用于改善氮氧化物净化性能的控制方法与流程

文档序号:12104331阅读:254来源:国知局
用于改善氮氧化物净化性能的控制方法与流程

本公开内容涉及用于改善氮氧化物(NOx)净化性能的控制方法。此控制方法能够改善在车辆发动机运行时生成的氮氧化物(NOx)的净化,以便防止氮氧化物(NOx)向外界排放。



背景技术:

稀燃发动机(lean-burn engine)已经广泛用于改善车辆燃料经济性。随着废气排放法规已经变得更加严格,稀燃氮氧化物捕集器(稀燃氮氧化物捕集,lean nitrogen oxide trap)(LNT)一般安装在排气歧管的后端上,并且柴油机微粒过滤器(DPF)安装在车辆中的LNT的后端上,在所述车辆中安装稀燃发动机以便减少从发动机排放的毒性废气的量。

LNT用于捕集并存储由于发动机中的稀燃生成的氮氧化物(NOx),借助于还原反应将NOx还原为氮气(N2),然后排放氮气(N2)。这样的LNT可以经受由于包括在燃料和发动机油中的硫组分而发生的硫中毒,从而可以劣化捕集NOx的能力。在这种情况下,必须通过脱硫恢复NOx净化性能。

用于解决以上问题的备选系统包括LNT和被动选择性催化还原(pSCR)系统。LNT和pSCR系统用于在其中氧气是充足的一般驾驶模式(general driving mode)中在LNT中储存NOx。当NOx以大于预定量的量存在时,驾驶模式转换为富集模式(enriched mode),其中将发动机中的燃料富集并将LNT中储存的NOx转化为无害的N2,然后将其去除。在 这种情况下,一些储存在LNT中的NOx在LNT转化为NH3,并且NH3储存在位于LNT下游的SCR单元中。然后,一旦驾驶模式从富集模式转回到其中氧气是充足的一般驾驶模式,NH3与漏过(滑过,slip through)LNT的NOx反应以生成N2,然后将其去除。

从LNT中去除NOx按照如下发生:NO+CO→CO2+1/2N2,其中去除一个分子的NOx。从pSCR单元去除NOx按照如下发生:NO+5/2H2→NH3+H2O以及NH3+NO+1/4O2→N2+3/2H2O,其中去除两个分子的NOx

在现有技术中,当安装在LNT前段/后端的λ传感器(氧传感器,lambda sensor)测量的值彼此相同时,终止用于净化储存的NOx的富集模式。由于存在于LNT中的氧气和NOx脱离,在后部λ传感器测量的λ值持续较高,但是当这些化学物质在LNT中完全耗尽时,变为与在前部λ传感器测量的λ值相同。在这种情况下,判断LNT中NOx的再生完成。

然而,由于λ传感器高度受O2脱离的影响,当将λ传感器应用于常规控制系统时,即使在富集模式终止之后,NOx可以残留在LNT中。这些残余的NOx可以转化为NH3,并且因为在随后的富集模式中不存在氧气,所以可以激活NH3的生成。因此,为了改善LNT和pSCR单元的性能,必需最小化残余的NOx。因此,对于用于改善NOx净化性能的控制方法存在需要,该控制方法能够在不安装另外的设备的情况下增加排出的O2的量,并且能够通过延迟在前部/后部λ传感器测量的λ值被发现是相同的时间点,最小化残余的NOx并增加NH3的生成,以便延迟NOx在富集模式中再生的时间。

仅为帮助理解本公开内容的背景技术而示出现有技术中描述的内容,因而应当理解,不应认为该内容落在本领域技术人员已经已知的现有技术的范围内。



技术实现要素:

因此,已经鉴于以上问题完成本公开内容,并且本公开内容的目的是提供用于改善NOx净化性能的控制方法,该控制方法能够在不安装另外的设备的情况下增加排出的O2的量,并且能够通过延迟在前部/后部λ传感器测量的λ值被发现是相同的时间点以便延迟NOx在富集模式中再生的时间点,最小化残余的NOx并增加NH3的生成。

本发明的技术目的不限于如上所述,并且未在本文中描述的其他技术目的将根据以下详细描述被本领域技术人员清楚地理解。

根据本公开内容的一个方面,可以通过提供用于改善氮氧化物净化性能的控制方法,完成以上和其他目的,所述控制方法包括:在控制单元将NOx引入再生过程(regeneration process)以再生NOx,从一般驾驶模式(general driving mode)转换为其中发动机中燃料的相对量增加的富集模式(富燃模式,enriched mode),并且检查富集模式维持的在转换为富集模式之后测量的时间是否大于最小保持时间(NOx再生开始步骤),在NOx再生开始步骤中在转换为富集模式之后,当观察到富集模式维持的时间大于最小保持时间时,比较控制单元中在第一λ传感器和第二λ传感器测量的λ值(λ值比较步骤),当在λ值比较步骤中在第一λ传感器测量的λ值大于或等于在第二λ传感器测量的λ值(LNT温度检查步骤)时,检查稀燃NOx捕集器(LMT)的温度是否大于或等于预先输入控制单元的预定温度值,并且发现在第一λ传感器和第二λ传感器测量的λ值相同,测量在发现λ值相同之后经过的时间,并且当观察到LNT的温度大于或等于LNT温度检查步骤中预定温度值时,检查测量的时间是否大于或等于预先存储在控制单元中的最佳时间(λ值均等化步骤(λ值均衡步骤,lambda value equalization step))。

此处,NOx再生开始步骤可以进一步包括,确定发动机是否已经启动,以及LNT中储存的NOx的量是否大于或等于预先储存在控制单元中的参考值(NOx储存确定步骤)。

NOx再生开始步骤可以进一步包括,判断NOx再生是否应当基于预先输入控制单元中的预定参考开始(NOx再生开始判断步骤)。

NOx再生开始判断步骤可以包括,检查发动机RMP(转数)是否落在预先输入控制单元中的预定参考范围内。

NOx再生开始判断步骤可以包括,检查燃料的量是否落在预先输入控制单元中的预定参考范围内。

NOx再生开始判断步骤可以包括,检查LNT的温度是否大于或等于预先输入控制单元中的预定参考值。

NOx再生开始步骤可以包括,当观察到富集模式维持的转换为富集模式之后在控制单元测量的时间小于预先输入控制单元的最小保持时间时,重复测量从转换为富集模式以后的时间。

λ值比较步骤可以包括,当在第一λ传感器测量的λ值小于在第二λ传感器测量的λ值时,重复检查富集模式维持的在转换为富集模式之后测量的时间是否大于最小保持时间。

LNT温度检查步骤可以包括,当观察到LNT的温度小于预定温度值时,终止其中NOx再生的富集模式(终止步骤)。

λ值均等化步骤可以包括,测量在第一λ传感器和第二λ传感器测量的λ值被发现相同之后的时间,并且当测量的时间大于或等于预先储存在控制单元中的最佳时间时,终止其中NOx再生的富集模式(终止步骤)。

终止步骤可以进一步包括,在控制单元终止其中再生NOx的富集模式,并且将存储在LNT中的NOx的量设定为0(重置步骤),此后可以再次重复进行NOx再生开始步骤。

λ值均等化步骤可以包括,测量从在第一λ传感器和第二λ传感器测量的λ值被发现为相同以后的时间,并且当测量的时间小于预先存储在控制单元中的最佳时间时,重复测量从在第一λ传感器和第二λ传感器测量的λ值被发现为相同以后的时间。

λ值均等化步骤可以包括,检查在第一λ传感器和第二λ传感器测量的λ值被发现相同之后经过的时间是否大于或等于预先储存在控制单元中的最佳时间。此处,可以基于废气流速数据计算该最佳时间。

λ值均等化步骤可以包括,检查在第一λ传感器和第二λ传感器测量的λ值被发现相同之后经过的时间是否大于或等于预先储存在控制单元中的最佳时间。此处,可以基于LNT的温度数据计算该最佳时间。

附图说明

根据结合附图进行的以下详细描述,将更明确地理解本发明构思的以上和其他目标、特征和其他优点,在附图中:

图1是示出了根据本公开内容中的一个实施方式的用于改善NOx净化性能的控制方法的方框图;

图2是示出了根据本公开内容中的一个实施方式的用于改善NOx净化性能的控制方法的流程图;以及

图3和4是示出了通过根据本公开内容中的一个实施方式的用于改善NOx净化性能的控制方法获得的效果的图。图3示出了柴油(2.2L)车辆 中根据富集模式中的时间的NH3生成。图4示出了柴油(2.2L)车辆中根据富集模式的时间的温度变化。

具体实施方式

在下文中,将参考附图详细描述本发明构思的实施方式。在描述之前,应当理解用于说明书和所附权利要求中的术语不应解释为限于一般和词典意义,而是应当基于对应本发明构思的技术方面的意义和概念在发明人允许为了更好的解释而适当限定术语的原则基础上进行解释。因此,本文中给出的描述仅是为了说明目的的优选实施例,并且不旨在限制本发明构思的范围,所以应当理解,在提交本申请时,可以在其中做出替换那些的各种其他等价物和修改,而不偏离本发明构思的精神和范围。

现将详细参考本发明构思的实施方式,在附图中示出了实施方式的实例。在可能的情况下,在整个附图中,相同参考标号将用来指代相同或类似的部分(部件)。

在下文中,将参考附图详细描述根据本公开内容中实施方式的用于改善氮氧化物净化性能的控制方法。

图1是示出了根据本公开内容中的一个实施方式的用于改善NOx净化性能的控制方法的方框图,图2是示出了用于改善NOx净化性能的控制方法的流程图,并且图3和4是示出了通过用于改善NOx净化性能的控制方法获得的效果的图。根据本公开内容中的一个实施方式的用于改善NOx净化性能的控制方法用于改善通常在柴油发动机的运作时生成的NOx的净化。在此说明书中,将通过实例的方式描述柴油发动机,并且除非另外具体规定,否则如将在下文描述的每一个预先储存在控制单元400中的参考值可以根据设计或情况改变至任何程度。

如图1中所示,从发动机100排出的废气顺序地通过LNT 300、柴油机微粒过滤器(DPF)500和选择性催化还原(SCR)单元700。此处,第一λ传感器200设置在LNT 300的前端,并且第二λ传感器800设置在SCR单元700的后端。

根据本公开内容中一个实施方式的用于改善NOx净化性能的控制方法包括在控制单元400将NOx引入再生过程以再生NOx。其还包括,将驾驶模式转换为其中发动机100中燃料的相对值增加的富集模式,并检查富集模式已经维持的在转换为富集模式之后测量的时间t1,t1是否比最小保持时间C5更长(NOx再生开始步骤(S100))。在NOx再生开始步骤(S100)中,当观察到富集模式已经在转换为富集模式之后维持大于最小保持时间C5的时间时,比较在控制单元400中在第一λ传感器200和第二λ传感器800测量的λ值(λ值比较步骤(S300))。当在λ值比较步骤(S300)中在第一λ传感器200测量的λ值大于或等于在第二传感器800测量的λ值时,检查稀燃NOx捕集器(LNT)300的温度是否大于或等于预先输入控制单元400中的预定温度值(LNT温度检查步骤(S500))。如果第一λ传感器200和第二λ传感器800测量的λ值被发现是相同的,则当在LNT温度检查步骤(S500)中观察到LNT 300的温度大于或等于预定温度值时,测量时间t2,并且检查测量的时间t2是否大于或等于预先储存在控制单元400中的最佳时间S6(λ值均等化步骤(S700))。

当发动机100在一般运行模式下驱动时,进行在控制单元400将NOx引入再生过程以再生NOx的NOx再生开始步骤(S100),将驱动模式转换为其中发动机100中燃料的相对值增加的富集模式,并且检查该富集模式是否已经维持足够久,从而观察到在转换为富集模式之后经过的时间t1大于最小保持时间C5。

具体地,NOx再生开始步骤(S100)可以包括,确定发动机100是否已经启动,以及LNT 300中储存的NOx的量是否大于或等于预先储存在控制单元400中的参考值C1(NOx储存确定步骤(S110))。

当在NOx储存确定步骤(S110)中,储存在LNT 300中的NOx的量大于或等于预先储存在控制单元400中的参考值C1时,进行基于预先输入控制单元400的预定参考,判断是否开始NOx再生的NOx再生开始判断步骤(S130)。用于NOx再生开始判断步骤(S130)中的参考可以包括发动机RPM、燃料量、和LNT 300的温度。在本文中可以使用用于保证符合所有参考值的“与”操作符、以及用于保证已经符合至少一个参考值的“或”操作符。这可以根据设计改变。NOx再生开始判断步骤(S130)可以包括,检查发动机RPM是否在预先输入控制单元400中的预定参考范围内(C2<发动机RPM<C3)。NOx再生开始判断步骤(S130)还可以包括,检查燃料量是否小于预先输入控制单元400中的预定参考范围(C2'<燃料量<C3')。此外,NOx再生开始判断步骤(S130)可以包括,检查LNT 300的温度值是否大于或等于预先输入控制单元400中的预定参考值C4。

然而,当发现没有符合上述条件中的一种或多种时,重复进行NOx存储确定步骤(S110),其中检查LNT 300中储存的NOx的量是否大于或等于预先储存在控制单元400中的参考值C1。

因此,当符合上述条件时,做出确定以将NOx引入再生过程以再生NOx,并将驾驶模式从一般驾驶模式转换为其中燃料的量相对给定量的空气较高的富集模式。NOx再生开始步骤(S100)包括,检查富集模式已经维持的在转换为富集模式400之后在控制单元检查的时间t1,是否小于或等于最小保持时间C5,并在观察到富集模式已经维持的时间t1小于最小保持时间C5时,重复测量从转换为富集模式以后的时间t1。

NOx再生开始步骤(S100)包括,检查富集模式已经维持的在转换为富集模式后在控制单元400检查的时间t1,是否小于或等于最小保持时间C5,并在观察到富集模式已经维持的时间t1大于或等于最小保持时间C5时,比较控制单元400中第一λ传感器200和第二λ传感器800测量的λ值(λ值比较步骤(S300))。

λ值比较步骤(S300)包括,当在第一λ传感器200测量的λ值小于在第二λ传感器800测量的λ值时,重复检查富集模式是否已经维持足够久,从而从转换为富集模式以后的时间t1大于最小保持时间C5。

当在第一λ传感器200测量的λ值大于或等于在第二λ传感器800测量的λ值时,进行检查LNT 300的温度是否大于或等于预定温度值的LNT温度检查步骤(S500)。例如,基于300℃的参考温度,其中判断LNT 300的温度是否大于或等于300℃,在本说明书的图2中示出。然而,该参考温度可以根据设计或情况改变至任何程度。

因此,LNT温度检查步骤(S500)包括,当观察到LNT 300的温度低于预定温度值时,终止其中NOx再生的富集模式(终止步骤(S900))。

然而,当在LNT温度检查步骤(S500)中观察到LNT 300的温度大于或等于预定温度值(300℃)时,λ值均等化步骤(S700)为,检查在第一λ传感器200和第二λ传感器800测量的λ值被发现为相同之后经过的时间t2,并检查测量的时间t2是否大于或等于预先储存在控制单元400中的最佳时间C6。

λ值均等化步骤(S700)包括,检查在第一λ传感器200和第二λ传感器800测量的λ值被发现为相同之后经过的时间t2的量,并且当测量的时间t2大于或等于预先储存在控制单元400中的最佳时间C6时,终止其中再生NOx的富集模式(终止步骤(S900))。λ值均等化步骤(S700)包括,检查λ值被发现为相同之后经过的时间t2的量,并且当测量的时间t2小于预先储存在控制单元400中的最佳时间C6时,重复测量λ值被发现为相同之后经过的时间t2的量。

具体地,λ值均等化步骤(S700)包括,检查在第一传感器200和第二λ传感器800测量的λ值被发现相同之后经过的时间t2的量是否大于或等于预先储存在控制单元400中的最佳时间C6。该最佳时间可以使用储 存在控制单元400中的映射(map),基于废气流速(exhaust flow rate)和LNT 300的温度的数据计算,并且可以使用算法应用。

终止步骤(S900)可以进一步包括,在控制单元400终止其中NOx再生的富集模式,并且将LNT 300中存储的NOx的量设定为‘0’(重置步骤(S910)),并且可以再次重复进行NOx再生开始步骤(S100)。

本公开内容提供能够与常规控制算法相比,增加生成的NH3的量的控制算法,其中,在分别安装在LNT 300的后端和前端的第一λ传感器200和第二λ传感器800测量的λ值被发现是相同的时间点,终止其中再生NOx的富集模式。即,在转换为富集模式之后,可以在λ值小于或等于0.98并且LNT 300的温度大于或等于300℃时激活NH3的生成。

因此,本公开内容设计为,通过发现λ值是相同的,并且进一步延长富集模式的持续时间以将残余的NOx转化为NH3,改善LNT 300和pSCR单元700中的NOx净化性能,所述λ值是在转换为富集模式时在第一λ传感器200和第二λ传感器800测量的,在所述富集模式中在300℃或更高再生NOx,在此温度下激活NH3的生成。将富集模式延长的时间进一步设置为,通过根据发动机排气流速和LNT 300的温度初步评估选择的最佳时间。

因此,由此配置的根据本公开内容中的实施方式的用于改善NOx净化性能的控制方法能够使用图3和图4中示出的用于提高NH3生成的控制技术用于增加生成的NH3的量。因此,该控制方法具有的优势在于,由于废气的温度在转换为富集模式之后随时间升高,所以完全消耗从储氧能力(OSC)材料放出的氧气,导致NOx转化为NH3的选择性增加。

根据由此配置的用于改善NOx净化性能的控制方法,提供了能够与常规控制算法相比,提高生成的NH3的量的控制算法,其中,在分别安装在LNT 300的后端和前端的第一λ传感器和第二λ传感器测量的λ值被观察 到是相同的时间点,终止其中再生NOx的富集模式。即,在转换为富集模式之后,可在λ值小于或等于0.98并且LNT 300的温度大于或等于300℃时激活NH3的生成。

因此,本公开内容设计为,通过发现λ值是相同的,并且进一步延长富集模式的持续时间以将残余的NOx转化为NH3,改善LNT和pSCR单元中的NOx净化性能,所述λ值是在转换为富集模式时在第一λ传感器和第二λ传感器测量的,在所述富集模式中在300℃或更高再生NOx,在此温度下激活NH3生成。此外,将富集模式延长的时间进一步设置为,通过根据发动机排气流速和LNT 300的温度初步评估选择的最佳时间。

因此,由此配置的根据本公开内容中的实施方式的用于改善NOx净化性能的控制方法能够使用图3和图4中示出的用于提高NH3生成的控制技术用于增加生成的NH3的量。因此,该控制方法具有的优势在于,由于废气的温度在转换为富集模式之后随时间升高,所以完全消耗从OSC材料放出的氧气,导致NOx转化为NH3的选择性增加。

虽然已经出于说明性的目的公开了在本文中提出的实施方式,然而,本领域技术人员将认识到,在不背离如在所附权利要求中所公开的本发明构思的范围和精神的情况下,各种变形、添加以及替换是可能的。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1