生产高纯度氮气的装置的制作方法

文档序号:4790920阅读:344来源:国知局
专利名称:生产高纯度氮气的装置的制作方法
技术领域
本发明涉及生产高纯度氮气的一种装置。
尽管电子工业消耗大量的氮气,为保持元件的高精度,对它们所用氮气的纯度有严格的要求。氮气一般是由空气通过一系列生产步骤得出的,这些生产步骤包括用压缩机压缩空气,让压缩空气流经一吸收塔,除去其中的二氧化碳和水份,排出的空气再通入一换热器,在换热器中与一致冷介质进行热交换而使空气得到深冷,深冷后的空气再送入一精馏塔,使之实现低温液化和分离作用而制得氮气,最后再让制得的氮气流入上述的换热器,将氮气加热到接近大气温度。这种常规的氮气生产设备采用一种膨胀透平机,用来深冷从压缩机出来的压缩空气进行热交换的致冷介质,这一透平机是由聚集在精馏塔中的液化空气产生气化作用所产生的气体的压力驱动的,(由于低温液化和分离作用的结果,低沸点的氮气就离开精馏塔,其余以富氧液化空气的形式聚集在精馏塔里)。然而,膨胀透平机旋转速度很高,达到每分钟几万转,不容易追随负荷的变化,因此需要由训练有素的操作人员。此外,高速的膨胀透平机除了需要由训练有素的人员加工操作之外,不但需要构造上高度地精确,而且成本也是很高的。这些难题都是因为膨胀透平机是一种高速转动机械引起的,因此也就有强烈的要求,淘汰这种具有高速转动机制的膨胀透平机,为了满足这种要求,本发明者开发了一种装置,采用来自装置外部的液氮来代替由膨胀透平机产生的冷却作用。在日本已经有一系列的专利申请,包括申请号为59-146332(公开号61-24968)和申请号为58-38050(公开号为59-164874)的日本专利。作为本发明基础的这一装置,采用由另外的液氮生产设备产生的液氮做为冷却源,液氮通过罐车或类似设备输送到装置上,贮存在装置上作冷却源用的液氮贮罐中,並能产生比来自外部提供的液氮大十倍那么多的气体氮气产物。由于从构成本发明基础的装置中淘汰了膨胀透平机,所以也就没有上述的由于有膨胀透平机所造成的任何缺点了。虽然在外部的另外设备中生产的做为冷却用的液氮必需输送到装置上来,但是它的输送量只是产生的气体氮气的十分之一,因为装置上能产生比提供做为冷却用的液体氮大十倍那么多的气体氮气。为此可比拟这样一种情况,即在工厂现场安装一台蒸发器用于蒸发液氮,液氮是在另一台液氮生产设备中制造,並提供给蒸发器,再在蒸发器中蒸发成气体氮气(这种氮气例如在工厂中则可用于半导体的生产),而需要输送到本发明者开发的装置的液体氮气量仅为所需用的气体氮气量的十分之一就够了。这样也就不必频繁地输送液体氮了。
然而,这类装置不易有效地将随空气带来的极少量的氢和氮气分离掉(难于利用它们之间的沸点差加以分离,因为氢和氦的沸点比氮的沸点低)。本发明者已经注意到,在装置连续运行操作的某些情况下,上述的氢和氮气是做为杂质混合在产出的氮气中的。
本发明的目标是提供一种不采用膨胀透平机而能连续生产高纯度氮气的装置。
为了达到完成上述的目标,本发明提供的用于生产高纯度氮气的装置包括一种用来压缩取自外界空气的压缩设备,一种除去来自该压缩设备的压缩空气中的二氧化碳和水的设备,一种热交换设备,使来自已除去二氧化碳和水的压缩空气能深度冷却到一低温温度,一台精馏塔用来使一部份来自该换热器的低温压缩空气得以液化,並收集在精馏塔的下部,纯的氮气则从精馏塔的上部取出,在精馏塔的上部,还有一个带有冷凝器的分凝器,一根供料导管,来引导收集在精馏塔下部的液化空气到分凝器去,用作冷却该分凝器的冷却介质,一根排气管用来将在分凝器中产生的已被气化了的液化空气排放到外界,一根第一回流液管用来引导在精馏塔中产生的一部份氮气到该冷凝器中,一根第二回流液管用来使冷凝器中产生的液氮,做为回流液返回到精馏塔,一个液氮贮罐用来贮存来自装置外部的液氮,一根导管用来引导液氮贮罐中的液氮到精馏塔中,一根取出管,用于取出产生的氮气,这一股纯氮气来自两方面,一方面来自精馏塔,另一方面来自在精馏塔中做冷却源的液氮使用后气化了的氮气,在精馏塔顶部有一钟罩形的穹顶,该穹顶装有一收集气体的设施和一根排放杂质气体的排放管,排放管一端连在该收集气体的设施上,另一端通向大气。
不采用膨胀透平机生产高纯度氮气的本发明装置具有以下所述的效果。装置上虽然不采用膨胀透平机,但却应用了一种贮存液氮的设备,例如不带旋转元件的液氮贮罐。因此,整个装置没有旋转零件,所以不会出故障。此外,膨胀透平机价格昂贵,而液氮贮罐则不昂贵,而且不需要有特别的操作人员,再有,膨胀透平机是在极高的速度(达每分钟数千转)下驱动的(由收集在氮气精馏塔内的液化空气气化产生的气体压力驱动),难于追随精细的负荷改变(即取出产品氮气的流率的改变)。因此也就很难按照取出产品氮气的变化。准确地变化提供给膨胀透平机的液化空气量,结果使做为氮气原料的压缩空气很难深冷到始终是恒定的温度。由此改变了产品氮气的纯度,因为低纯度的产品往往就会被取出而影响了产品总的质量。
相反,由于本发明装置采用液氮贮罐来代替膨胀透平机,並采用可精细控制其供给量的液氮做冷却介质,生产装置也就可因负荷的变化而进行精细的调节,由此就能生产出纯度极高而又一直不变的氮气。
再者,这一生产高纯度氮气的装置除了由于取消了膨胀透平机而有上述的效果外,还有如下的效果。因为精馏塔的穹顶是钟罩形的,钟罩形顶部装有收集气体的设施,而存在于氮气中的比重比氮气小得多的氢气和氦气,由于它们的乏重小,当氮气达到精馏塔上部而从取出管被取出时,氢气和氦气就与氮气分开,並沿钟罩形穹顶上升,而有效地被收集在收集气体的设施中。结果,从氮气取出管逸出的氮气,其纯度就变得很纯,而氢气和氦气做为杂质被除掉了。来自气体收集设施中的氢气和氦气经过不纯气体排放管排放到大气中。在本生产装置中,氢气和氦气是利用分子量的差别和产品氮气分离的。由于氢气和氦气的沸点都低于氮气,所以氢气和氦气同氮气的分离难于利用它们之间的沸点差来实现。


图1是本发明的一个方案的工艺流程2是图1A-A′截面的放大剖视3是别的一种方案的主要部份的放大示意4是又一个方案的主要部份的放大示意5是又一个方案的工艺流程简6是图5所示方案的主要部份的放大透面视图。
实施例
图1展示的是本发明的一个方案。
在图1中,标记数码9表示一台空气压缩机,10是一个油水分离器,11是一台氟利昂冷冻机,12是一对吸收塔。每一台吸收塔内填充有一种分子筛,用以吸收和除去从空气压缩机9送来的压缩空气中的CO2和H2O。8所指示的是一根管线,用来输送已被吸收因而不含CO2和H2O的压缩空气。13表示一台第一换热器,用以接受自一对吸收塔12来的不含CO2和水的压缩空气。第二换热器14接受来自第一换热器13的压缩空气。15是指一个精馏塔,其顶有一个带有冷凝器21a的分凝器21。在精馏塔中,在第一和第二换热器13和14中已被深冷到低温,並经管线17进入精馏塔的压缩空气在精馏塔中进一步地深冷,其中一部份压缩空气液化成液化空气18收集在精馏塔底部,而其中的氮则成气态汇集在精馏塔上部。装有液氮(高纯度产品)的液氮贮罐23通过输送管24a将液氮送进精馏塔15的上部,用做冷却引入塔中的压缩空气的冷却介质。现在详细地说明精馏塔15。精馏塔15的顶部是一钟罩形的穹顶20,穹顶20的中央向上凸起形成一个收集气体的设施22。排放管22a用于将聚集在该收集气体设施22中的氢气和氦气等不纯气体排放到大气中去。精馏塔15和分凝器21是通过第一回流管21b和第二回流管21c相互连通,分凝器21的冷凝器21a通过回流管21b被供入收集在精馏塔上部的一部份氮气,分凝器21内部的压力比精馏塔15内的压力为低,汇集在精馏塔15底部的液化空气(N250-70%,O230-50%),通过带有膨胀阀19a的管路19,进入分凝器,並在其中膨胀气化,使分凝器的内部温度降到低于液氮沸点以下的程度。由于这一深冷的结果,进入冷却器21a的氮气液化了。25是一个液位计。为了保持分凝器21中的液化空气液面稳定,阀门26是用于调节控制来自液氮贮罐23的液氮量。精馏塔15的上部通过一下降管21c接受来自分凝器21的冷凝器21a所产生的液氮,同时也通过24a管路接受来自液氮贮罐23的液氮,这两股液氮从精馏塔内的液氮槽21d向下流动,並与从精馏塔15底部上升的压缩空气进行逆流接触,並加以冷却,由此使部份压缩空气液化,在这一过程中,压缩空气中的高沸点组份液化並聚集在精馏塔15的底部,而低沸点组份的氮气则积集在精馏塔15的上部。27是一根取出管,用于取走在精馏塔15上部冷却的氮气做为产品氮气。这一管路引导低湿氮气到第二和第一换热器14和13,同引入到其中的压缩空气进行热交换,使氮气达到环境温度而进入总管28。与此同时,难于同氮气分开的氢气和氦气,也同氮气一起到达精馏塔15的上部。本发明提供了一种新的结构来解决这一问题。也即精馏塔15的顶部是做成钟罩形,其中央部份向外凸起形成一气体收集区22,而出口通道27的一端是侧向地开在精馏塔15上部的周壁上,如图2所示。在精馏塔15内的氮气,当它从出口管27流出时形成的流动力,使氮气在钟形穹顶的下部周边作周向的旋转流动,如图2的箭头A所示。此时,分子量大的氮气由于离心力的作用就流向外周边,而分子量小的氦气和氢气则滞留在中央,由于分子量的差别,氦气和氢气等杂质就同氮气分开了。分出的氦气和氢气沿穹顶上升,聚集在穹顶中央的气体收集区22,並通过图1所示的排放管22a,从气体收集区22排出。管路29及其中的压力调节阀29a是用来将分凝器21气化了的液态空气送到第二和第一换热器14和13,30指的是一后援系统的管路,一旦压缩空气管路出了故障,可将液氮贮罐23的液氮借助于蒸发器31加以蒸发送入总管28中,以避免氮气供应的中断。32是一个杂质分析器,用来分析进入总管28的氮气产品的纯度,一旦出现纯度过低,就会触动阀门34和34a,将氮气产品排向箭头B所示的方向去。
以上所述的装置,以如下的方式生产氮气产品。空气压缩机9用来压缩原料空气,油水分离器10用于除去压缩空气中的水份。氟利昂冷冻机11用来深冷压缩空气,深冷以后的空气送进吸收塔12,空气中的CO2和H2O被吸收而除去。不含CO2和H2O的压缩空气再送到第一和第二换热器13和14,把它深冷到低温,换热器13和14是由精馏塔15通过管路27送出的产品氮气所冷却。深冷后的空气直接送到精馏塔15的下部。这种深冷后的压缩空气与通过送料管路24a从液氮贮罐23送进精馏塔15的液氮和塔内由液氮槽21d溢流而下的液氮进行接触而被深度冷却,其中的一部份空气液化成为液态空气18收集在精馏塔15的底部,在这一过程中,由于氮和氧的沸点不同(氧的沸点为-183℃,氮的沸点为-196℃),压缩空气中的高沸点组份氧就液化了,而氮则仍然是气体,保持气体状的氮气就通过取出管路27取走。在精馏塔15上部的氮气在钟罩形穹顶下部的周边作水平的旋转流动,这是在排出氮气使它与其不纯物氢气和氦气分离时的气流促成的。氢气和氦气通过管路22a由气体收集区22排向大气,不含氢气和氦气的氮气送到第二和第一换热器14和13,在其中换热到接近于环境温度。这种氮气就从总管28取出做为产品氮气。与此同时,由于空气压缩机9的压力和液氮的蒸汽压力,精馏塔15里面仍然保持着高压力,所以从取出管路27取出的产品氮气的压力也是很高的。当氮气用于做吹洗用的气体时这是很有利的。再有,因为是高压,所以大量的气体就可用一定直径的管路来输送,如果其输送量是恒定的话,则可采用直径较小的管路,这样,装置的成本就可下降了,另一方面,收集在精馏塔15下部的液体空气18则输送到分凝器21去,用来冷却冷凝器21a。由于这一冷却作用,由精馏塔15上部送进冷凝器21a的氮气就被液化成为塔内的回流液,经过管路21c流回精馏塔15内。而用以冷却冷凝器21a的液态空气18则被气化并经过管路29流入第二和第一换热器14和13,使这两个换热器得以深度冷却,然后就排放到大气中。通过输入管路24a由液氮贮罐23输往精馏塔15的液氮,是作为使压缩空气液化的冷却介质的,在气化之后从管路27排出,也做为产品氮气的一部份。这样,来自液氮贮罐23的液氮,在完成了压缩空气的液化作用之后並不废弃,而是与压缩空气制成的高纯度氮气一起成为产品氮气,所以可以实现无损耗的利用。
此外,在上述方案的装置中,如图3所示,可采用其一端是敝口100的一块挡板101倾斜地安装在出口管27的下面,並使出口管道27的位置低于该一端敝口100的位置,从而使比重小的氢气和氦气上升而同氮气分开。这样由于有气体旋转和上升的联合效应,氢气、氦气同氮气的分离就更好。
图5是图1所示方案装置的一种变化,其中精馏塔15和第一、第二换热器13和14是包容在一真空的冷却壳里(由点划线示出),出口管路27的一端伸展进入精馏塔15内部,伸展进去的部份27a如图6所示,沿精馏塔的内壁弯曲成圆环状,在伸展进去的27a部份的圆环内侧壁上,在给定的间隔位置上安装许多氮气的吸入小管27b。由于氮气经由许多小管27b吸入,使精馏塔15上部的氮气流按箭头所示的方向强烈地旋转。另外,在图5的总管28上安装有一台增压泵100,在总管28,增压泵100下游处分出一根小口径的管路101。管路101经过第一和第二换热器后经过精馏塔15的周壁伸展进入精馏塔15内部。与此同时,如同图6所示,小口径管路101伸展进入精馏塔15内部的101a部分是位于从出口管27伸展进入精馏塔内的27a管子的下面,並且与从出口管27伸展进来的27a管子一样,沿精馏塔15的内壁弯曲成圆环状。在伸展进去的101a小直径圆环管子的内侧壁上,在给定的圆周间隔位置上,安装很多吹出小管101b,它们的安装方向与伸展进塔内的27a圆环管上的那些吸入小管27b的安装方向相反。
经由出口管伸展部份27a吸入的氮气流使精馏塔内由氮气流形成旋转的旋转速度,被从吹出管吹出的产品氮气进一步的加快了,因而分离氢气和氦气也就更为有效了。其他方面,这一装置与图1所示的装置是一样的。
在上述的方案中,出口管27的端部是伸展成圆环状的伸展部27a,同时,吹出小管101b是安装在伸展管101a上,来吹出增压的氮气产品而使氮气旋转。这两者並不需要同时采用,也就是说可以单独采用圆环状的伸展部27a,也可以单独采用吹出小管。
权利要求
1.一套产生高纯度氮气的装置,包括一种压缩取自外界空气的设备,一种脱除来自空气压缩设备压缩空气中的二氧化碳和水份的设备,一种将来自脱除设备的压缩空气深度冷却到低温的换热设备,一种精馏塔用于液化来自换热设备的一部份低温压缩空气,並把它收集在精馏塔的下部,而纯的氮气则从精馏塔的上部引出,生产装置中还包含一台安装在精馏塔上方,带有冷凝器的分凝器,一根输送管路,用于将收集在精馏塔下部的液态空气输送到分凝器,用作冷却上述分凝器的冷却介质,一根排放管,用于将在分凝器中的液态空气气化后的空气排向外界,一根带一回流液管,用于将在精馏塔产生的一部份氮气引入到上述的冷凝器,一根第二回流液管,将在冷凝器产生的液氮做为回流液返回精馏塔,一种液氮贮存设备,用以贮存由装置外部供来的液氮,一根导管用以将液氮贮存设备中的液氮导入精馏塔,一根出口管用以取出产品氮气,包括从精馏塔产生出来的纯氮气和在精馏塔里用做冷却源后的液氮气化后的氮气,一个位于精馏塔带有冷凝器的分凝器下面的钟罩形穹顶,一个安装在钟罩形穹顶顶部的气体收集设施,一根排放不纯气体的管路,其一端连在气体收集设施上,另一端通向大气。
全文摘要
介绍了制备高纯氮气的设备,包括液氮贮罐23代替常规氮气生产中的膨胀透平机。贮罐23与精馏塔15相接,塔上有带冷凝器21a的分凝器21,经管线24a以空气压缩机9向精馏塔通入空气,以来自贮罐的液氮蒸发潜热冷却,以氮氧间沸点差分离二者后经排气管27取出氮气。精馏塔有钟罩形穹顶20,中部装有集气装置22,到达精馏塔上部的氮气随排出出口通道27的氮气流一起旋转排出,借助离心力收集氮气产品中的杂质氦和氢放入大气。
文档编号F25J3/04GK1044850SQ89100738
公开日1990年8月22日 申请日期1989年2月10日 优先权日1984年7月13日
发明者吉野明 申请人:大同酸素株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1