陶瓷基质复合物构件和生产陶瓷基质复合物构件的过程的制作方法

文档序号:12705018阅读:211来源:国知局
陶瓷基质复合物构件和生产陶瓷基质复合物构件的过程的制作方法与工艺

本发明是借助政府支持在由能源部授予的合同号DE-FC26-05NT42643下完成的。政府在本发明中具有某些权利。

技术领域

本发明大体上涉及用于功率生成的燃气涡轮,且更具体而言,涉及形成用于燃气涡轮的热气体路径涡轮构件的陶瓷基质复合物构件的方法。



背景技术:

与由更多种常规超级合金材料形成的涡轮叶片和静叶一样,CMC叶片和静叶首先配备有内部腔,以降低重量、降低离心负载、和降低构件的操作温度。这些特征通常使用可移除和可消耗的工具的组合形成在CMC构件中。内部冷却通路对于冷却金属和CMC热气体路径硬件二者而言是有利的,因为它们降低冷却流要求和热梯度/应力。

基于碳化硅(SiC)的陶瓷基质复合物(CMC)材料已作为用于燃气涡轮发动机的某些构件的材料被提出,这些构件诸如为涡轮叶片、静叶、喷嘴、和动叶。已知各种方法用于制作基于SiC的构件,包括Silicomp、熔化渗透(MI)、化学蒸汽渗透(CVI)、聚合物膨胀热解(PIP)、和氧化/氧化过程。尽管这些制作技术与彼此显著不同,但各自涉及使用手工铺叠和工具或硬模,以通过包括在各种处理阶段应用热的过程产生近净成形零件。

在烧尽循环之后,CMC预成形件叶片由于复合物的挥发物质烧掉而非常脆。在用在燃气涡轮中之前,CMC预成形件的开放末梢区域需要加盖或封闭。在已知的过程中,为了封闭CMC预成形件的开放末梢区域,将末梢帽插入该脆的开放末梢区域中。末梢帽可由CMC层叠部分形成,该CMC层叠部分具有多个层片(一般20-50个层片)且与开放末梢区域一样地成形以填充CMC预成形件的开放末梢区域。通过将CMC层片裁剪成期望的形状且以期望的几何结构铺叠层片来形成CMC层叠末梢帽是时间和劳动密集的。将具有多个层片的CMC层叠件放置到开放末梢区域中也存在难题。此外,由于CMC层叠件和预成形件叶片二者在致密化之前是脆的,故这些构件在组装期间可能容易损伤。已知的技术不能提供因部分的脱落和显著的成本而受损的可靠的CMC翼型件系统。此外,已知的过程因在制作过程期间期望的将层片挤进构件的中空腔中而受损。



技术实现要素:

在实施例中,一种生产陶瓷基质复合物构件的过程。该过程包括将核心层片定位在模芯上。使核心层片至少部分地刚性化,以形成限定末梢腔和中空区的预成形件陶瓷基质复合物布置。陶瓷基质复合物末梢层片定位在预成形件陶瓷基质复合物布置上和末梢腔内。使陶瓷基质复合物末梢层片致密化,以形成复合物构件的末梢区。

在另一实施例中,一种陶瓷基质复合物构件。陶瓷基质复合物包括限定末梢腔的一个或更多个致密化的层片,和应用于该一个或更多个致密化的层片的至少一个致密化的陶瓷基质复合物末梢层片。该末梢腔和该至少一个致密化的陶瓷基质复合物末梢层片形成复合物构件的末梢区。

本发明的第一技术方案提供了一种生产具有叶片末梢的陶瓷基质复合物构件的过程,所述过程包括:将核心层片定位在模芯上;使所述核心层片至少部分地刚性化,以形成限定末梢腔和中空区的预成形件陶瓷基质复合物布置;将陶瓷基质复合物末梢层片定位在所述预成形件陶瓷基质复合物布置上且在所述末梢腔内;以及使所述陶瓷基质复合物末梢层片致密化,以形成复合物构件的末梢区。

本发明的第二技术方案是在第一技术方案中,该至少部分地刚性化的预成形件陶瓷基质复合物布置限定具有至少一个弯曲表面的末梢腔。

本发明的第三技术方案是在第一技术方案中,所述至少部分地刚性化的预成形件陶瓷基质复合物布置限定具有至少一个直线表面的末梢腔。

本发明的第四技术方案是在第一技术方案中,所述至少部分地刚性化的预成形件陶瓷基质复合物布置限定具有弯曲表面和直线表面二者的末梢腔。

本发明的第五技术方案是在第一技术方案中,所述至少部分地刚性化的预成形件陶瓷基质复合物布置限定多个末梢腔。

本发明的第六技术方案是在第一技术方案中,所述至少部分地刚性化的预成形件陶瓷基质复合物布置包括至少部分地刚性化的预成形件陶瓷基质复合物层片。

本发明的第七技术方案是在第六技术方案中,所述至少部分地刚性化的预成形件陶瓷基质复合物层片包括布置且配置成形成所述末梢腔的核心缠绕层片(core wrap plies)和叶片层片二者。

本发明的第八技术方案是在第七技术方案中,所述至少部分地刚性化的预成形件陶瓷基质复合物层片还包括加强层片。

本发明的第九技术方案是在第一技术方案中,所述致密化包括熔化渗透或化学蒸汽沉积。

本发明的第十技术方案是在第一技术方案中,在定位陶瓷基质复合物末梢层片之前移除所述模芯。

本发明的第十一技术方案是在第十技术方案中,在至少部分地刚性化期间移除所述模芯。

本发明的第十二技术方案是在第一技术方案中,还包括在使所述陶瓷基质复合物末梢层片致密化之前将所述预成形件陶瓷基质复合物布置、所述末梢层片和叶片层片定位在工具上。

本发明的第十三技术方案是在第一技术方案中,一种具有叶片末梢的陶瓷基质复合物构件,其包括:限定末梢腔的一个或更多个致密化的层片;以及应用于所述一个或更多个致密化的层片的至少一个致密化的陶瓷基质复合物末梢层片;其中,所述末梢腔和所述至少一个致密化的陶瓷基质复合物末梢层片形成复合物构件的末梢区。

本发明的第十四技术方案是在第十三技术方案中,至少部分地刚性化的预成形件陶瓷基质复合物布置限定具有至少一个弯曲表面的末梢腔。

本发明的第十五技术方案是在第十三技术方案中,所述至少部分地刚性化的预成形件陶瓷基质复合物布置限定具有至少一个直线表面的末梢腔。

本发明的第十六技术方案是在第十三技术方案中,所述至少部分地刚性化的预成形件陶瓷基质复合物布置限定具有弯曲表面和直线表面二者的末梢腔。

本发明的第十七技术方案是在第十三技术方案中,所述至少部分地刚性化的预成形件陶瓷基质复合物布置限定多个末梢腔。

本发明的第十八技术方案是在第十三技术方案中,所述至少部分地刚性化的预成形件陶瓷基质复合物布置包括至少部分地刚性化的预成形件陶瓷基质复合物层片。

本发明的第十九技术方案是在第十八技术方案中,所述至少部分地刚性化的预成形件陶瓷基质复合物层片包括布置且配置成形成所述末梢腔的核心缠绕层片和叶片层片二者。

本发明的第二十技术方案是在第十九技术方案中,所述至少部分地刚性化的预成形件陶瓷基质复合物层片还包括加强层片。

本发明的其他特征和优点将从结合附图作出的下面更详细的描述中变得显而易见,附图作为实例例示本发明的原理。

附图说明

图1是本公开的陶瓷基质复合物(CMC)构件的透视图。

图2是根据本公开的沿图1的2-2方向截取的截面图。

图3是根据本公开的实施例的包括末梢布置的沿图1的3-3方向截取的截面图。

图4是根据本公开的备选实施例的包括末梢布置的沿图1的3-3方向截取的截面图。

图5是根据本公开的备选实施例的包括末梢布置的沿图1的3-3方向截取的截面图。

图6是根据本公开的备选实施例的包括末梢布置的沿图1的3-3方向截取的截面图。

图7是根据本公开的备选实施例的包括末梢布置的沿图1的3-3方向截取的截面图。

图8是根据本公开的备选实施例的包括末梢布置的沿图1的3-3方向截取的截面图。

图9是根据本公开的备选实施例的包括末梢布置的沿图1的3-3方向截取的截面图。

图10是根据本公开的备选实施例的包括末梢布置的沿图1的3-3方向截取的截面图。

图11示出根据本公开的生产具有叶片末梢的陶瓷基质复合物构件的过程。

只要有可能,贯穿附图将使用相同的标号来代表相同的部分。

部件列表

10 构件

22 翼型件

24 燕尾部

26 平台

30 末梢区

50 内部通道

60 层片

62 核心缠绕层片

301 末梢腔

303 末梢层片

506 加强层片。

具体实施方式

提供了一种形成陶瓷基质复合物(CMC)构件的经济上可行的方法,一种形成CMC叶片的方法、和不因现有技术中的缺点而受损害的CMC构件。根据本公开的CMC构件使形成CMC构件的额外手工铺叠步骤最少化或消除。例如,本公开的实施例与未能包括在本文中公开的特征中的一个或更多个的构思相比,实现了一种可靠的CMC翼型件系统,该翼型件系统提供减少的或消除的部分脱落和减少的成本。此外,根据本公开的过程和末梢布置减少或消除了将层片挤到构件的中空腔中的情况。

当介绍本发明的各种实施例的元件时,词语“一”、“一个”、“该”以及“所述”意图指存在一个或更多个元件。用语“包括”、“包含”以及“具有”意图为包含性的,且意思是可存在除所列出的元件之外的附加元件。

用于生成功率的系统包括但不限于燃气涡轮、蒸汽涡轮、和其他涡轮组件,诸如用于功率生成的陆基航空改型。在某些应用中,功率生成系统(包括在其中的涡轮机(例如涡轮、压缩机、和泵))和其他机器可包括暴露于严重磨损条件的构件。例如,某些功率生成系统构件(诸如叶片、动叶、壳体、转子叶轮、轴、护罩、喷嘴等)可在高热量和高回转环境中操作。这些构件是使用陶瓷基质复合物制造的,且这些构件还可为中空的并且/或者包括冷却通道。本公开提供形成陶瓷基质复合物(CMC)构件的方法,该构件包括中空结构或冷却通道,在处理之后具有可靠的末梢区。本公开的示例性实施例在图1-10中示为涡轮叶片,但本公开不限于所例示的结构。

图1是构件10(诸如但不限于涡轮叶片或涡轮静叶)的透视图。尽管图1示出了涡轮叶片,但可形成具有末梢区30的其他合适的构件。构件10优选地由陶瓷基质复合物(CMC)材料形成。用于构件10的材料包括但不限于基于氧化物的CMC,诸如但不限于氧化铝、莫来石、氮化硼、碳化硼、硅铝氧氮陶瓷(硅、铝、氧、和氮)、金属间化合物、和它们的组合。用于构件10的材料的适合的示例包括但不限于能够从COI Ceramics, Inc., San Diego, California获得的AN-720(基于氧化物-氧化物),或混合氧化物CMC材料。用于制作构件10的材料的适合的例子包括但不限于使用各种粘合剂利用SiC和碳基质浸渍的SiC纤维。构件10包括翼型件22,靠着该翼型件22来引导热排气气体的流。翼型件22从末梢区30延伸至燕尾部24。构件10通过燕尾部24安装于涡轮盘(未示出),燕尾部24从翼型件22向下延伸且接合涡轮盘上的槽道。平台26从翼型件22连结于燕尾部24的区域侧向向外延伸。如图2中所示,构件10包括至少一个内部通道50,其沿翼型件22的内部延伸。在功率生成系统的操作期间,冷却空气流被引导穿过内部通道50,以降低翼型件22的温度。

如在图1中所示,构件10是使用铺叠技术构造来形成中空预成形件陶瓷基质复合物布置的近净成形预成形件。形成的构件10是使用任何适合的铺叠技术以实现用于构件10的期望形状和几何形状来铺叠的。用于形成具有至少一个内部通道50的构件10的大多数铺叠技术包括在模芯或其他模具上提供和定位多个层片。在一些实施例中,模芯(未示出)在其已经历烧尽或部分刚性化之后是“熔化”或溶滤出形成的构件10,以形成构件10中的中空空间或内部通道50(例如,见图2-10)。当前,多个层片(一般在25-50个之间的层片)用于形成陶瓷层叠部件或帽,该部件或帽在致密化和最终熔化渗透之前置于叶片的开放末梢中。

图2是示出形成的构件10的内部通道50的沿图1的2-2方向截取的叶片末梢区30的截面图。多个核心缠绕层片62和叶片层片60(为了清楚,仅示出一些)包围且形成所形成的构件10的内部通道50。

如图3-10中所示,叶片末梢区30的布置为所形成的构件10的示例性实施例;然而,所形成的构件10的该示例性实施例用于例示目的,且不应被狭窄地解释。所形成的构件10是任何预成形的CMC构件,诸如但不限于叶片、护罩和喷嘴。

如图3-10中所示,末梢区30的布置包括多个部分地刚性化的预成形件陶瓷基质复合物层片。如图3-10中所示,部分刚性化的预成形件陶瓷基质复合物层片包括两个类型,包括核心缠绕层片62和叶片层片60,它们形成一个或更多个末梢腔301,末梢层片303被应用到该末梢腔301中。末梢区30的布置包括包围内部通道50的多个核心缠绕层片62和包围核心缠绕层片62和内部通道50的叶片层片60。

如图3中所示,叶片层片60形成末梢区30的外周边,且核心缠绕层片62在叶片层片60之间以弯曲的定向布置,其中,核心缠绕层片62的接近末梢区30的端部接触且形成末梢腔301。图3的布置例如允许核心层片62的部分到完全的致密化。图4示出了备选实施例,末梢区30包括与图3类似的布置,其中,末梢区30还包括邻近于核心缠绕层片62的加强层片506,以提供额外的刚性和尺寸稳定性。如图5所示,末梢区30包括与图3类似的布置,其中,末梢区30还包括加强层片506,该加强层片506延伸至其中核心缠绕层片62接触彼此的点。图5的布置,类似于图4中的布置,提供额外的刚性和尺寸稳定性。图4-5中所示的布置例如允许在偏离发动机或涡轮中心线的一些径向位置处的比末梢径向位置小的封闭腔,该末梢径向位置例如可位于平台下方。图6示出了备选实施例,其中叶片层片60形成末梢区30的外周边,且核心缠绕层片62在叶片层片60之间以弯曲的定向布置,其中,核心缠绕层片62的低于末梢末端的端部接触且形成末梢腔301。图6中示出的布置例如许可一致的外部末梢表面和修改的末梢架构。图7示出了备选实施例,其中叶片层片60形成末梢区30的外周边,且核心缠绕层片62在叶片层片60之间作为连续的层片以倒U形定向布置,且形成单个末梢腔301。图7的布置例如允许中空核心的增强的结构刚性。图8示出了备选实施例,其中叶片层片60形成末梢区30的外周边,且核心缠绕层片62以从一个叶片层片60的表面延伸至另一叶片层片60的弯曲布置来布置,以形成单个末梢腔301。图8的布置例如允许不同的层片硬度。图9示出了备选实施例,末梢区30包括与图8类似的布置,其中,末梢区30还包括邻近于叶片层片60的加强层片506,以提供额外的刚性和尺寸稳定性。图10示出了备选实施例,其中叶片层片60形成末梢区30的外周边,且多个核心缠绕层片62以从叶片层片60的表面延伸且在末梢区30的端部下方接触彼此的弯曲布置来布置,以形成三个末梢腔301。

在图3-10中示出的布置中的每一个中,末梢腔301能够从叶片区30的端部接近。如图3-10所示,末梢腔301包括陶瓷基质复合物末梢层片303,或基于非纤维的预浸渍层片,它们是通过任何适合的技术(诸如手工铺叠或类似的铺叠过程)来应用以基本上填充末梢腔且形成末梢区30以用于硬化和致密化。如图11中所示,过程1100包括在模芯上提供和定位陶瓷基质复合物层片(包括核心缠绕层片62)。在本文中利用的模芯是用于将陶瓷基质层片形成为具有腔和/或中空区的预成形件或构件的任何合适的工具或装置。核心缠绕层片62的定位限定具有末梢腔的中空预成形件陶瓷基质复合物布置(步骤1101)。在定位核心缠绕层片62之后,核心缠绕层片62部分地刚性化,以形成刚性化预成形件陶瓷基质复合物布置(或使预成形件刚性化)(步骤1103)。如在本文中利用的,部分地刚性化指诸如通过高压釜的固化或刚性化过程,其中,从核心缠绕层片62移除有机物或其他挥发物,以使结构至少部分地刚性化。刚性化包括充分固化以使结构刚性化来用于进一步的处理。用于部分刚性化的温度和时间基于刚性化的期望水平和层片60中存在的基质的量和类型而变化。在另一实施例中,刚性化还可包括完全刚性化和/或致密化。在形成刚性化的预成形件之后,将刚性化的预成形件定位在工具(诸如翼型件或其他构件工具)中,其中,叶片层片60、核心缠绕层片62和末梢层片303定位在工具中(步骤1105)。工具例如可包括翼型件工具,或其他已知的工具布置。在一个实施例中,层片被组装到工具上,而不使用模芯。用于叶片层片60、核心缠绕层片62和末梢层片303的材料的示例包括但不限于单个层片或多个层片,诸如形成为层叠的堆的一系列层片。用于叶片层片60和核心层片62的材料的示例包括但不限于预浸渍体复合物层片,其例如包括编织碳纤维、粘合剂材料和涂布的SiC纤维。用于层片60的其他适合的材料包括:包含氧化铝、氧化锆、氧化钛、镁、硅石、莫来石、和/或尖晶石的氧化物;包含硅、硼、和/或钛的碳化物;包含硅和硼的氮化物。适合用于在层片60中使用的其他已知的纤维包括Nextel、Nicalon、hi-Nicalon、Tyranno、和Sylramic纤维。在一个实施例中,除了叶片层片和核心缠绕层片62之外,加强层片506也可被包括在预成形件陶瓷基质复合物布置中,以提供额外的刚性和尺寸稳定性。在铺叠形成的中空预成形件陶瓷基质复合物布置中,利用模芯或其他工具,且在一个实施例中,这些模芯从所形成的中空刚性化预成形件熔化掉,以形成至少一个内部通道50(见图2-10)。

在刚性化预成形之后,叶片层片60和末梢层片303已定位在工具中,使中空预成形件CMC布置至少部分地致密化(步骤1107)。在一个实施例中,陶瓷基质复合物末梢层片303沿与叶片层片60平行或基本上平行的定向来定向。在致密化之前,具有末梢腔的中空预成形件CMC布置置于高压釜中,且完成高压釜循环。具有末梢腔的中空预成形件CMC布置经历在用于陶瓷复合材料的工业中使用的典型的高压釜压力和温度循环。高压釜处理脱出剩余在层片中的任何挥发物,且高压釜条件可取决于层片材料而变化。在高压釜处理之后,执行烧尽过程,以移除具有末梢腔的中空预成形件CMC布置中的任何剩余的模芯材料或额外的粘合剂。烧尽过程一般是在近似426-648℃(近似800-1200℉)的温度下实施的。致密化可在具有确定气氛的真空炉中在高于1200℃的温度下实施,以允许基质材料(诸如硅或其他材料)熔化渗透到预成形件构件中。致密化可使用用于致密化的任何已知的技术实现,包括但不限于Silicomp、熔化渗透(MI)、化学蒸汽渗透(CVI)、聚合物膨胀热解(PIP)、和氧化物/氧化物过程(oxide/oxide process)。在一个实施例中,致密化是通过熔化渗透进行的。

尽管已经参考一个或更多个实施例描述了本发明,但是本领域专业人员将理解,可进行各种更改并且为它们的元件替换等同物而不脱离本发明的范畴。此外,可进行许多修改以使具体的条件或材料适应本发明的教导而不脱离本发明的基本范畴。因此,意图本发明不限于公开的作为用于执行本发明的构思出的最佳模式的具体实施例,而是本发明将包括落入所附权利要求的范围内的所有实施例。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1