(c)用于改变光路的方向的工具,以及(d)可选择地另一检测器,用于测量从炉的内部发射的电磁辐射。
优选地,该装置进一步包括激光器设备,适合于在所述冶金炉的内部生成等离子体,并且其中所述另一检测器是能检测从所述等离子体发射的电磁辐射的分光计。更优选地,该装置利用通过鼓风口的管,连接到所述冶金炉的内部。
优选实施例

图1示出了本发明的装置的优选结构。装置1连接到容器2上,该容器2例如是装有熔料的冶金炉,该熔料优选地为熔融金属。容器2优选地为转炉。鼓风喷管可从顶部插入熔料内,以将氧气吹入熔料内,从而使铁转变为钢。可选择地,氧气可通过在容器2的底部和/或侧壁的鼓风口吹入转炉内。装置1经由鼓风口连接到容器2的内侧。鼓风口形成测量通道A,从容器的内侧发出的电磁辐射可通过该通道A。鼓风口具有面对容器的内部的一个端部。测量通道2的第二端部面对第一测量单元3,该第一测量单元3优选地包括双波长高温计和摄像机。优选地,分光计4和激光产生单元5也连接到测量通道上。最好是,数据处理设备6连接到测量单元3上。
图2示意性示出测量通道(如图1中示为A)的详细横截面图和底视图。电磁辐射可不受阻碍地通过该畅通无阻的测量通道7,如底视图8示意性所示。一旦在测量通道9的顶部出现阻塞,电磁辐射的通道将受到阻碍,如底视图9示意性所示。测量单元3不再能检测到通道的整个区域的电磁辐射。
图3详细示出了如何形成测量通道(如图1中示为A)。优选地,使用一组两个同心管。测量通道优选地包括外管11和内管12,这样,可将不同的气体或气体混合物吹入到容器内。例如,包括氮气和/或氩,以及甲烷的气流13可穿过内管12,而包括氮气和/或氩,以及氧气的气流可通过外管。内管12也可形成测量通道。从而,氧气不会影响测量。
图4示意性示出测量单元3(图1)的优选实施例。它包括一个可调整透镜15,与两个高温计检测器16、17和一个用于收集视频信号的检测器18结合的两个可调整反射镜。可调整透镜15优选地为自聚焦透镜,并通过马达(未示出)驱动。
决定含氧气体通过鼓风口的时间间隔的方法,是通过利用双波长高温计检测从熔料内部的一点发射的电磁辐射,并将高温计信号的强度和高温计信号比进行比较开始的。含氧气体穿过鼓风口的时间间隔在信号的复合强度降到预定阈值之下,并且信号比基本上保持恒定的条件下开始。仅当在可视化地依据视频信号的图像时,该阈值才需要预先设定。根据图像,判定是否是遇到阻塞的状况,并确定复合高温计信号的相应强度。然后,将该阈值被用于自动起动使含氧气体穿过鼓风口的时间间隔。
存在使用双波长高温计代替标准高温计的概念。除测量的两个波长中每一个的强度的信息之外,两个波长的商数也可被计算。这建立了另外的信息,其可以被用于确定氧气必须通过测量鼓风口的时间点。如果仅仅测量一个波长的强度,则不可能判定是否由熔料温度的改变,或由于形成在鼓风口的端部的炉渣引起强度方面改变。通过测定两个波长的强度,并且,例如通过形成两个值的商数使二者相联系,可以获得关于该改变的原因的信息。例如,如果测量的强度值均下降,而两值的商数不变,可以设想,鼓风口被炉渣阻塞,反之例如,如果测量的强度值均下降,而两强度之比改变,则可以设想,熔料的温度改变了。
因此,根据本发明的方法的优点是,只有因为高温计信号的强度降到预定阈值之下,氧气才需要通过测量通道吹入。
令人惊奇地是,已经证明,在这样的实施方式下,也可以调节用于测量电磁辐射的仪器的光轴,该仪器例如是高温计或分光计。
为了调节一个或多个测量设备,在双波长高温计和/或分光计是优选的情况下,移动其光轴直到测量通道的近端和其远端的透视图像根据测量通道的几何形状以规则的形状描述,例如,规则的管状测量通道将导致圆形的图像。该调节优选地采用摄像机实施。为此目的,摄像机和用于测量电磁辐射的仪器沿一光轴设置。
这种调节是根据视频图像,通过改变仪器和摄像机的方位,从而使视频图像的第一端和第二端形成同心圆来完成的,这是本发明的另一个目标。
当不得不获得测量通道的两端的几何形状描绘为同心图像,即在上述的(作为实施例)管状测量通道的情况下时,测量设备即双波长高温计和/或分光计的最佳位置就到达。为使测量通道的“近端”,即测量通道指向测量设备和摄像机的一端可视化,使用辅助光源是可取的。
令人惊奇地发现,利用目前的结构,也可以测量穿过冶金炉3的鼓风口的长度。这个信息是很重要的,因为这是容器的内层的磨损的象征。聚焦激光束也需要该信息。
为此目的,自聚焦摄像机的透镜系统被调节,以便使面对冶金炉的内部的鼓风口的第一端在焦点上。鼓风口的长度根据焦点的距离和鼓风口的第二端相对于摄像机的的已知方位来确定。
利用该信息,激光束可以这样的方式被聚焦,即足以形成等离子体的强度仅出现在要分析熔料表面,或熔料的内部,但不位于由吹过测量通道的气体形成的气体腔的内部,其中该等离子体的辐射可用分光计检测。
权利要求
1.通过间歇地使含氧气体通过鼓风口来熔解炉渣,保持通过冶金炉的鼓风口没有炉渣的方法,其中以下地确定该方法,使所述含氧气体通过鼓风口的时间间隔需要通过利用双波长高温计,来检测从熔料内部的一点发射的电磁辐射,并将高温计信号的强度与高温计信号比进行比较来起动,而且在信号的复合强度降到预定阈值之下,并且信号比保持基本恒定的条件下,起动所述用于使所述含氧气体通过鼓风炉的时间间隔。
2.权利要求1的方法,其中所述阈值的确定,是通过使用与高温计一起设置在一个光路上的摄像机,并通过把高温计信号的强度与摄像机的图像联系起来,根据视频信号判定是否是遇到阻碍的状态,并确定复合高温计信号的相应的强度值。
3.使用摄像机来调整用于测量电磁辐射的仪器的光轴的方法,该电磁辐射是通过鼓风口从冶金炉的内部发射的,该鼓风口具有面对该冶金炉的内部的第一端和面对该仪器的第二端,其中,所述摄像机和用于测量电磁辐射的该仪器沿一个光路设置,并且该调节是根据视频图像,通过改变该仪器和摄像机的方位,从而使视频图像的第一端和第二断形成同心圆来完成的。
4.根据权利要求3的方法,其中,用于测量电磁辐射的所述仪器是高温计。
5.根据权利要求3的方法,其中,用于测量电磁辐射的所述仪器是分光计。
6.利用自聚焦摄像机来测量通过冶金炉的鼓风口的长度的方法,所述鼓风口具有面对所述冶金炉的内部的第一端和面对所述冶金炉的外部的第二端,其中自聚焦摄像机的透镜系统被调节,从而使鼓风口面对所述冶金炉的内部的第一端在焦点上,并且所述故鼓风口的长度根据焦点的距离和所述鼓风口的所述第二端相对于所述摄像机的的已知位置来决定。
7.用于实现权利要求1至6的方法的装置,包括(a)双波长高温计,(b)自聚焦摄像机,与所述双波长高温计一起沿着一个光路排列,(c)用于改变光路的方位的工具,以及(d)可选择地另一检测器,用于测量从炉的内部发射的电磁辐射。
8.根据权利要求7的装置,进一步包括激光器设备,适合于在所述冶金炉的内部生成等离子体,并且其中所述另一检测器是能检测从所述等离子体发射的电磁辐射的分光计。
9.根据权利要求7或8的装置,其利用通过鼓风口的管,连接到所述冶金炉的内部。
全文摘要
本发明涉及一种用于通过间隙的使含氧气体通过鼓风口以分解炉渣,保持通过冶金炉的鼓风口无炉渣的方法,其中以下地确定该方法,使所述含氧气体通过鼓风口的时间间隔需要通过利用双波长高温计,来检测从熔料内部的一点发射的电磁辐射,并对高温计信号的强度和高温计信号比进行比较来起动,而且在信号的复合强度降到预定阈值之下,并且信号比保持基本恒定的条件下,起动所述用于使所述含氧气体通过鼓风炉的时间间隔。
文档编号F27D25/00GK1729390SQ200380106769
公开日2006年2月1日 申请日期2003年11月5日 优先权日2002年12月19日
发明者C·卡尔霍夫, W·梅肯斯, R·拉姆 申请人:密执安特殊矿物公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1