包括正温度系数陶瓷的模型的制作方法

文档序号:5156705阅读:157来源:国知局
专利名称:包括正温度系数陶瓷的模型的制作方法
技术领域
本发明的领域涉及用于内燃机的燃料注射器系统,特别涉及用于燃料的加热器。
背景技术
对于仍旧处于冷却状态的发动机而言,需要将处于适当温度下的燃料供应给该发 动机。特别是当燃料包含甲醇或乙醇作为主要组分时,更易出现这一问题。在这种情况下, 当外部温度较低且发动机并未像汽车的发动机那样处于受热壳体中时,很难以适当的方式 喷射燃料。如果燃料并不具有最低温度且燃料的喷射并未达到足够良好的程度,则会导致 在燃烧室中燃料与空气未实现充分混合。

发明内容
本发明描述了一种用于流体的加热系统,所述加热系统以模型(mold)的形式存 在,所述模型包括具有正温度系数的陶瓷,即所谓PTC陶瓷。所述陶瓷可例如基于钛酸钡 (BaTiO3),该物质是钙钛矿型(ABO3)型陶瓷。出于某些原因,例如出于考虑到居里温度Tc 的原因,可对所述陶瓷进行掺杂,就居里温度而言,例如可在考虑应该受热的液体的沸点的 情况下选择所述居里温度。以Sr对BaTiO3陶瓷进行的掺杂会降低居里温度,而以Pb进行 的掺杂则会升高居里温度。此外,还可在所述陶瓷中加入TiO2和Si02。所述加热系统可由PTC陶瓷模制成型而成。将要受热的流体在流动通过所述模型 时受到所述加热系统的加热。所述加热系统优选位于与喷射所述流体的喷嘴相邻的位置 处。通过在燃料到达喷嘴之前对所述燃料进行预热这种方式,可使从所述喷嘴中喷射 出的喷雾具有更精细的质量。就此而言,优选在考虑到所述燃料的沸点或其喷射温度的情 况下控制所述温度。所述PTC陶瓷和被施加到所述模型上的电压优选是在考虑到这一方面 的情况下选择的。所述PTC陶瓷包括自调节性质。如果所述加热系统的温度达到临界温度,则所述 PTC陶瓷的电阻也会升高且因此减少了经过所述陶瓷的电流。结果是,所述模型的所述PTC 陶瓷停止加热且可进行冷却。因此,如果所述PTC陶瓷材料的选择是在考虑到所述流体的 情况下与所述流体应该达到的最大温度相关地进行的话,则无需设置外部调节系统。这还 意味着当所述发动机额外地发出热量时,例如在运行了一段时间之后出现这种情况时,所 述系统可自行向回调节。所述加热系统迅速响应的主要原因有两个首先,其迅速变暖,且其次,由于所述 流体与所述模型直接接触,因此所述热量可被迅速传递至所述流体。所述流体与所述模型 的这种直接接触使得与将加热系统设置在供流体流经的通道或管道中的加热系统相比, 能量能够被快速且高效地传递至所述流体。为了提高热传递速率,优选通过为所述模型的内表面提供几何模型的方式放大该 内表面。
为了在模型与通过所述流体通道的流体之间实现高度的热传递,所述流体优选在 所述加热系统的至少一部分中以中速流动。因此,所述流体通道的横截面面积会产生变化。 所述流体通道在入口侧上的横截面面积更大,而在出口侧处的横截面面积更小,这使得所 述流体可能在所述模型的第一部分中以更慢的流速流动,从而获得高度的热传递,而在所 述加热系统的端部处具有更高的流速,这种更高的流速优选可用于喷射工艺。因此,优选减 小所述模型的至少一个子部段中的所述流体通道的横截面面积。有益于实现该目标的形状 和形式可通过注射成型的方式获得。对于注射成型工艺而言,可使用这样的给料,所述给料包括陶瓷填料、用于与所述 填料结合的基体和含量小于IOppm的金属杂质。一种可能的陶瓷填料可由以下结构表示
_1] Ba1_x_yMxDyTi1-a-bNaMnb03其中的参数为x= 0-0. 5,y = 0-0. 01,a = 0-0. 01 且 b = 0-0. 01。在该结构 中,M代表二价阳离子,如Ca、Sr或Pb,D代表三价或四价供体(施主),如Y、La或稀土元 素,且N代表五价或六价阳离子,如Nb或Sb。因此,可使用多种陶瓷材料,其中可根据后烧 结的陶瓷的所需电特性选择所述陶瓷的成分。所述给料的所述陶瓷填料可转化成这样的 PTC陶瓷,所述PTC陶瓷的电阻率较低且电阻_温度曲线的斜率较陡。根据所述陶瓷填料的 成分和所述给料烧结过程中的条件,由这种给料制成的PTC陶瓷在25°C下的电阻率可处在 3 Ω cm至30000 Ω cm的范围内。电阻开始增加时所处的特征温度Tb处在_30°C至340°C的 范围内。由于更高含量的杂质会阻碍模制成型的PTC陶瓷的电特性,因此,所述给料中的金 属杂质的含量低于lOppm。所述给料中的所述金属杂质可包括Fe、Al、Ni、Cr和W。由于在所述给料的制备过 程中采用的工具会带来磨损,因此这些金属杂质在所述给料中的含量-无论是组合起来的 含量还是每种相应杂质的含量_要小于lOppm。本发明描述了一种用于制备用于注射成型的给料的方法,所述方法包括以下步 骤:A)通过烧结的方式制备可被转化成PTC陶瓷的陶瓷填料;B)将所述陶瓷填料与用于与 所述填料结合的基体混合在一起;和C)制造包括所述填料和所述基体的颗粒。所述方法包括使用具有这种低磨损度的工具,从而制备出这样的给料,所述给料 中包含的由于所述磨损带来的杂质的含量小于lOppm。因此,本发明使得可制成这样的给 料,该给料可模制成型,且其中包含的由于磨损带来的金属杂质的含量较低,且模制成型的 PTC陶瓷不会损失所需电特性。在步骤A)中,可对所述填料的基材进行混合、煅烧和磨碎处理而形成粉末。如果 在约1100°C的温度下实施约两小时煅烧,则会形成结构为BaiTyMxDyTi1IbNaMnbO3的陶瓷材 料,且χ = 0-0. 5,y = 0-0. 01,a = 0-0. 01且b = 0-0. 01。在该结构中,M代表二价阳离 子,D代表三价或四价供体,如Y、La或稀土元素,且N代表五价或六价阳离子,如Nb或Sb。 该陶瓷材料被磨碎成粉末且被干燥以便获得陶瓷填料。作为基材,可使用BaC03、Ti O2、含Mn离子溶液和含Y离子溶液和选自Si02、CaC03、 SrC03、Pb3O4中的至少一种物质来制备所述陶瓷填料。由这些基材可制备成分例如为(Batl. 3290^^0. 0505§^*0. 0969 ^0. 1306^0. 005) 502ΜΠ0. 0007) O1. 5045 的陶瓷材料。该陶瓷材料的烧结本体具有 1220C的特征基准温度Tb和-取决于烧结过程中的条件的-处在40 Ω cm至200 Ω cm范围 内的电阻率。
5
根据该方法的一种实施方式,步骤B)是在100°C至200°C的温度下实施的。首 先,所述陶瓷填料和所述基体在室温下混合,随后将该较冷的混合物置于热混合器中,所述 热混合器被加热至100°C至200°C的温度,所述温度优选介于120°C至170°C之间,例如为 1600C。所述陶瓷填料和与所述填料结合的所述基体在较高的温度下在所述热混合器中被 搅拌达到均质的一致性。作为混合器或混合装置,可使用双辊磨机或其它搅拌/压碎装置。双辊磨机优选包括两个对转的且其间的辊隙可调的差速辊,且当所述陶瓷填料和 所述基体通过所述辊隙时,所述双辊磨机将强大的剪切应力施加在所述陶瓷填料和所述基 体上。进一步地,可使用单螺杆挤出机或双螺杆挤出机以及球磨机或叶片式混合器来制备 包含所述基体和所述陶瓷填料的混合物。在步骤C)中,所述基体和所述陶瓷填料的所述混合物可被冷却至室温,且尺寸可 缩减至小块碎料。所述混合物在冷却时会硬化,且通过将其尺寸缩减至小块碎料,使得可形 成给料物质的颗粒。根据所述方法的一种实施方式,在该方法的步骤A)、B)和C)中使用的工具包括硬 材料的涂层。所述涂层可包括任何硬金属,如碳化钨(WC)。这种涂层降低了工具在与所述 陶瓷填料和所述基体的混合物接触时的磨损度且使得能够制备出这样的给料,所述给料中 包含的由于所述磨损带来的金属杂质的含量较低。金属杂质可以为Fe、但也可以是Al、Ni 或Cr。当所述工具上涂覆有硬涂层如WC时,W的杂质会被引入给料内。然而,这些杂质的 含量小于50ppm。申请人已经发现这样的浓度不会影响烧结而成的PTC陶瓷的所需电特 性。在利用注射成型技术形成所述模型的情况下,必须关注所述模型中的所述金属杂 质以便确保所述PTC陶瓷的效率不会降低。陶瓷材料的PTC效应包括电阻率P作为温度 τ的函数而产生变化。尽管在特定温度范围内,电阻率P随温度τ的升高而产生的变化较 小,但从所谓居里温度Tc开始,电阻率P随着温度的升高而迅速增加。在该第二温度范围 内,温度系数,即电阻率在给定温度下的相对变化,可处在50% /K直至100% /K的范围内。 如果在居里温度下并未出现迅速升高,则说明模型的自调节性质并不令人满意。为了获得所需的模制成型效率,优选使整个模型都适于将热量传递至所述流体。 因此,电流优选流动通过所述模型的整个质量体或几乎整个质量体。因此,所述模型的内侧 和外侧的整个表面或几乎整个表面都设有电触点。根据所述模型的一个实施例,所述模型 在其内表面和外表面上设有导电层。此外,根据一个实施例,所述模型的所述内侧包括钝化层以便防止在所述流体与 所述PTC陶瓷或所述电接触层之间产生相互作用,例如产生化学反应。


下面的附图中示出了多个实施例,对实施例的图示仅是示意性的。图1示出了包括PTC陶瓷的模型的一个优选实施例的剖面;图2a至图2c示出了图1所示实施例中的液体的预热过程;图3示出了具有非圆柱形形式和一个以上的流体出口的实施例;和图4示出了具有多条流体通道的实施例内部的示意图。
具体实施例方式图1示出了模型1,所述模型具有流体通道2、流体入口 3和流体出口 4。该模型 可被分成三个子部段位于流体入口 3处的第一子部段10、位于流体出口 4处的第二子部 段20和介于该第一子部段与第二子部段之间的一个子部段15。在该实施例中,第一子部段 10的横截面面积大于第二子部段20的横截面面积且流体入口 3大于流体出口 4。因此,流 动通过流体通道2的流体的速度在第一子部段中要更低,由此改善了从模型向流体的热传 递。对于第一子部段10的内表面而言,通过设置几何形状突部的方式使其变大。在该 实施例中,该几何形状突部5被模制成型为肋部。模型1具有更大的内表面使得加热系统 更为高效,这是因为热量可从模型被更迅速地传递至流动通过所述模型的流体。该肋部可 呈螺旋形,从而使得流动通过流体通道2的流体围绕流的轴线旋转。模型1是由PTC陶瓷注射成型而成的,所述陶瓷具有以下成分AB03+Si02,其中A 包括83. 54mol%的Ba、13. 5mol%的 Ca、2. 5mol%的 Sr、0. 4mol%的 Y,且B包括99. 94mol% 的Ti、0. 06mol%的Mn。Si相对于两种组分之和所占的份数是2mol%。该成分可例如用于 乙醇的预热系统。任何金属杂质的浓度都低于lOppm。模型1在其内表面和外表面上设有导电层。此外,所述内表面还设有钝化层6。该 钝化层6例如可包括低熔点玻璃或纳米复合物漆料。所述纳米复合物漆料可包括以下复合 物中的一种或多种=SiO2-聚丙烯酸酯复合物、SiO2-聚醚复合物、SiO2-硅酮复合物。图2a至图2c示出了在根据图1所示模型的一个实施例中的对液体进行预热的过 程。图中示出了子部段20(左)的中间部位的三个剖面和子部段10(右)的中间部位的三 个剖面。子部段20具有2. 5mm的恒定外径和Imm的恒定内径。子部段10具有6mm的恒定 外径和4. 5mm的恒定内径(在没有肋部的情况下)。在预热过程开始时,液体处在_40°C的温度下,且模型1处于105°C (100)的温 度下。图2a示出了 2秒之后的预热过程,图2b示出了 5秒之后的预热过程,且图2c示 出了 10秒之后 预热过程。在经过了 2秒之后(图2a),肋部(5)之间的液体具有最低 500C (110)的温度。处在子部段10的中间部位的中心处的液体的温度仍为-35°C (120)。 在5秒之后(图2b),处在子部段20的中间部位的中心处的流体大约达到了模型本身的温 度,105°C (100)。在10秒之后(图2c),处在子部段10的中间部位中的介于肋部(5)之间 的流体也已经达到了 105°C的温度(100)。图3示出了进一步的实施例,该实施例包括一个以上的流体入口 3和一个以上的 流体出口 4。模型具有非圆柱形形式以及九个流体入口 3和九个流体出口 4。像这样的实 施例形式的优点在于可在较小的装置中对大量流体进行加热。该实施例可用于燃料消耗 量较高的卡车发动机。图4示意性地示出了非圆柱形式的模型内部的视图,所述模型具有多条流体通道 2,特别地具有四条流体通道。此处,流体通道2在模型1的整个长度范围内是变窄的。模型1可例如用于具有喷嘴的布置中。这种布置可用于对燃烧发动机中的燃料进 行预热。受到预热的燃料由于具有较高的加热效率而确保了在几秒钟之内实现良好的喷射 效应,即使燃料在进入预热系统之前具有较低的温度也仍能如此。因此,这种布置特别地可 用于使用乙醇或甲醇作为燃料的发动机的冷启动。将模型1布置在与喷嘴相邻的位置处确保了流体在所需温度下到达喷嘴的喷射端。对于乙醇而言,该温度必须高于13°C才能实现 令人满意的喷射结果。在一些情况下,如果流体在围绕流的轴线进行旋转的情况下到达喷 嘴,则能改善喷射结果。因此,模型1的内表面可被成形,以使流体像这样旋转。
模型1优选构成了进一步包括阀和喷嘴的布置的元件。燃料在通过阀被定量分配 进入喷嘴之前受到模型1的预热,燃料随后被喷出该喷嘴。
权利要求
一种模型,所述模型包括流体通道、流体入口和流体出口,所述模型进一步包括正温度系数陶瓷,由此使得在施加电压时,所述模型受到加热,从而使得通过所述流体通道的流体由此可受到加热。
2.根据权利要求1所述的模型,其中所述流体入口大于所述流体出口。
3.根据权利要求1所述的模型,其中所述流体通道包括第一子部段和第二子部段且所述第一子部段的横截面面积大 于所述第二子部段的横截面面积。
4.根据权利要求3所述的模型,其中通过为所述模型的内表面提供几何突部的方式使所述内表面在所述流体通道的 所述第一子部段中变得更大。
5.根据权利要求4所述的模型, 其中每个突部包括层压形式。
6.根据权利要求5所述的模型, 其中所述突部包括肋部。
7.根据权利要求6所述的模型, 其中所述肋部是螺旋状的。
8.根据权利要求1所述的模型,其中所述模型的所述内表面被形成,以使得流动通过所述流体通道的所述流体围绕所 述流的轴线旋转。
9.根据权利要求1所述的模型, 其中所述模型包括多个流体出口。
10.根据权利要求1所述的模型, 其中所述流体是液体。
11.根据权利要求10所述的模型,其中所述正温度系数陶瓷的成分是根据所述液体的沸点进行选择的。
12.根据权利要求10所述的模型, 其中所述液体包括乙醇作为其主要组分。
13.根据权利要求1所述的模型,其中所述正温度系数陶瓷包括BaTiO3作为其主要组分。
14.根据权利要求13所述的模型,其中所述BaTiO3被掺杂,以使得所述正温度系数陶瓷的电阻达到这样的水平,在所述 电阻水平下,通过所述正温度系数陶瓷的电流被降低以便防止所述正温度系数陶瓷被进一 步加热。
15.根据权利要求1所述的模型,其中所述正温度系数陶瓷的成分由如下化学式表示AB03+Si02, 其中A是选自Ba、Ca、Sr、Y、Pb中的一种或多种元素,且B是选自Ti、Mn中的一种或多 种元素,且Si相对于这两种组分的总和所占份数为0. 5-4. 5摩尔百分比。
16.根据权利要求15所述的模型,其中A包括所占份数为以下摩尔百分比的元素80% -85%的Ba、10% -15%的 Ca、1 % -5 %的Sr、0. 1 % -1 %的Y,且B包括所占份数为以下摩尔百分比的元素Ti 99. 8-99. 99%,MnO. 01% -0. 2%。
17.根据权利要求1所述的模型,其中任何金属杂质的浓度都低于所述正温度系数陶瓷的lOppm。
18.根据权利要求1所述的模型, 其中所述模型是注射成型的。
19.根据权利要求1所述的模型,其中所述模型的内表面和外表面上具有导电层。
20.根据权利要求1所述的模型,其中所述模型的所述内表面设有钝化层。
21.根据权利要求10所述的模型, 其中所述流体是燃料。
22.根据权利要求21所述的模型, 其中所述燃料包括乙醇作为其主要组分。
23.一种布置,所述布置包括 _根据权利要求1所述的模型, -喷嘴,其中所述流体首先通过所述模型且随后被所述喷嘴喷射出来。
24.根据权利要求23所述的布置,其中阀被布置在所述喷嘴与所述模型之间。
全文摘要
一种加热系统(1)包括流体通道(2)、流体入口(3)和流体出口(4)。所述加热系统进一步包括PTC陶瓷,由此使得在施加电压时,所述加热系统被加热,从而使得通过所述流体通道的流体由此可受到加热。
文档编号F02M61/16GK101889137SQ200880119387
公开日2010年11月17日 申请日期2008年12月3日 优先权日2007年12月5日
发明者J·伊尔, M·拉思, W·卡尔 申请人:埃普科斯股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1