一种无支撑活性炭全碳膜及其制备方法和应用与流程

文档序号:12733062阅读:469来源:国知局
一种无支撑活性炭全碳膜及其制备方法和应用与流程

本发明属于材料制备领域,尤其涉及一种无支撑活性炭全碳膜及其制备方法和应用。



背景技术:

活性炭是应用最为广泛的吸附材料,由于其巨大比表面及丰富孔隙结构而被广泛应用于水体、气体净化,化学催化,能源储存等领域。现对于活性炭的应用往往是以颗粒态形式直接投加入污染水体中进行吸附,但是这种应用往往会造成活性炭的流失,同时涉及后期的费时费力的固液分离过程。也有应用是将活性炭填充于容器当中,或者镶嵌于多聚物中进行使用。但是活性炭填充柱在使用过程中容易被污染堵塞,而多聚物的镶嵌会阻塞活性炭孔隙结构与遮蔽表面结构,影响其吸附性能。同时,填装的容器或者物理固定活性炭的多聚物往往不能抵挡化学物质的侵蚀与高温操作,限制了其应用领域,所以,研究并开发新型的活性炭器件对于活性炭的应用具有十分重要的意义。



技术实现要素:

本发明的目的在于解决现有技术中存在的问题,并提供一种无支撑活性炭全碳膜及其制备方法和应用,既保证了其超强吸附性能的同时,又使其具备了颗粒物截留的能力,为活性炭的应用提供了广泛的空间。

由于活性炭具备巨大的比表面积以及丰富的孔隙结构,对于水中溶解态污染物具有超强的吸附性能,活性炭在不同的领域都有很大的应用潜力。但是由于活性炭颗粒较大尺寸以及不规则表面的限制,活性炭颗粒之间难以相互作用并进一步器件化。为了解决单纯活性炭颗粒相互作用弱,器件化难的问题,同时不引入高分子聚合物,本发明采用了一种全新的思路:利用活性炭表面的的π电子结构,运用具有芳香性表面的石墨烯作为碳质交联剂,通过活性炭与碳质交联剂表面的π-π相互作用力使颗粒态活性炭成膜,在保证其吸附能力的同时赋予其颗粒截留的能力。这种多功能全碳膜具备可控的孔隙结构,同时对于污染物具有超强的吸附性能,其孔隙大小可以在交联剂添加量的调控下实现从微米级调控至纳米级 的调节。

本发明的目的具体是通过以下技术方案实现的:

无支撑活性炭全碳膜,由活性炭为基本材料,石墨烯作为交联剂连接形成活性炭全碳膜。活性炭与碳质交联剂表面的π-π相互作用力,使颗粒态活性炭形成不需要支撑结构的全碳膜。

本发明的另一目的在于提供一种无支撑活性炭全碳膜的制备方法,包括以下步骤:首先将活性炭分散于水中,形成活性炭分散液,再加入石墨烯分散液,并充分混匀,将混匀后的溶液进行过滤,使石墨烯与活性炭在滤膜基底上进行组装,得到活性炭全碳膜。活性炭全碳膜在干燥之后可从基底表面剥离,形成独立的全碳膜。

作为优选,所述的活性炭的尺寸为微米级,目的是使其更容易在水中分散。

作为优选,活性炭分散过程中,调节pH呈碱性。pH优选控制>10,使活性炭在水中具有较强的静电斥力(>-30mV),进一步增强其分散能力。

作为优选,所述的石墨烯分散液由氧化石墨烯分散液部分还原得到。利用交联剂与活性炭之间的非共价键π用交作用力使颗粒活性炭器件化是本发明的创新点,在保证碳质交联剂在水中充分分散的前提下,尽量还原其表面含氧挂能团可以增强其疏水作用以及表面π电子体系,有利于成膜的稳定性。

进一步的,还原过程通过化学还原实现,部分还原过程为,将石墨烯水溶液中的石墨烯控制在0.05-0.1mg/ml,pH控制在9-12,然后再进行加热还原。溶液pH控制在9-12时,保证碳质交联剂之间较强的静电斥力,使其在水中充分分散,防止其团聚,pH优选为11。同时浓度控制在0.05-0.1mg/ml防止浓度较高造成的团聚

作为优选,混匀后的溶液置于加压过滤装置中,通过加压过滤的方法通过微孔滤膜基底成膜。加压过滤装置中驱动力可以为氮气,也可以是其他气体,压力控制范围为0.05-0.6Mpa,目的是使混合液过滤组装过程可以在较短之间之内完成(<30min),防止时间过长活性炭分散液发生沉淀,导致成膜的不均匀。加压过滤装置底部需以微孔滤膜作为基底进行层积组装,过滤组装的微孔滤膜基底并没有材质要求,功能为截留活性炭与碳质交联剂进行组装,但表面光滑与活性炭作用力小可以有利于成膜之后从基底表面剥离。

作为优选,混匀后的溶液中,石墨烯的比例可调节,石墨烯和活性炭的质量比优选为1%~10%。活性炭膜的厚度可以通过活性炭的添加量调控,活性炭膜的表面孔隙结构可以通过碳质交联剂添加的比例进行调控。

本发明提供了一种新型活性炭器件化的方式,使活性炭在不添加高分子聚合物条件下独立成膜,膜体具有超强孔隙结构与比表面积。实施使用中该膜具有以下优势:与高分子聚合膜相比,活性炭全碳膜具有超强的化学稳定性与热稳定性。与纯石墨烯膜或碳纳米管膜全碳膜相比,活性炭由于制备成本低廉,具有较好的价格优势。同时,通过碳质交联剂添加量的控制可以高效得实现膜孔隙尺寸的调控,有选择性得截留不同尺寸的颗粒污染物。研究发现,活性炭全碳膜可以有效截留水体中的微生物、纳米颗粒,并能高效去除污染水体中染料,多环芳烃,重金属离子等溶解态污染物。

由于活性炭全碳膜同时具备超强的吸附性能与可控的孔隙结构,因此其可在水体净化、空气净化、化学催化或能源储备等领域有很大的应用潜能。

附图说明

图1为实施例1制得的全碳膜的电镜扫描图;

图2为实施例3制得的全碳膜的电镜扫描图;

图3为实施例5制得的全碳膜的电镜扫描图;

图4为实施例7制得的全碳膜的电镜扫描图。

具体实施方式

下面结合附图和实施例对本发明做进一步阐述,以便本领域技术人员更好地理解本发明的实质。本发明中试剂或材料,若无特殊说明,均为市售产品。

石墨烯分散液制备:

由氧化石墨烯分散液部分还原制备石墨烯分散液。具体为:将氧化石墨烯配置成水溶液,溶液中石墨烯控制在0.05-0.1mg/ml,pH控制在9-12,以实现静电调控,使石墨烯在水中能充分分散。上述溶液在90℃下进行加热还原15分钟,得到氧化石墨烯分散液。

上述实施例只是本发明的优选方式,且各参数可以根据实际需要进行调整,同时石墨烯分散液也可以直接通过石墨烯颗粒在表面活性剂作用下进行分散得到。或者也可以采用现有技术中的其他石墨烯分散液。

实施例

本发明的成膜过程通过过滤组装实现,过滤前活性炭与石墨烯首先通过静电调控使其在水中充分分散。活性炭与石墨烯分散液以一定比例充分混合,然后加入过滤装置中,在驱动力的作用下使其过微孔滤膜,并在微孔滤膜基底表面进行组装。制备无支撑活性炭全碳膜的具体步骤如下:

(1)活性炭首先通过研磨并通过500目筛网,保证其尺寸为微米级。

(2)将微米级的活性炭加入水中,调节溶液pH值至11,利用表面静电调控,在超声的作用下将颗粒活性炭充分分散于水中,得到活性炭分散液。需要注意的是,该步骤中,pH可影响静电调控效果,当pH控制>10,此时活性炭表面电负性<-30mV,超声作用时间为2min,保证活性炭颗粒在水中能充分分散。但只要pH保持碱性,也基本能够实现分散效果。

(3)将前述制备好的石墨烯分散液与活性炭分散液在震荡与超声的条件下充分混合,混合液中石墨烯和活性炭的质量比依次调节为1%、2%、3%、4%、5%、6%、7%,分别记为实施例1~实施例7。

(4)依次将各实施例中充分混合的活性炭+碳质交联剂混合液置于加压过滤装置中,以氮气为增压气体,压力范围为0.05-0.6Mpa,微孔滤膜基底孔径为0.22基底,混合液在30min内快速成膜。

(5)干燥之后,将全碳膜从微孔滤膜基底剥离形成独立的全碳膜。

对实施例1、3、5、7所得的全碳膜进行电镜扫描,其结果如图1所述。图中,可以看出,在石墨烯的交联作用下,作为基本材料的活性炭颗粒之间相互连接,形成整体。同时随着石墨烯量的增加,其表面结构逐渐变得致密,孔隙结构变小。同时,活性炭膜的厚度可以通过活性炭分散液添加的体积量进行调控,添加越多,膜层越厚,膜的吸附容量越大。

利用实施例1~7所得的全碳膜分别对小球藻、大肠杆菌、纳米二氧化硅、纳米银进行过滤截留试验。试验结果如表1所示,不同石墨烯添加量比例的活性炭膜具备不同的孔隙结构特质。当石墨烯添加量达到活性炭的质量的1%的时候,可以100%截留颗粒尺寸为2μm的小球藻。当石墨烯添加比例达到活性炭的质量的2%时,可以100%截留颗粒尺寸为1μm的大肠杆菌。当石墨烯添加比例达到活性炭的质量的3%时,可以100%截留颗粒尺寸为200nm的纳米二氧化硅。 当石墨烯添加比例达到活性炭的质量的7%时,膜孔隙结构可以达到24nm,可以99.23%截留颗粒尺寸为50nm的纳米银。由此可见,膜的孔隙结构可以通过碳质交联剂添加比例进行调节,交联剂添加比例越高,膜的孔隙结构越小。本发明的全碳膜可以有效截留水体中的微生物、纳米颗粒。另外其也可以用于去除污染水体中染料,多环芳烃,重金属离子等溶解态污染物。

表1.不同石墨烯含量的全碳膜对于颗粒物的截留能力

以上所述的实施例只是本发明的一种较佳的方案,然其并非用以限制本发明。例如,尽管上述实施例中,活性炭均是研磨后通过500目筛网获得的,但并不意味着其必须经过500目筛网,只要能够保持活性炭颗粒在微米级,甚至纳米级,其都能实现本发明的效果。再例如,上述实施例仅列出了,混合液中石墨烯和活性炭的质量比为1%~7%的情况,但经过试验,在该范围前后进行调整,例如质量比为9%、10%甚至10%以上,其也能够实现本发明的技术效果,但水通量等性质会略微下降。

由此可见,本领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型。因此凡采取等同替换或等效变换的方式所获得的技术方案,均落在本发明的保护范围内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1