具有snd脱氮功能的污泥无回流装置的制作方法

文档序号:4814937阅读:190来源:国知局
专利名称:具有snd脱氮功能的污泥无回流装置的制作方法
技术领域
本实用新型涉及具有同步硝化反硝化效应的生物除氮技术领域,尤其涉及一种具有污水脱氮功能的污泥无回流装置。
背景技术
生物脱氮过程包括硝化和反硝化两个主体反应,传统生物脱氮是先将污水中的有机氮转化为氨氮,通过硝化菌将氨氮转化为硝态氮和亚硝态氮,最后经过反硝化细菌的反硝化作用将其转化为氮气释放。由于两个反应所需的化学环境相差甚远,所以传统工艺是将硝化和反硝化分别作为空间上或时间上的两个独立的阶段实现氮的去除,但是由于硝化反应消耗碱度,反硝化反应需要投加碳源等原因,往往造成系统复杂,能耗较大,管理麻烦的缺点。同步硝化反硝化(Simultaneous nitrification and denitrification, SND)为硝化反应和反硝化反应在同一反应器中进行的微生物反应现象。实验证明,在同一处理系统中实现同步硝化反硝化过程,可以简化操作难度和工艺流程,减少碱度和有机碳源的投入,从而节省投资、提高处理效率。但由于同步硝化反硝化的影响因素众多,D0、C/N、0RP以及PH、温度等均可对其处理效率产生重要影响,所以工程中很难控制其最佳运行条件。膜生物反应器(Membrane Bioreactor,MBR)处理技术是一种将膜分离技术与生物处理技术相结合的新型高效水处理技术。膜生物反应器中膜的作用是替代二沉池,与传统的生化水处理技术相比,膜能将生物体截留在生物反应器中,通过保持高的生物体浓度和截留高分子量的溶质,促使进水中有机物的生物降解。而MBR系统的污泥量也相对较少,甚至可以实现零排泥。膜生物反应器较为重要的单元为膜元件,使用的膜通常为微滤膜或超滤膜。膜生物反应器由于具有对污染物去除率高,出水水质好且稳定,剩余污泥少等优点, 是近年来水处理领域的一个研究热点。但膜生物反应器普遍存在膜元件使用寿命不高的问题,这主要是因为膜元件完全浸没在曝气区中,大量的微生物代谢物会滞留在膜表面,造成膜堵塞等问题,这也是目前MBR技术进一步广泛推广的一个制约因子。其次膜生物反应器一般只能将氨氮硝化成硝酸盐,而对总氮的去除效果不佳。中国专利发明申请2006101145M. 9公开了一种A2/0氧化沟工艺同步硝化反硝化的控制装置。该装置通过DO在线监控仪监控爱氧化沟曝气池内形成的宏观好养-厌氧环境,通过ORP在线监测仪监测在氧化沟曝气池内形成的微观好养-缺氧环境,利用计算机控制变频鼓风机控制曝气量,保证宏观和微观状态的硝化反应和反硝化反应同时进行。该装置能有效控制水中同步硝化反硝化的反应,但是存在系统复杂,占地面积较大,管理不便, 运行成本高,剩余污泥多的缺点。

实用新型内容本实用新型提供了一种具有SND脱氮效果,并且实现污泥无回流的有效、简便、经济的污水处理装置。本实用新型还提供了具有SND脱氮功能的污泥无回流装置的运行控制方法,该方法操作可控,解决了 SND工艺不易控制微生物代谢环境的问题。一种具有SND脱氮功能的污泥无回流装置,包括池体,所述池体的一侧壁上设有主进水口。所述的池体内由隔板依次划分为导流区、曝气区和污泥沉淀区,所述的导流区位于靠近主进水口所在侧。根据需要可在所述的隔板下方设置导流斜板,在其上方设置折流缓冲斜板。各区域的大小由进水流量大小决定,一般导流区的水力停留时间为0. 3 0. 5h, 曝气区的水力停留时间为4 8h,沉淀区的水力停留时间为1. 0 2. Oh。所述的曝气区中设有溢流槽,即在池体两侧壁之间用三块挡板围成溢流槽,溢流槽挡板高度高于主进水口,所述的溢流槽内的池体侧壁上设有分进水口,且分进水口的高度与主进水口一致。其中所有分进水口的进水总流量为主进水口的15% 30%,其作用是为了补充同步硝化反硝化作用的反硝化碳源,但所有分进水口的进水总流量不能超过主进水口的40%,否则会显著影响出水氨氮指标,可能会造成出水不达标。进水从分进水口进入溢流槽,浸没两侧挡板上部后均勻流到溢流槽下方的曝气区中。所述的曝气区底部设有均勻分布的微孔曝气装置,以垂直于水流方向的方向为列,按一定比例进行排布。微孔曝气装置的服务半径一般为0. 3 0. 5m (每列曝气装置可以向任意方向作用,即产生的空气可以达到距离为0. 3-0. 5m,即微孔曝气装置的服务距离一般在0. 3 0. 5m),所述的微孔曝气装置的列间距为微孔曝气单侧服务距离的4 6倍。 这样使得在每两列曝气区域中心都有一低溶解氧区域,与高溶解氧区域间隔存在,有助于宏观上提供同步硝化反硝化实现的最佳条件。所述的分进水口数量视反应器底部的微孔曝气装置的列数量而定,S卩比微孔曝气装置列少一个,所有分进水口的流量相等。所述的微孔曝气装置连接有空气泵。每个分进水口的分布位置处于相邻两列微孔曝气装置连线的中垂线上(即溢流槽位于相邻两列微孔曝气装置中间上方),此时溢流堰出来的原水可利用微孔曝气装置产生的气流与曝气区内的泥水混合物进行充分混合。这样,池体进水由主进水口和分进水口共同完成,防止随着水流方向,曝气区后半部分空间内营养物质供应不足,微生物生长受到限制,影响去除效率,从而保证了出水水质。所述的沉淀区安装有膜元件,所述的膜元件采用聚氯乙烯材质,膜孔径为2 10 μ m,膜元件的高度低于主进水口 15 20cm。所述的膜元件通过三通阀连接两个抽吸泵。 当沉淀区液面高于膜元件15 20cm,利用其中一个抽吸泵向池体抽水,则该装置出水,当液面低于膜元件时抽吸泵停止工作。每隔12小时,由另一个抽吸泵自外向池体引清水,对膜元件进行反冲洗30S。两个抽吸泵均可通过PLC控制箱进行自动控制。所述的污泥沉淀区底部向内倾斜形成泥斗斜板,所述的泥斗斜板与水平面成 100 125度夹角。所述的泥斗斜板的设置是为了让活性污泥顺利滑入沉淀区底部,从而回流至曝气区。在沉淀区采用膜元件实现活性污泥和出水的分离,将生物体截留在反应器中,使得曝气区内的生物体浓度得以保持,促进水中有机物的生物降解。同时,这种做法延长了泥龄,产生的污泥量相对较少,甚至实现污泥的零排放。将膜元件安装在液面下15 20cm,不仅防止了膜元件的干燥破损,延长膜寿命,同时降低抽吸泵的使用频率,防止机械损坏。定期对膜进行清洗,则有效防止膜元件因长期使用导致膜孔阻塞。[0016]原水由主进水口进入污泥无回流装置,经过导流区隔板和折流斜板,大颗粒杂质下沉,水体从曝气区底部进入曝气区,在溢流槽下方通过曝气区,形成泥水混合物,并在微孔曝气装置气泡的扰动下,与从溢流槽的分进水口流入的原水汇合。泥水混合物通过污泥折流斜板的缓冲涡流作用,平稳进入折流板和隔板围成通道,实现泥水分离,水体进入污泥沉淀区,而活性污泥通过导流斜板以及泥斗斜板的引导在自身重力等作用下回流进入曝气区。当沉淀区液面高于膜元件15 20cm,利用出水抽吸泵向池体抽水,则该装置出水,当液面低于膜元件时,此时抽吸泵停止工作。每隔12小时,由反冲洗抽吸泵自外向池体引清水, 对膜元件进行反冲洗。两个抽吸泵通过PLC控制箱进行自动控制。一种上述具有SND脱氮功能的污泥无回流装置的运行控制方法,包括以下步骤1.反应器启动1)将活性污泥接种到上述污泥无回流装置的曝气区中,初始污泥浓度控制在 5000 6000mg/L,控制反应器内pH维持在6. 5 7. 5,初始溶解氧为1. 5 2. Omg/L ;2)向待处理的原水中加入一定比例的无毒且C/N比大于40的糖类废水,使混合后形成的混合进水的C/N比为15 20,将混合进水缓慢引入反应器中;3)测曝气区泥水混合物的溶解氧含量,若大于2. Omg/L,增大曝气量;若小于 1. 5mg/L,减小曝气量;控制溶解氧含量在1. 5 2. Omg/L ;4)污泥取样,测活性污泥浓度和SV3tl (活性污泥在1000毫升量筒中沉降30分钟后的体积),根据公式(1)可计算得到污泥体积指数SVI =(1)
MLSS若SVI > 130,则采用下述方法的一种或多种进行调整①间歇人工取泥;②调小曝气量;③若MLSS = 5000则减少混合进水中糖料废水的比例;若SVI < 80,则采用下述方法的一种或多种进行调整①增大曝气量;②增加混合进水中糖料废水的比例。通过上述调整使曝气区SVI维持在80 130 ;5)测曝气区泥水混合物溶解氧含量,若DO > 1. Omg/L,则调小曝气量;若DO
<0. 6mg/L,则增大曝气量,通过调整使DO维持在0. 6 1. Omg/L ;6)测活性污泥浓度,若MLSS > 5000mg/L,则采用下述方法的一种或多种进行调整①采用间歇人工排泥的方式适当排泥;②减小混合进水中糖料废水的比例;若MLSS
<4000mg/L,则根据碳氮比情况选择若C/N彡15,增加混合进水中糖料废水的比例;若C/ N > 15,让污泥自然生长一段时间,污泥浓度逐渐增大。7)通过上述操作,在保证进出水总氮去除率大于60%的基础上,逐步减少混合进水中糖料废水的比例,最终采用完全生活污水进水。当总氮去除率大于60 %,溶解氧控制在 0. 6 1. 0mg/L,并使SVI维持在80 130,活性污泥浓度维持在4000 5000mg/L,即反应器的启动阶段结束,可正式投入运行;2.计算池体曝气区的有效容积,根据进水的COD浓度,改变进水口和分进水口的进水流量,将单位污泥COD负荷控制在0. 30 0. 40kg(COD)/(kgMLSS · d);同时监测曝气区溶解氧的变化情况,调节微孔曝气装置,将溶解氧控制在0. 6 1. 0mg/L ;3.当沉淀区液面高于膜元件15 20cm,利用出水抽吸泵向池体抽水,在沉淀区实现泥水分离;对膜元件进行反冲洗,使沉淀区上浮的污泥回到曝气区,将无回流装置的污泥泥龄控制在40 50天。本实用新型采用污泥无回流装置,并与生物膜结合使用,但在实际运作中,还是会有少量废弃活性污泥产生,控制泥龄在40 50天,减少了剩余污泥的产生量,同时减少了污泥回流装置和动力设备,达到降低能耗的目的。在同步硝化反硝化除氮工艺中,溶解氧含量是最为关键的因素,然而泥水混合液中溶解氧含量不易控制,且受天气、季节、温度等影响较大,本实用新型通过调控污泥浓度, 调节污泥泥龄以及控制单位污泥负荷等参数间接调节溶解氧,达到同步硝化反硝化所需要的生物环境,操作上人为可控性强,解决了 SND工艺不易控制微生物代谢环境的问题。

图1为本实用新型装置的剖面结构示意图;图2为本实用新型装置的俯视结构示意图。附图标记说明1-主进水口 2-导流区3-曝气区 4-污泥沉淀区5-溢流槽6-膜元件7-分进水口 8-微孔曝气装置9-空气泵 10-出水抽吸泵 11-导流区隔板12-导流斜板13-污泥折流板14-曝气区隔板15-曝气区导流斜板16-污泥沉淀区隔板17-污泥沉淀区导流斜板18-反冲洗抽吸泵 19-池体图3为本实用新型装置的控制方法中的反应器启动阶段工艺流程图。
具体实施方式
如图1、2所示,一种具有SND脱氮功能的污泥无回流装置,包括池体19,池体19 的一侧壁上设有主进水口 1。所述的池体19内部由隔板依次划分为导流区2、曝气区3和污泥沉淀区4,导流区2位于靠近主进水口 1的一侧,导流区2的水力停留时间约为0. 3 0. 5h,曝气区3的水力停留时间约为4 8h,沉淀区4的表面水力负荷控制在0. 6-0. 9m3/ m2. h0所述的导流区2与曝气区3之间设有导流区隔板11和导流区导流斜板12 ;所述的曝气区3与污泥沉淀区4之间设有污泥折流缓冲斜板13、曝气区隔板14和曝气区导流斜板15 ;污泥沉淀区4内还设有污泥沉淀区隔板16和污泥沉淀区导流斜板17。如图1所示,所述的曝气区3中设有二个溢流槽5,每个溢流槽5各由三块挡板在池体两侧壁之间围成,所述的溢流槽5两端与池体侧壁连接,溢流槽5的两块侧挡板上端高于主进水口 1,位于溢流槽5内的池体侧壁上设有分进水口 7,分进水口 7的高度与主进水口 1 一致。所有分进水口 7的进水总流量为主进水口 1的15% 30%,具体根据进水水质 C/N以及出水COD和TN去除率进行调整,分进水口的作用是为了补充同步硝化反硝化作用的反硝化碳源。所有分进水口的流量基本相等。所述的曝气区3底部设有均勻分布的微孔曝气装置8,以垂直于水流方向的方向为列,按一定比例进行排布。微孔曝气装置的服务半径一般为0. 3 0. 5m(图中的圆即一列微孔曝气装置,每列曝气装置可以向任意方向作用,即产生的空气可以达到距离为0. 3-0. 5m),所述的微孔曝气装置8的列间距L为微孔曝气单侧服务距离的4 6倍。这样使得在每两列曝气区域中心都有一低溶解氧区域,与高溶解氧区域间隔存在,有助于宏观上提供同步硝化反硝化实现的最佳条件。每个分进水口 7的分布位置处于相邻两列微孔曝气装置8的连线的垂直线上,即溢流槽位于相邻两列微孔曝气装置中间上方,分进水口数量视反应器底部的微孔曝气装置的列数量而定,即分进水口 1的数量比微孔曝气装置8的列数少一个。所述的微孔曝气装置8连接有空气泵9。所述的沉淀区4安装有膜元件6,所述的膜元件6采用聚氯乙烯材质,膜孔径为2, 膜元件低于右侧主进水口 1为15cm。膜元件6通过三通阀连接抽吸泵10和抽吸泵18。当沉淀区液面高于膜元件15cm,利用出水抽吸泵10向池体抽水,则该装置出水,当液面低于膜元件时,此时抽吸泵停止工作。每隔12小时,由反冲洗抽吸泵自外向池体引清水,膜元件进行反冲洗30S。两个抽吸泵均由PLC控制箱进行自动控制。所述的污泥沉淀区4底部向内倾斜形成泥斗斜板20。反应器启动过程按如下步骤操作1)将活性污泥接种到上述污泥无回流装置的曝气区中,初始污泥浓度控制在 5000 6000mg/L,控制反应器内pH维持在6. 5 7. 5,初始溶解氧为1. 5 2. Omg/L。2)向待处理的原水中加入一定比例的无毒且C/N比大于40的糖类废水(例如啤酒工业废水、果汁废水等含糖量较高的食品生产废水),使混合后形成的混合进水的C/N比为15 20。将混合进水缓慢引入反应器中,使污泥逐步生长。3)测曝气区泥水混合物的溶解氧含量(DO),控制DO在1. 5 2. Omg/L,若过大或过小则通过增大或减小曝气量来调节。4)污泥取样,测活性污泥浓度(MLSS) ,SV30,根据公式(1)可计算得到污泥体积指数(SVI)SVI =(1)
MLSS若计算得到SVI > 130,则采用下述方法的一种或多种进行调整①间歇人工取泥;②调小曝气量;③若MLSS = 5000则减少混合进水中糖料废水的比例。若SVI < 80, 则采用下述方法的一种或多种进行调整①增大曝气量;②增加混合进水中糖料废水的比例。通过上述调整使曝气区SVI维持在80 130。5)测曝气区泥水混合物的溶解氧含量(DO),若DO > 1. Omg/L,则调小曝气量;若 DO < 0. 6mg/L,则增大曝气量,通过调整使DO维持在0. 6 1. 0mg/L。6)测活性污泥浓度(MLSS),若MLSS > 5000mg/L,则采用下述方法的一种或多种进行调整①采用间歇人工排泥的方式适当排泥;②减小混合进水中糖料废水的比例。若 MLSS < 4000mg/L,则根据碳氮比(C/N)情况选择若C/N < 15,增加混合进水中糖料废水的比例;若C/N> 15,让污泥自然生长一段时间,污泥浓度逐渐增大;若活性污泥浓度过大,则导致消耗更多溶解氧,不利于节约能耗,活性污泥浓度过小则影响原水的处理效率,在降低污泥浓度的过程中监控SVI,保证活性污泥良好的生长状况及处理污水的能力。7)通过上述操作,在保证进出水总氮去除率大于60%的基础上,逐步减少混合进水中糖料废水的比例,最终采用完全生活污水进水,总氮去除率大于60%,溶解氧控制在 0. 6 1. Omg/L,并使SVI维持在80 130,活性污泥浓度维持在4000 5000mg/L,即反应器的启动阶段结束,可正式投入运行。计算池体曝气区的有效容积,根据进水的COD浓度,改变进水口 1和分进水口 7的进水流量,将单位污泥COD负荷控制在0. 30 0. 40kg (COD)/(kgMLSS · d),由于碳源的利用消耗溶解氧,应同时监测曝气区溶解氧的变化情况,调节微孔曝气装置,将溶解氧控制在 0. 6 1. Omg/L。原水由主进水口进入污泥无回流装置,经过导流区隔板和折流斜板,大颗粒杂质下沉,水体从曝气区底部进入曝气区,在溢流槽下方通过曝气区,形成泥水混合物,并在微孔曝气装置气泡的扰动下,与从溢流槽的分进水口流入的原水汇合。泥水混合物通过污泥折流斜板的缓冲涡流作用,平稳进入折流板和隔板围成通道,实现泥水分离,水体进入污泥沉淀区,而活性污泥通过导流斜板的引导作用在自身重力等作用下回流进入曝气区。当沉淀区液面高于膜元件15 20cm,利用出水抽吸泵向池体抽水,则该装置出水,在沉淀区实现泥水分离。当液面低于膜元件时,此时抽吸泵停止工作。每隔12小时,由反冲洗抽吸泵自外向池体引清水,对膜元件进行反冲洗,使沉淀区上浮的污泥回到曝气区,将无回流装置的污泥泥龄控制在40 50天。两个抽吸泵通过PLC控制箱进行自动控制。实施例一以杭州市翠苑一区城市生活污水管网泵站的所中转的生活污水为进水,在启动期间加入蔗糖,调节废水C/N比在20左右,用以上控制方法驯化的活性污泥及反应器装置进行试验,约驯化10天后逐步取消蔗糖投加量,20天后完全采用原水作为进水。运行2个月,进水总氮浓度在51. 45 70. 02mg/L之间,进水COD浓度在366 742. 16mg/L,进水氨氮浓度在40. 85 63. 21mg/L之间。在反应器运行稳定条件下,出水水质检测结果如下表所示,基本无剩余污泥排放。
权利要求1.一种具有SND脱氮功能的污泥无回流装置,包括池体,所述的池体的侧壁上设有主进水口,其特征在于所述的池体内由隔板依次划分为导流区、曝气区和污泥沉淀区,所述的导流区位于靠近主进水口所在侧;所述的曝气区中设有溢流槽,所述的溢流槽为在池体两侧壁之间用三块挡板围成,所述的溢流槽的挡板上端高于主进水口 ;所述的溢流槽内设有分进水口 ;所述的曝气区底部设有均勻分布的微孔曝气装置;所述的污泥沉淀区内装有膜元件;所述的污泥沉淀区底部向内倾斜形成泥斗斜板。
2.如权利要求1所述的具有SND脱氮功能的污泥无回流装置,其特征在于所述的隔板下端设有导流斜板。
3.如权利要求1所述的具有SND脱氮功能的污泥无回流装置,其特征在于所述的隔板上端设有折流缓冲斜板。
4.如权利要求1所述的具有SND脱氮功能的污泥无回流装置,其特征在于以溢流槽布置方向为列,所述的微孔曝气装置的列间距为微孔曝气单侧服务距离的4 6倍。
5.如权利要求1所述的具有SND脱氮功能的污泥无回流装置,其特征在于所述的膜元件为疏水性的微滤膜元件,膜材料采用聚氯乙烯材质,膜孔径为2 μ m 10 μ m,膜元件的高度低于主进水口 15 20cm。
6.如权利要求1所述的具有SND脱氮功能的污泥无回流装置,其特征在于所述的泥斗斜板与水平面成100 125度夹角。
7.如权利要求1所述的具有SND脱氮功能的污泥无回流装置,其特征在于所述的曝气装置连接有空气泵,所述的膜元件与抽吸泵连接。
8.如权利要求1所述的具有SND脱氮功能的污泥无回流装置,其特征在于所述的分进水口的高度与主进水口一致,所述的分进水口的分布位置处于相邻两列微孔曝气装置的连线的中垂线上;分进水口数量比微孔曝气装置的列数少一个。
专利摘要本实用新型公开了一种具有同步硝化反硝化脱氮功能的污泥无回流装置,包括池体,所述池体的侧壁上设有主进水口,池体内由隔板依次划分为导流区、曝气区和污泥沉淀区;所述的曝气区中设有溢流槽;所述的曝气区底部设有均匀分布的微孔曝气装置;所述的污泥沉淀区内装有膜元件。所述的污泥沉淀区底部向内倾斜形成泥斗斜板。本实用新型装置通过巧妙排布曝气管,并与生物膜结合使用,节省了污泥回流的动力费和运行费用,达到降低能耗的目的。
文档编号C02F3/30GK202080953SQ201120053928
公开日2011年12月21日 申请日期2011年3月3日 优先权日2011年3月3日
发明者余秋璟, 冯华军, 吴春金, 张倩, 沈霞娟, 赵健民, 赵博 申请人:浙江工商大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1