一种在海洋环境和拉应力作用下多根FRP筋耐久性实验装置的制作方法

文档序号:12267142阅读:329来源:国知局
一种在海洋环境和拉应力作用下多根FRP筋耐久性实验装置的制作方法

本发明涉及一种在海洋环境和拉应力作用下多根FRP筋耐久性实验装置,属于耐久性测试领域。



背景技术:

目前,我国正处于大规模基本建设时期。由于混凝土结构在取材、成本以及维护等方面的优势,一直在土建工程中占有绝对的主导地位,在重大土木工程(大型建筑工程、桥梁工程、水工与港口工程)中有着极其广泛的应用。然而传统的钢筋混凝土结构在使用的过程中会产生裂纹,当遇到海水或者含盐的雪或者含腐蚀性的汽液时,钢筋会产生锈蚀,进而导致整个钢筋混凝土结构承重能力的下降甚至结构的破坏。在周围存在高频电磁场时,由于涡流效应,钢筋会产生热量,导致热应力而使混凝土开裂破坏。针对钢筋存在的这些缺点,为提高结构的耐久性,降低结构全寿命成本,工程师和科学家进行了很多探究,譬如采用不锈钢钢筋或者在钢筋表面涂抹环氧树脂等,一定程度上解决了问题,但未彻底解决问题。纤维增强聚合物(Fiber Reinforced Polymer,简称FRP)的出现给人们提供了另一种解决这个问题的思路。使用FRP合理替代比强度低、腐蚀问题严重的结构钢材可望实现重大工程结构的高性能与长寿命,有利于减缓我国铁矿石等传统矿产资源的严重短缺和CO2排放严重的压力,捍卫国家领海主权和开发海洋资源;可高度提升既有和新建重大工程结构服役的安全性和耐久性,建立真正的超长服役寿命结构体系,实现其全寿命周期成本最小化;可实现结构在遭受极端荷载作用后的损伤可控设计,保障结构满足不同程度要求的可修复性;同时可有效地实现重大工程结构的轻量化和低负荷设计。目前我国正在海洋中大规模建设。在海洋中,复杂的环境更容易造成钢筋混凝土结构的腐蚀,给工程造成不必要的损失。利用FRP筋代替钢筋是种有效的方法,但目前FRP筋在海洋环境下的耐久性需要进行研究。在结构中,FRP筋处于受力状态,所以在研究其在海洋环境下的耐久性时,需要对其提供拉应力。

但目前的实验装置一次只能给一根FRP筋提供拉力,这使得实验的效率大大的减缓,也增加了实验的误差。因此,能在模拟海洋环境下同时给多根FRP筋提供拉力的实验装置是需要的。



技术实现要素:

本发明的目的是为了决现有实验装置每次只能给一根FRP筋提供拉力的问题,这种问题会在需要给多根FRP筋提供拉力的实验中造成不必要的误差,而提供一种在海洋环境和拉应力作用下多根FRP筋耐久性实验装置,本发明能在模拟海洋环境下同时给多根FRP筋提供相同拉力,提高实验效率,减少实验误差。

本发明的目的是这样实现的:包括容器、设置在容器底端的上定位板,上定位板的四个角分别安装有四根圆形固定杆,四根圆形固定杆上依次通过螺帽安装有下拉板、上受力板和下受力板,上定位板上还设置有至少三个上FRP筋锚筒,每个上FRP筋锚筒中设置有FRP筋,每个FRP筋的端部固连有下定位块,每个下定位块上连接有一号弹簧,每个一号弹簧的端部连接有上拉块,每个上拉块与安装在下拉板上的带螺纹的钢棒连接,每个带螺纹的钢棒上设置有拉力传感器,拉力传感器通过采集数据线与电脑终端连接,在下拉板与上受力板之间的圆形固定杆上设置有下拉块,且下拉块与下拉板之间设置有调整弹簧,在下拉板的中心位置安装有受拉杆,受拉杆的端部依次穿过上受力板、下受力板并下受力板连接,在每根圆形固定杆的端部还设置有固定螺帽,固定螺帽与下受力板之间设置有二号弹簧。

本发明还包括这样一些结构特征:

1.在容器内设置有加热器,加热器与温度控制仪连接。

与现有技术相比,本发明的有益效果是:本发明能在模拟海洋环境下同时给多根FRP筋提供长时间的相同的拉力,且使其处于相同的环境下,大大加快了实验的速度,减少了实验的误差。本发明能在试件出现蠕变后,调节试件所受的力,使其所受的拉力始终维持在所需的状态。

附图说明

图1是本发明的实验装置整体示意图;

图2是本发明的上定位板的结构示意图;

图3是本发明的下拉板的结构示意图;

图4是本发明的上受力板的结构示意图;

图5是本发明的下受力板的结构示意图;

图6(a)、图6(b)是本发明的上拉块的结构示意图;

图7(a)、图7(b)是本发明的下定位块的结构示意图。

具体实施方式

下面结合附图与具体实施方式对本发明作进一步详细描述。

结合图1至图6,本发明包括上FRP筋锚固筒1、上定位板2、螺帽3、圆形固定杆4、FRP筋5、下定位块6、下FRP筋锚固筒7、弹簧8、螺栓9、上拉块10、螺帽11、拉力传感器12、带螺纹的钢棒13、下拉板14、螺帽15、受拉杆16、采集数据线17、电脑终端18、调整弹簧19、下拉块20、螺帽21、螺帽22、上受力板23、螺帽24、下受力板25、螺帽26、半圆环27、弹簧28、螺帽29、容器30、温度控制仪31、加热器32。具体的说本发明包括容器30、设置在容器30底端的上定位板2,上定位板2的四个角分别通过一号螺帽3安装有四根圆形固定杆4,四根圆形固定杆4上依次通过螺帽安装有下拉板14、上受力板23和下受力板25,上定位板2上还设置有至少三个上FRP筋锚筒1,每个上FRP筋锚筒1中设置有FRP筋5,每个FRP筋5的端部固连有下定位块6,每个下定位块6上连接有一号弹簧8,每个一号弹簧8的端部连接有上拉块10,每个上拉块10与安装在下拉板14上的带螺纹的钢棒13连接,每个带螺纹的钢棒13上设置有拉力传感器12,拉力传感器通过采集数据线17与电脑终端18连接,在下拉板14与上受力板23之间的圆形固定杆上设置有下拉20,且下拉块20与下拉板14之间设置有调整弹簧19,在下拉板14的中心位置安装有受拉杆16,受拉杆16的端部依次穿过上受力板23、下受力板25后通过螺帽26与下受力板25连接,在每根圆形固定杆的端部还设置有固定螺帽29,固定螺帽29与下受力板之间设置有二号弹簧28。在容器30内设置有加热器32,加热器32与温度控制仪31连接。

先将只有一端锚固的FRP筋穿入上定位板2中,然后将另一端锚固,再用螺栓9将下定位块6连接在一起,并保证FRP筋从中间空洞穿过。将弹簧8的一端与下定位块6连接,另一端与上拉块10连接。弹簧8用于消除因零件的自重产生的拉力。螺帽11的主要作用是调节上拉块10到上定位板2的距离,使其几个距离相同。通过带螺纹的钢棒13将上拉块与下拉板连在一起,拉力传感器12主要用于调整初始状态和读取最终的拉力数值。螺帽15主要被用于调节下拉板14的水平状态,使其在初始状态时处于水平状态。螺帽22主要使初始的拉力为零。将拉力作用于拉杆16,螺帽21使拉力传送到整个实验装置。螺帽24固定上受力板23,螺帽26将拉杆16与下拉力板连接在一起。通过增加上受力板23和下受力板25之间的距离,将拉力作用到拉杆16上,进而将拉力作用到整个实验装置。根据需要测试FRP筋的个数可以适当选择上定位板2和下拉板14上的孔数。在容器30内注入一定量的海水,利用加热器32对海水进行加热,温度控制仪控制海水的温度。定位装置将试件定位在实验装置内;调节装置调节FRP筋初始受力状态和最终受力状态,保证了多根FRP筋受到的拉力相同;拉力传感器将试件所受的拉力数据传送到电脑终端,便于调节FRP筋的受力情况。

本发明由定位装置、调节装置、加载装置、后台监控设备和温度控制设备组成。所述的定位装置包括上定位板和下定位板,所述调节装置包括弹簧、上拉板、拉力传感器和下拉板,所述加载装置包括拉杆、上受力板和下受力板,所述后台监控设备包括电脑终端。定位装置将试件定位在实验装置内;调节装置调节FRP筋初始受力状态和最终受力状态,保证了多根FRP筋受到的拉力相同;拉力传感器将试件所受的拉力数据传送到电脑终端,便于调节FRP筋的受力情况。温度控制设备用于调节和保持海水的温度。本发明能在海洋环境下同时给多根FRP筋提供长时间的相同的拉力,且能在试件出现蠕变后,调节试件所受的力,使其所受的拉力始终维持在所需的状态。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1