具有选择器导向阀的液冷式内燃发动机和控制所述类型的内燃发动机的选择器导向阀的方法_2

文档序号:8470073阅读:来源:国知局
和/或汽缸体的冷却套中保持静止,由此会加速冷却液的升温/变暖和内燃发动机的加热,会加快发动机机油的升温,并且会帮助摩擦损失的减少。
[0033]然而,两个或更多个恒温器阀的使用能够增加控制装置的成本、空间要求和重量。此外,可以提供这样的冷却系统的控制,即不仅在冷启动之后分别减少或停止循环的冷却液流率或冷却液输送量是可能的,而且一般来说操纵内燃发动机的热管理也是可能的。
[0034]为了驾驶员和乘客舒适,特别是在冷启动之后,经由加热回路管路向冷却液运转的车辆内部加热器馈送已经在汽缸盖和/或汽缸体中预升温的冷却液可能是期望的。这里,具体是在这两方面之间存在目的的冲突,一方面,为了向加热器提供预升温的冷却液而预升温汽缸盖或汽缸体中的冷却液,另一方面,为了在暖机阶段期间从内燃发动机提取减少的热量(例如,最小热量)而停止或减少通过汽缸盖或汽缸体的冷却液输送量。
[0035]可以提供这样的冷却系统设计,即在该冷却系统中,所谓的比例阀被设置在出口侧处或在入口侧处。所述类型的比例阀能够通过单个阀体来控制通过汽缸盖的冷却液流以及通过汽缸体的冷却液流。所述比例阀用于冷却系统的非独立需求控制,以及用于内燃发动机的非独立需求冷却。降低了控制装置的成本、重量和空间要求。减少了部件的数量,因此从根本上降低了采购成本和装配成本。
[0036]比例阀的阀体可以例如采用冷却液通道通向外表面的可旋转中空鼓的形式。具有对应数量的冷却液通道管道的阀壳体用于鼓的可旋转安装和容纳,该冷却液通道管道能够通过鼓的旋转被连接至或被置于与冷却液通道重叠。比例阀具有至少一个用于冷却液流入的入口和至少一个用于冷却液流出的出口。
[0037]例如由发动机控制器主动控制的比例阀基本上允许特性映射控制致动,并且因此也允许被配置为内燃发动机的当前负荷状态的冷却液温度。例如,阀可以被控制为在相对低负荷下比在高负荷下提供更高的冷却液温度,并且因此在部分负荷运转中提供更少的热提取。因此,比例阀能够由发动机控制器来控制,以调整通过汽缸盖和汽缸体的冷却液流,并且因此能够根据需求调整(即控制)提取的热量。
[0038]比例阀或相关的阀体能够采取不同的位置,例如适合于内燃发动机的暖机阶段的位置,其中冷却液流过汽缸盖但不流过汽缸体。在这种情况下,承受特别高热负荷的汽缸盖将会被冷却液流穿过并被冷却。通过在所述位置内鼓的调整来设定通流率并且因此从汽缸盖提取的热量是可能的。
[0039]通过将比例阀转移到不同位置,然后可以为冷却液额外地打开汽缸体,并且冷却液流过汽缸盖和汽缸体。通过在所述位置内鼓的调整来设定通流率并且因此从汽缸盖提取的热量是可能的。
[0040]两个上述位置可以被许多其他位置(例如其中也停用汽缸盖的冷却(即完全停止通过汽缸盖的冷却液流)的位置)补充或替代。除了用于汽缸盖和/或汽缸体的冷却回路夕卜,通过比例阀控制另外的冷却液回路是可能的,该冷却液回路的管路然后被引导通过比例阀;这样的另外的冷却液回路包括例如增压空气冷却装置的冷却液回路、排气再循环冷却装置的冷却液回路、冷却液运转的车辆内部加热器的冷却液回路、冷却液运转的机油冷却器的冷却液回路、液冷式排气涡轮增压器的冷却液回路、和/或经由再循环管路或旁通管路等的冷却液回路。
[0041]比例阀还能够包括充当阀体的鼓,该鼓通过调整装置沿着旋转轴线不仅可旋转,而且以平移的方式可移位,由此增加调整可能性。这里,借助鼓的另外的移位,通过旋转实现(即设定)并且分配到特定旋转角度的每个位置引起多个另外的鼓的不同位置,使得鼓的可能位置的数量增加或增加许多倍。
[0042]比例阀的使用使改善冷却的控制并且使操纵暖机阶段中的内燃发动机的热管理以及已暖机的内燃发动机的热管理成为可能。
[0043]然而,实际上,比例阀可能发生故障或完全失效,从而导致冷却系统问题。冷却液中的污染物(例如沙子和/或其他颗粒)会在阀壳体与充当阀体的鼓之间堆积,并且导致鼓在壳体中的堵塞,因此鼓在壳体中的调整(即旋转和/或移位)不再是可能的。这样的故障会导致冷却系统的失效,使得减少或完全停止通过汽缸盖和/或通过汽缸体的冷却液的通流,因此内燃发动机会热过载,并且不可逆的损伤会发生。
[0044]此外,已经证明通过单个比例阀特别是同时并且最大程度地满足所有冷却液回路的冷却需求是困难的。本文描述了用于冷却系统的非独立需求控制的提供优于先前比例阀许多益处的选择器导向阀。例如,本文中所描述的选择器导向阀实现了更大的可调整性以及可靠性。具体地,本文中所描述的选择器导向阀提供了冷却装置的控制的改善,并且更不易于发生故障,特别是可能由污染物(诸如冷却液中的颗粒)引起的故障。本文还描述了一种用于控制内燃发动机的选择器导向阀的方法。
[0045]因此,可以提供一种液冷式内燃发动机,该液冷式内燃发动机具有至少一个液冷式汽缸盖,并且具有液冷式汽缸体,以及具有用于冷却系统的非独立需求控制的选择器导向阀。选择器导向阀能够被配置在冷却液回路中,并且具有用于冷却液的至少一个入口和至少三个出口。冷却系统可以进一步包括再循环管路和旁通管路,热交换器被布置在再循环管路中,旁通管路绕过布置在再循环管路中的热交换器,提供旁通管路以便形成冷却液回路。此外,选择器导向阀可以具有两个控制鼓,并且具有用于控制鼓的可旋转同轴安装和容纳的壳体。第二控制鼓可以被可旋转地安装在第一控制鼓中,第一控制鼓被可旋转地安装在壳体中。此外,选择器导向阀中的至少一个入口能够通向第二控制鼓。壳体可以具有形成选择器导向阀的至少三个出口的至少三个管道区段,并且每一个控制鼓均可以在外表面上具有至少三个开口,其中通过至少一个控制鼓的旋转,至少一个入口可至少被连接至至少一个出口。
[0046]在一个示例中,借助插入控制鼓的另一第二控制鼓来扩大选择器导向阀调整可能性,其中两个控制鼓被同轴地安装在并且可旋转地容纳在一个壳体中。
[0047]两个控制鼓能够相对于彼此旋转,并且每一个控制鼓均能够相对于壳体(即在壳体中)独立地旋转。这里,通过第一控制鼓的旋转实现的每个位置通过第二控制鼓的旋转来产生导向装置的多个另外的不同切换位置,使得可能位置的数量增加若干倍。这允许多个冷却液回路的控制,其中如果期望,特别是能够同时满足不同回路的需要。在这个方面,通过本文所描述的选择器导向阀,能够相当多地改善(例如,优化)冷却装置的控制。
[0048]此外,第二控制鼓的提供以及由此额外产生的旋转可能性使选择器导向阀更不易于发生故障并且因此使冷却系统更不易于发生故障。例如,如果沙粒或一些其他颗粒在壳体与第一控制鼓之间沉积,使得第一控制鼓被堵塞并且不能再被旋转,那么在选择器导向阀的情况下,在壳体中相对于第一控制鼓旋转第二控制鼓并且实现(即采取)不同的选择器位置是可能的。相比于之前的比例阀,通过本文中所描述的选择器导向阀,冷却装置的控制仍然是可能的。
[0049]如果沙粒或一些其他颗粒在两个控制鼓之间沉积使得两个控制鼓被机械地耦接并且不能再相对于彼此旋转,那么在壳体中一起旋转两个控制鼓(即彼此相结合)并且实现不同的选择器位置仍然是可能的。在这种情况下,冷却装置的控制同样仍然是可能的。
[0050]显著减少了冷却系统受损害使得减少(例如,完全停止)通过汽缸盖和/或通过汽缸体的冷却液流的控制的可能性,由此能够大体上减少(例如,消除)内燃发动机的热过载的可能性。应认识到,选择器导向阀可以被配置为控制冷却装置,并且比之前的比例阀更不易于发生故障,特别是可以由污染物(诸如冷却液中的颗粒)引起的故障。
[0051]控制鼓的三个开口实质上能够是冷却液通道,即将控制鼓的内部连接至控制鼓的外部的冷却液通道。所述开口可以是矩形的、圆形的或椭圆形的,或者可以具有任何其他期望的轮廓,其中直径可以大于(优选大于)关于直径横向的流动方向上的长度范围。壳体中的至少三个管道区段不必是物理意义上的管路或管道。因此,管道区段也可以是孔或孔状腔。已经关于开口的轮廓阐述的内容关于管道区段的横截面应用。
[0052]在一个示例中,控制鼓在两端处可以不是开放的。一端闭合或两端都闭合的控制鼓然后也是已经被预期的控制鼓。
[0053]导向装置的切换位置非常重要,并在本文更详细地讨论。在一个示例中,选择器导向阀的出口中的一个被分配给液冷式内燃发动机的汽缸体。
[0054]如之前所讨论的,内燃发动机能够被机械增压,由此增加内燃发动机上的热负荷。在这个方面,汽缸体也装有冷却系统并且独立地(特别是独立于汽缸盖)控制通过汽缸体的冷却液输送量可能是期望的,因为两个部件可以不同程度地承受热负荷,并表现出不同的暖机行为。然而,在暖机阶段开始的时候以及在暖机阶段期间,停止或减少通过汽缸体的冷却液流可能是期望的,以便实现冷却液的升温,并且因此实现内燃发动机的加热。
[0055]在一个示例中,通过至少一个控制鼓的旋转,选择器导向阀的入口可以连接至分配给汽缸体的出口。然后,通过选择器导向阀控制(即减少、增加以及停止)通过汽缸体的冷却液输送量是可能的。
[0056]在另一示例中,选择器导向阀的出口中的一个可以被分配给汽缸盖。汽缸盖可以比汽缸体承受更高的热负荷,因为相比于汽缸体,汽缸盖具有更低的部件质量,装有排气引导管路,并且集成在汽缸盖中的燃烧室壁可以被热排气冲击更长时间。内燃发动机的升压(例如,机械增压或涡轮增压)和排气歧管到汽缸盖内的集成额外地增加了发动机上的热负荷。
[0057]在一个示例中,在冷启动之后,冷却系统可以被配置为减少(例如,停用)汽缸盖的冷却。具体地,通过选择器导向阀可以完全停止通过汽缸
当前第2页1 2 3 4 5 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1