生产催化剂的方法和催化剂的制作方法

文档序号:5045470阅读:202来源:国知局
专利名称:生产催化剂的方法和催化剂的制作方法
生产催化剂的方法和催化剂本发明涉及一种生产催化剂的方法,其中所述催化剂包含催化活性材料和改性的含碳载体。本发明进一步涉及一种包含改性的含碳载体和催化活性材料的催化剂。包含催化活性材料和含碳载体的催化剂例如用作电化学反应用多相催化剂。作为电化学反应用催化活性材料,通常使用钼系元素金属或钼系元素金属的合金。所用合金组分通常为过渡金属,例如镍、钴、钒、铁、钛、铜、钌、钯等,在每种情况下单独或与一种或多种其他金属组合。该类催化剂特别用于燃料电池中。所述催化剂既可在阳极侧使用又可在阴极侧使用。特别是在阴极侧,需要使用还耐腐蚀的活性阴极催化剂。合金催化剂通常用作活性阴极催化剂。为了获得高的催化表面积,催化剂通常为负载型的。对于电化学应用,所用载体需 要导电。碳如呈导电炭黑形式的碳通常用作载体。所用碳载体通常具有高的比表面积,其允许催化活性材料颗粒精细分散,所述颗粒通常以纳米颗粒存在。BET表面积通常超过IOOm2/go然而,这些碳载体如BET表面积为约250m2/g的Vulcan XC72或BET表面积为约850m2/g的Ketjen Black EC-300J具有的缺点为它们腐蚀非常快。含碳载体的腐蚀例如可通过使其在水存在下如在潮湿氮气流中或在电解质水溶液中合适的话在升高温度下经受超过IV的电势而进行比较。这里,碳转化成二氧化碳且可测量形成的二氧化碳。温度越高和电势越高,含碳载体腐蚀越快。因此,例如在Vulcan XC72情况下,在I. IV电势下约60%碳在15小时之后通过氧化成二氧化碳而腐蚀掉。在具有较小比表面积的炭黑如BET表面积为约60m2/g的DenkaBlack的情况下,载体的耐腐蚀性较高,因为炭黑中石墨比例较高。在I. IV下,在15小时之后腐蚀相当于损失仅8%的碳。具有较低表面积的碳载体上的催化剂颗粒通常稍大且由此彼此更紧密。然而,这通常导致性能降低,因为仅一小部分量的施加至载体的催化活性材料可被催化利用。除了使用具有较低BET表面积的碳载体外,使含碳载体经受表面处理也是已知的,例如由WO 2006/002228已知。通过表面处理,碳具有金属碳化物层。用于产生金属碳化物层的金属例如为钛、钨或钥。随后将催化活性材料沉积到金属碳化物层上。为了产生金属碳化物层,首先将金属盐溶液施加至含碳载体的表面,然后将该溶液还原成金属。随后加热载体以将金属转化成金属碳化物。加热以形成金属碳化物层在850-1100° C的温度下进行。然而,已经发现如WO-A 2006/002228所述产生的碳化物层不能足够稳定地导致耐腐蚀性的满意改进。含碳载体的腐蚀导致催化活性材料颗粒脱离并由此导致性能降低。此外,催化剂颗粒也可烧结,其显著降低催化活性表面积。本发明目的为提供一种生产催化剂的方法,其中产生当用作电化学反应用阴极催化剂时耐腐蚀的催化剂。具体而言,应提供其催化剂颗粒与表面积的相互影响应使得颗粒在载体上仅发生很小改变,即几乎不烧结且不从载体上脱离的催化剂。该目的通过一种生产催化剂的方法实现,其中所述催化剂包含催化活性材料和含碳载体,所述方法包括以下步骤(a)用金属盐溶液浸溃含碳载体,
(b)将用金属盐溶液浸溃的含碳载体加热到至少1200° C的温度以形成金属碳化物层,(C)将催化活性材料施加至具有金属碳化物层的含碳载体上。通过将用金属盐溶液浸溃的含碳载体加热到至少1200° C的温度而形成稳定的金属碳化物层。由于载体上的金属碳化物层,碳结合于表面且不再与载体周围的氧气进行任何反应。可由此降低或甚至完全避免含碳载体的腐蚀。另一优点为形成金属碳化物层没有显著改变催化剂的催化活性表面且由此实现恒定高的催化活性和长期稳定性。此外,金属碳化物层可防止催化活性材 料的损失,使得催化剂的催化活性并未因损失催化活性材料而降低。催化活性材料未从载体上脱离这一事实与催化活性材料颗粒由于金属碳化物层而更好地附着于载体有关。由于催化剂颗粒烧结非常少且未从载体上脱离这一事实,催化剂颗粒的催化表面积保持长期稳定且电极性能保持高。此外,在X射线衍射图中观察不到氧化物相而仅可观察到碳化物相。改进的催化活性材料结合例如可通过透射电子显微镜研究。因此,根据Journalof Power Sources,2008,185,第734-739页,可以在电化学处理前后在相同位置得到电催化剂的图像并观察到由此导致的催化剂变化。由此例如在纯碳负载型催化剂情况下可看到催化活性材料颗粒烧结或脱离,而在本发明催化剂情况下在相同条件下几乎未发生任何变化。适用于本发明催化剂的含碳载体优选为炭黑。炭黑可通过本领域熟练技术人员已知的任何方法生产。通常使用的炭黑例如为炉法炭黑、火焰炭黑、乙炔黑或本领域熟练技术人员已知的任何其他炭黑。特别优选使用石墨化的碳,特别是具有低表面积的碳。对本发明而言,低表面积是指BET表面积不超过250m2/g,更优选不超过100m2/g。可用作载体的合适碳例如为BET表面积为72m2/g的SKW Carbon, BET表面积为53m2/g的DenkaBlack或来自Evonik Degussa GmbH的BET表面积为约30m2/g的XMB206或AT325。根据本发明,将金属碳化物层施加至合适的碳载体上。所用催化活性材料例如包含钼系元素金属,过渡金属,这些金属的合金或包含至少一种钼系元素金属的合金。催化活性材料优选选自钼和钯和这些金属的合金以及包含至少一种这些金属的合金。催化活性材料非常特别优选为钼或含钼合金。合适的合金金属例如为镍、钴、铁、银、钛、钌和铜,特别是镍和钴。合适的包含至少一种钼系元素金属的合金例如选自 PtNi、PtFe、PtV, PtCr、PtTi、PtCu、PtPd, PtRu、PdNi、PdFe、PdCr、PdTi、PdCu和PdRu。特别优选钼-镍合金或钼-钴合金。当合金用作催化活性材料时,合金中钼系元素金属的比例优选为25-85原子%,更优选40-80原子%,甚至更优选50-80原子%,特别是60-80 原子 %。除了所述合金外,还可以使用包含两种以上不同金属的合金,例如三元合金。还可以包含其他组分如金属氧化物,其比例通常为小于I重量%。为了生产本发明催化剂,在第一步中用金属盐溶液浸溃含碳载体。为了用金属盐溶液浸溃含碳载体,例如可以将含碳载体分散于金属盐溶液中,随后浓缩该分散体。通过浸溃,金属盐溶液渗入含碳载体的孔隙中。金属盐层也在含碳载体外表面形成。由于碳完全转化成金属碳化物带来的风险为所用碳如炭黑的有利基质结构以由此生产的催化剂性能或催化剂的加工性被过大地影响的程度而损失,优选表面转化成金属碳化物。为了防止载体的全部碳反应而形成金属碳化物和金属碳化物层仅在载体表面形成,优选以亚化学计量的量加入用于浸溃含碳载体的金属盐溶液。对本发明而言,亚化学计量是指使用基于金属和碳的总量为小于90重量%的金属。金属比例在每种情况下基于金属和碳的总量通常为5-75重量%,优选20-50重量%。为了在含碳载体上获得稳定的金属碳化物层,金属盐溶液的金属为钨、钥、钛、钒或锆,优选钨或钥。由于使用相应的金属盐溶液,在含碳载体上形成的金属碳化物层为碳化钨层或碳化钥层。此外,所述层还可包含两种或更多种金属的混合碳化物。金属碳化物层还可以掺杂有另一金属。金属碳化物层的优点为基本保留含碳载体的有利结构、导电性和表面性能并且显著改进耐腐蚀性。含碳载体性能的保留取决于载体表面的碳化物含量。 作为用来浸溃含碳载体的金属盐溶液,例如可使用钨酸盐溶液,例如钨酸铵溶液。为了生产金属碳化物层,在第二步中在惰性气氛中将用金属盐溶液浸溃的含碳载体加热到至少1200° C的温度。惰性气氛是指该气氛不包含任何可与载体的碳或金属盐反应的材料。合适的气氛例如为稀有气体气氛或氮气气氛。惰性气氛优选为氮气气氛。用金属盐溶液浸溃的含碳载体被加热到的温度为至少1200° C,优选至少1300° C,特别是至少1500。C。为了在含碳载体上形成足够稳定的金属碳化物层,将用金属盐溶液浸溃的含碳载体在用金属盐溶液浸溃的含碳载体已经被加热到的温度下保持至少30分钟,优选至少I小时,特别是至少2小时。特别优选热处理在1500° C的温度下进行2小时。这导致在含碳载体表面形成显著改进含碳载体的耐腐蚀性的金属碳化物层。在形成金属碳化物层之后,冷却具有金属碳化物层的含碳载体并施加催化活性材料。施加催化活性材料可通过本领域熟练技术人员已知的任何方法进行。施加催化活性材料例如可通过在溶液中沉积进行。为此,例如可将包含催化活性材料的金属化合物溶解于溶剂中。可通过共价、离子或配位结合该金属。此外,该金属还可以作为前体被还原性沉积或借助碱以沉淀相应氢氧化物。沉积钼系元素金属的其他可能方式为用包含金属的溶液浸溃(早期润湿)、化学气相沉积(CVD)或物理气相沉积(PVD)方法以及本领域熟练技术人员已知的可用来沉积金属的所有其他方法。首先优选沉淀钼系元素金属的盐。沉淀之后进行干燥和热处理以产生催化剂。当通过沉淀施加催化活性材料时,例如可进行还原性沉淀,例如在乙醇中或借助NaBH4由硝酸钼还原性沉淀钼。或者,例如还可以在H2/N2气体混合物中分解和还原与具有金属碳化物层的含碳载体混合的乙酰丙酮钼。优选借助乙醇进行还原性沉淀。当使用钯或包含钼系元素金属的合金而不是钼作为催化活性材料时,类似地施加催化活性材料。通过本发明方法生产的催化剂包含含碳载体和催化活性材料,其中含碳载体具有金属碳化物层且已将催化活性材料施加至具有金属碳化物层的含碳载体。如上所述,金属碳化物层可显著降低碳载体的腐蚀以及由此催化活性材料的脱离和损失。具有金属碳化物层的含碳载体的比表面积以及由此BET表面积取决于初始使用的含碳载体。优选具有不大于250m2/g的BET表面积的含碳载体。特别优选具有不大于100m2/g的BET表面积的含碳载体。为了将本发明催化剂用作例如电化学反应用多相催化剂,优选催化活性材料为钼系兀素金属或包含至少一种钼系兀素金属的合金。合适的钼系兀素金属特别为钼和!B。为了形成催化活性材料,钼和钯还可以作为混合物使用。当催化活性材料为包含至少一种钼系元素金属的合金时,该合金优选选自PtNi、PtFe、PtV, PtCr、PtTi、PtCu、PtPd, PtRu、PdNi、PdFe、PdCr、PdTi、PdCu 和 PdRu0为了实现腐蚀性降低,催化剂的金属碳化物层的金属优选选自钨、钛、钥、锆、铌、钒及其混合物。金属碳化物层的金属特别优选为钨。本发明催化剂特别适合在燃料电池中用作电催化剂。这里,催化剂特别适合作为阴极催化剂。
实施例 通常在电催化剂腐蚀中区别两阶段首先烧结催化活性材料如钼,其次进行碳腐蚀,其中烧结催化活性材料特别在较低电势下进行并且碳腐蚀在较高电势如超过IV的电势下进行。碳腐蚀是关键的,因为在燃料电池操作中在高达I. 5V的电势峰下大量碳甚至可能在短时间内腐蚀掉。由于碳腐蚀,首先电极结构发生改变,这可导致性能降低,其次催化活性材料颗粒的结合也可能丧失,其结果是相应的催化活性颗粒不再适用于催化反应且甚至可排出体系外,这不仅可造成性能降低,而且特别是当使用贵金属时可为巨大花费因素。为了预选耐腐蚀性载体,可进行加速老化测试。例如可由此测试载体在燃料电池设置中的耐腐蚀性,其中仅载体而不是催化剂用于阴极侧并且作为载气引入湿润氮气流而不是空气流。施加至少IV如I. IV或I. 2V的电压并且测量通过在气流中进行的碳载体氧化所形成的CO2并转化成载体的碳损失。该测量通常在升高温度如180° C下进行,因为根据J. PowerSources,2008,第444页,此时腐蚀速率比在室温下快约4个数量级。实施例I :为了改性DenkaBlack炭黑表面,将22g七钨酸铵溶解于580g H2O中并向其中加入15g DenkaBlack炭黑。该混合物通过Ultra-Turrax在8000rpm下均化30分钟。将炭黑悬浮液在旋转蒸发器上浓缩并在管式炉中在氮气下在1500° C下加热6小时,其中在400° C下的中温阶段加热I小时。钨负载为47%。在XRD中,观察到两个碳化钨相具有约40nm粒度的WC和具有约23nm粒度的W2C。由此生产的表面改性的碳载体在下文称为WC/Denka。为了生产钼催化剂,将由此生产的7. Og载体分散于500ml H2O中并通过Ultra-Turrax在8000rpm下均化15分钟。将5. 13g硝酸钼溶解于IOOmlH2O中并缓慢加入载体分散体中。随后将200ml H2O和800ml乙醇加入混合物中并将混合物回流6小时。在冷却过夜之后,过滤悬浮液,将固体用21热水洗去硝酸盐并在减压下干燥。钼负载为29. 8%并且XRD中平均微晶大小为3. 4nm。实施例2 为了改性炭黑C2(AT325,来自Evonik Degussa GmbH)表面,将5. 9g七钨酸铵溶解于580g H2O中并向其中加入16g炭黑C2 ;整体通过Ultra-Turrax在8000rpm下均化30分钟。将炭黑悬浮液在旋转蒸发器上浓缩并在管式炉中在氮气下在1500° C下加热6小时,其中在400° C下的中温阶段加热I小时。钨负载为16%。在XRD中,观察到一个碳化钨相具有约65nm微晶大小的W。为了生产钼催化剂,将由此生产的10. 5g载体分散于500ml H2O中并通过Ultra-Turrax在8000rpm下均化15分钟。将7. 77g硝酸钼溶解于IOOmlH2O中并缓慢加入载体分散体中。随后将500ml H2O和450ml乙醇加入混合物中并将混合物回流6小时。在冷却过夜之后,过滤悬浮液,将固体用21热水洗去硝酸盐并在减压下干燥。钼负载为28. 4%并且XRD中平均微晶大小为3. lnm。对比例I将I. Og 炭黑 Cl (XMB206,来自 Evonik Degussa GmbH)分散于 500mlH20 中并通过Ultra-Turrax在8000rpm下均化15分钟。将5. 13g硝酸钼溶解于100ml H2O中并缓慢加入 炭黑分散体中。随后将200ml H2O和800ml乙醇加入混合物中并将混合物回流6小时。在冷却过夜之后,过滤悬浮液,将固体用21热水洗去硝酸盐并在减压下干燥。钼负载为27. 1%并且XRD中平均微晶大小为3. 4nm。对比例2制备以类似于对比例I所述方法的方式进行,不同之处在于炭黑载体。使用炭黑C2而不是炭黑Cl。钼负载为27. 4%并且XRD中平均微晶大小为3. lnm。对比例3表面改性以类似于实施例2所述方法的方式进行,不同之处在于碳化步骤在850° C的温度下进行6小时(类似于WO 2006/002228),其中在400° C下的中温阶段进行I小时。钨负载为7%。计算值为20%,即钨不能被定量地沉积。在XRD中没有观察到碳化鹤相,仅观察到h2wo4*h2o。由此生产的钼催化剂(类似于实施例2)具有28. 9%的钼负载和3. 4nm的平均微
晶大小。对比例3*制备以类似于WO 2006/002228所述方法的方式进行。为此,将8gVulcan XC72悬浮于IOOOg H2O中并通过Ultra-Turrax在8000rpm下均化30分钟。将3. 2g鹤酸铵溶解于200ml H2O中并缓慢加入悬浮液中。将另外的750ml H2O加入混合物中并将混合物回流4小时。随后将30. 4gNaBH4溶解于IOOml水中,在I小时内在剧烈放出气体下滴加,并将混合物再回流20分钟。过滤反应混合物,并用21 H2O洗涤固体。将仍湿润的滤饼在管式炉中首先在100° C下加热I小时,随后在900° C下加热I小时。在由此生产的载体上生产钼催化剂。钼负载为28. 2%并且XRD中平均微晶大小为2. Onm0仅可检测到痕量钨(0.05%)。对比例4制备以类似于对比例I所述方法的方式进行,不同之处在于炭黑载体。使用炭黑XC72而不是炭黑Cl。钼负载为27. 7%并且XRD中平均微晶大小为I. 9nm。对比例5制备以类似于对比例I所述方法的方式进行,不同之处在于炭黑载体。使用DenkaBlack炭黑而不是炭黑Cl。钼负载为27. 7%并且XRD中平均微晶大小为3. 7nm。4种不同碳载体的质量损失示于表I中。
表I :碳载体的质量损失
在1.2V下的时间I质量损失,%c
__Cl__C2__WC/Denka DenkaBlack
I小时I1827
5小时626833
15 小时+2228+2173炭黑Cl 为来自 Evonik Degussa GmbH 的 XMB206,炭黑 C2 为来自 Evonik Degussa GmbH的AT325并且WC/Denka为如实施例I所述生产的表面改性的碳载体。可看出样品Cl和WC/Denka的腐蚀速率没有显著区别。在包含相应载体的催化剂之间所观察到的区别由此仅由催化剂颗粒和载体之间的相互影响产生。电催化剂性能的降低也可通过加速老化测试评估。因此,例如可在电势循环之前和之后测定就还原氧气(阴极反应)而言的催化活性。为了测定性能降低,在氧气饱和电解质中在50mV/s的速率下进行150个0. 5V至1.3V之间的电势循环。结果示于表2中。在表2中,WC/Denka为DenkaBlack炭黑上的碳化钨,WC/C1为炭黑Cl上的碳化钨,且WC/C2为炭黑C2上的碳化鹤。表2 :在150个循环之后活性的降低
j样品,每种情况下在以j在150个循环之后活
__下物质上的30% Pt性的降低(%)_
实施例 I50% WC/Denka^5%
对比例ICl-32%
对比例2Cl-48%
对比例 320% WC/C2(850°C)-48%
对比例 3*20% WC/C2(900°C)-49%
(根据 WO 2006/002228)
实施例 220% WC/C2(1500°C)-22%
对比例 4Vulcan XC72-74%—
对比例5未处理的DenkaBlack-50%未使用催化剂的测试和使用催化活性材料的测试的比较如Cl和WC/Denka显示出使用相应载体的催化剂具有显著区别,尽管纯载体的腐蚀大致同样大。在纯碳载体即不包含碳化钨层的载体的情况下,对于未施加催化剂下纯碳腐蚀与施加催化剂下性能降低的结果相关,使得可推断相同的降解机理。由实施例I和2可看出,施加金属碳化物层也对性能降低有影响。施加至载体的金属碳化物越多,性能降低越小。此外,也可看出,例如由WO-A 2006/002228已知的生产金属碳化物层的方法不足以改进载体的耐腐蚀性。这可由对比例2和3或3*看出。附图
显示出透射电子显微照片,每种情况下描绘在暴露于电化学工艺之前和之后的现有技术催化剂和本发明催化剂。
图I显示出在暴露于电化学工艺之前根据对比例I的催化剂,图2显示出在暴露于电化学工艺之后根据对比例I的催化剂,图3显示出在暴露于电化学工艺之前根据实施例I的催化剂,图4显示出在暴露于电化学工艺之后根据实施例I的催化剂。在所述附图中,未涂覆载体由参考数字I表示,涂覆有碳化物的载体由参考数字3表示,并且钼颗粒由参考数字2表示。在暴露于电化学工艺之前和之后,借助透射电子显微照片(TEM)研究相同的催化剂区域,对实施例I和对比例I的催化剂拍摄透射电子显微照片。通过在lV/s增加下3600个0. 4V至I. 4V之间的电势循环实现暴露于电化学工艺。可由TEM看出,电催化剂显著不同,尽管载体稳定性相同。如图I中暴露于电化学工艺之前和图2中暴露于电化学工艺之后所示,在根据对比例I的纯碳载体上,钼颗粒2从载体I上脱离并由此不能进行催化反应。相反,可看出在根据实施例I的具有碳化物层的载体3的情况下,钼颗粒2与载体保持结合。这可在图3和4中看出,其中图3描绘暴露于电化学工艺之前的实施例I的催化剂并且图4描绘暴露于电化学工艺之后的实施例I的催 化剂。由于钼从碳载体上脱离,甚至在非常耐腐蚀的碳载体上预料到电催化剂性能显著降低。为了对抗该降低,需要钼颗粒与载体的改进结合。这通过根据本发明借助碳化物层改性碳表面而实现。
权利要求
1.一种生产催化剂的方法,其中所述催化剂包含催化活性材料和含碳载体,所述方法包括以下步骤 (a)用金属盐溶液浸溃含碳载体, (b)在惰性气氛中将用金属盐溶液浸溃的含碳载体加热到至少1200°C的温度以形成金属碳化物层, (C)将催化活性材料施加至具有金属碳化物层的含碳载体上。
2.根据权利要求I的方法,其中以亚化学计量的量加入用于浸溃含碳载体的金属盐溶液。
3.根据权利要求I或2的方法,其中所述金属盐溶液的金属为钨或钥或包含至少ー种这些金属的混合物或合金。
4.根据权利要求1-3中任ー项的方法,其中所述金属盐溶液为钨酸盐溶液。
5.根据权利要求1-4中任ー项的方法,其中步骤(b)中加热在惰性气氛中进行。
6.根据权利要求1-5中任ー项的方法,其中催化活性金属为钼系元素金属或包含至少ー种钼系兀素金属的合金。
7.根据权利要求6的方法,其中所述包含至少ー种钼系元素金属的合金选自PtNi、PtFe、PtV, PtCr、PtTi、PtCu、PtPd, PtRu、PdNi、PdFe、PdCr、PdTi、PdCu 和 PdRu0
8.根据权利要求6的方法,其中所述钼系元素金属为钼或钯。
9.根据权利要求1-8中任ー项的方法,其中通过还原性沉淀或在H2/N2气体混合物中分解和还原将催化活性材料施加至具有金属碳化物层的含碳载体上。
10.根据权利要求1-9中任ー项的方法,其中所述含碳载体具有不大于250m2/g的BET表面积。
11.通过根据权利要求1-10中任ー项的方法生产的催化剂,其包含含碳载体和催化活性材料,其中含碳载体具有金属碳化物层并且催化活性材料已经施加至具有金属碳化物层的含碳载体上。
12.根据权利要求11的催化剂,其中所述含碳载体具有不大于250m2/g的BET表面积。
13.根据权利要求11或12的催化剂,其中所述催化活性材料为钼系元素金属或包含至少ー种钼系兀素金属的合金。
14.根据权利要求13的催化剂,其中所述包含至少ー种钼系元素金属的合金选自PtNi、PtFe、PtV, PtCr、PtTi、PtCu、PtPd, PtRu、PdNi、PdFe、PdCr、PdTi、PdCu 和 PdRu0
15.根据权利要求11-14中任ー项的催化剂,其中所述金属碳化物层的金属包括钨和/或钥。
16.根据权利要求11-15中任一项的催化剂在燃料电池中作为电催化剂的用途。
全文摘要
本发明涉及一种生产催化剂的方法,其中所述催化剂包含催化活性材料和含碳载体,其中在第一步中用金属盐溶液浸渍含碳载体,随后在惰性气氛中将用金属盐溶液浸渍的含碳载体加热到至少1500°C的温度以形成金属碳化物层,并且最后将催化活性材料施加至具有金属碳化物层的含碳载体上。本发明进一步提供一种通过所述方法生产且包含含碳载体和催化活性材料的催化剂,其中含碳载体具有金属碳化物层并且催化活性材料已经施加至具有金属碳化物层的含碳载体上。
文档编号B01J23/44GK102762297SQ201180009060
公开日2012年10月31日 申请日期2011年2月3日 优先权日2010年2月5日
发明者B·埃瓦尔德, C·奎尔纳, E·施瓦布 申请人:巴斯夫欧洲公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1