一种可区分折射符号的高灵敏度测量材料光学非线性的方法_2

文档序号:8920983阅读:来源:国知局
等研宄领域,尤其是非线性光功能材料的测试和改性等 关键环节,利用本发明方法,能够保证测试参数全面,测试结果准确,极大地减小了测量的 误差;另外本方法对光路要求简单,测试速度快捷。
【附图说明】
[0017] 附图1是本发明实施例一中的圆形挡板示意图; 附图2是本发明实施例一中的高灵敏度泵浦探测方法的工作原理图; 附图3是本发明实施例一中开孔归一化透过率随延迟时间的变化图; 附图4为本发明实施例一中挡板归一化透过率随延迟时间的变化图。
[0018] 其中:1、入射激光束;2、分束器;3、反射镜;4、直角棱镜;5、反射镜;6、凸透镜; 7反射镜;8、凸透镜;9、待测样品;10、分束器;11、凸透镜;12、第一探测器;13、圆形挡板; 14、凸透镜;15、第二探测器。
【具体实施方式】
[0019] 下面结合附图及实施例对本发明作进一步描述: 实施例一:参见附图2所示,一种高灵敏度的材料光学非线性参数测量方法,以探测光 路和泵浦光路为基础,泵浦光路主要由两个反射镜3、5,直角棱镜4,凸透镜6组成,直角棱 镜4可以前后平移以改变泵浦光的延迟时间;探测光路主要由反射镜7,凸透镜8,分束器 10,凸透镜11,圆形挡板13,凸透镜14,第一探测器12和第二探测器15组成;泵浦光路与 探测光路同时作用在待测样品9上,但样品9不处于两个透镜的焦点。
[0020] 利用分束器2把激光脉冲1分成泵浦光束3和探测光束8。探测光束经过反射镜 7改变方向,透过凸透镜10会聚到放置在偏离焦点的待测样品9上,经过分束器10后,分 成两束光,透射的一束经圆形挡板13后,经凸透镜14会聚后由第二探测器15接收,反射的 一束经凸透镜11会聚后由第一探测器12接收;泵浦光束经过反射镜3,直角棱镜4,反射 镜5构成的延迟平台,由凸透镜6聚焦到待测样品9上,使待测样品9处于基态的粒子受到 激发跃迀到激发态,粒子布居数分布的变化对探测光的吸收和折射产生影响,又由于粒子 布居数随时间是不断变化的,前后平移直角棱镜4可以对不同时刻的探测光产生不同的影 响,并被第二探测器12和第一探测器15接收。
[0021] 在本实施例中,激光光束为532nm激光,脉宽21ps。样品为AlCIPc/DMF溶液,其在 532nm处线性吸收很弱,具有较强的激发态光学非线性。
[0022] 具体的检测步骤为: (1)在样品前挡住探测光,将第二探测器15放在样品9的位置,测量泵浦光的能量。
[0023] (2)放上样品9,前后平移直角棱镜4,连续记录不同延迟时间的探测光的能量。
[0024] (3)分别作出开孔归一化的透射能量以及闭孔归一化随延迟时间的变化曲线。
[0025] 对于AlCIPc/DMF非线性测量的实验和理论计算具体过程如下: 在考虑慢变振幅近似和薄样品近似的情况下探测光在样品中传播满足
An为折射率变化,A?为吸收系数变化,f激光在样品中传播的光程。在AlCIPc/DMF溶液样品中,
式中,,和,與分别为基态和第一激发态以及第三重激发态的粒子布居数;,巧 !分别为基态和第一激发态的吸收截面;A%,Alfe分别为第一三重激发态的折射体积与 基态折射体积的差。
[0026] 因为在泵探实验中探测光比泵浦光弱了很多倍,所以可以认为激发态上的粒子布 据数是由泵光产生的
图3是AlCIPc/DMF溶液的泵浦探测的吸收结果理论曲线。最初,溶液的吸收随着时间 的变化而迅速增加,这是主要是由于第一激发态吸收的缘故,说明第一激发态的吸收截面 巧要比基态的吸收截面〇〇大。当泵浦脉冲光通过样品后,探测光的透过率开始恢复,并开 始出现一段低的不变的透过率。这主要是因为第一激发态的粒子布居数开始减少,并跃迀 到基态和第一三重激发态T1。之所以会出现一段比较长的低透过率,主要是由于第一三重 激发态具有较大的吸收截面和能级寿命比较长的缘故。图4为AlCIPc/DMF溶液的泵浦探测 非线性折射理论曲线,零延时后出现一段高的缓慢变低的透过率是因为第一激发态的折射 体积比基态折射体积以及三重激发态折射体积大并且第一三重激发态寿命比较长的缘故。
【主权项】
1. 一种可区分折射符号的高灵敏度测量材料光学非线性的方法,把激光束分为两束, 一束光强比较强,一束光强比较弱;光强较强一束为泵浦光,较弱的一束为探测光,泵浦光 经过时间延迟作用到待测样品9上,使处于基态的非线性样品产生非线性吸收和非线性折 射;所述待测样品9位于探测光光路中离透镜8焦平面后面一段距离的位置,出射的探测光 经一分光镜10分为两束,一束进入第一探测器12,另一束通过一个中心和光轴重合的一个 圆形挡板后进入第二探测器,其特征在于:样品不处于两个透镜的焦平面进行测量,而是离 焦平面一段距离;在探测光路的样品后的远场位置放置一个圆形不透光挡板,其测量步骤 为: ① 放上待测样品,用两个探测器分别收集不同时刻探测光的能量; ② 对上述获得的不同延迟时间的探测光能量曲线进行处理,获得所需的检测材料的光 学非线性参数。2. 根据权利要求1所述的高灵敏度泵浦探测方法,其特征在于:所述步骤②中的处理 包括,分别作出开孔归一化的透射能量以及闭孔归一化随延迟时间的变化曲线,对开孔归 一化透射能量随延迟时间的变化曲线进行拟合得到有关非线性吸收的光学参量的大小和 寿命;在非线性吸收参数已知的情况下,通过对挡板透过率归一化随延迟时间的变化曲线 进行拟合得到非线性折射相关参量的数值。3. 根据权利要求1所述的高灵敏度泵浦探测方法,在探测光路的样品位置在离透镜焦 点后一段距离的位置。4. 根据权利要求1所述的高灵敏度泵浦探测方法,在探测光路的样品后的远场位置放 置一个圆形不透光挡板。5. 根据权利要求1所述的高灵敏度泵浦探测方法,其特征在于:所述泵浦光的时间延 迟通过两个反射镜和一个直角棱镜实现,由反射镜改变泵浦光的方向,调节直角棱镜和反 射镜之间的间距,改变泵浦光的行进距离,实现对延迟时间的调节。6. 根据权利要求1所述的高灵敏度泵浦探测方法,其特征在于:所述直角棱镜的移动 范围为0到30cm,时间延迟范围为_200ps到I. 8ns。7. 根据权利要求1所述的高灵敏度泵浦探测方法,其特征在于:优选的技术方案,所述 探测光和泵浦光聚焦到待测样品上的夹角(α )在3°到8°范围内。
【专利摘要】本发明公开了一种高灵敏度测量材料光学非线性泵浦探测方法,把激光束分为两束,样品位置处于偏离透镜焦点后一定距离,使远场光斑的变化达到最大。泵浦光经时间延迟作用到待测样品上,使非线性样品产生非线性吸收和非线性折射;出射的探测光经分光镜分为两束,一束进入第一探测器,另一束通过一个中心和光轴重合的圆形挡板后进入第二探测器;其特征在于:在所述探测光光路中,远场放置一个中心和光轴重合的圆形挡板,样品处于透镜焦点后的一定距离,使远场光斑的变化达到最大。其测量步骤为:①放上待测样品,用两个探测器分别收集不同时刻探测光的能量;②对不同延迟时间的探测光能量曲线进行处理,获得光学非线性参数。按本发明方法工作的测量系统灵敏度非常高、数据处理简单,非线性吸收和折射可以同时测量而不需要分开进行、可区分非线性折射的符号、测量结果精确等优点。
【IPC分类】G01N21/31, G01N21/41
【公开号】CN104897593
【申请号】CN201510323091
【发明人】宋瑛林, 杨俊义
【申请人】苏州微纳激光光子技术有限公司
【公开日】2015年9月9日
【申请日】2015年6月12日
当前第2页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1