基于非线性最小二乘改进方法的聚丙烯熔融指数预报的制作方法

文档序号:6466988阅读:244来源:国知局
专利名称:基于非线性最小二乘改进方法的聚丙烯熔融指数预报的制作方法
技术领域
本发明涉及一种聚丙烯熔融指数预报方法。
背景技术
聚丙烯是以丙烯单体为主聚合而成的一种合成树脂,是塑料工业中的重要产品,但作为 一个大量参数相互耦合的多输入多输出强非线性生产过程,传统的机理建模(包括反应器动 态建模和熔融指数建模)受到很大的限制。熔融指数作为聚丙烯产品质量控制和加工工艺的 重要参考指标,其可靠建模将能指导平稳操作并提高产品质量。
经过对现有关于熔融指数建模技术文献的检索发现,目前熔融指数建模主要包括机理建 模和数据建模。机理建模(如蒋京波,2002)可以充分利用已知的过程知识,从事物的本质 认识外部特征,使用范围较大,但要比较熟悉生产流程,对于某些复杂的过程难以建模;数 据建模也称经验建模,通过实测或积累的操作数据,用软测量方法得到经验模型。神经网络 由于完全不依赖系统模型,在经验建模中占了很大的比重,比较有代表性的文章是JianShi, 2006,但为保证建模可靠性并简化网络,要对大量数据做预处理,不仅需要庞大的计算,并 且预处理方法选择的优劣会影响建模精度。综合反应机理和生产数据的建模方法可兼有二者 长处、互补其短,代表生产建模的前沿方向。尽管综合建模的理论发展日趋成熟,但对于实 际生产过程而言,如果建模的"结合点"选取不当,建模效果并不理想,以至于尚未发现熔 融指数综合建模的文献和专利。

发明内容
为了克服己有的聚丙烯熔融指数预报方法的建模可靠性差、计算复杂、建模精度低的不 足,本发明提供一种建模可靠性好、计算简单、建模精度高的基于非线性最小二乘改进方法 的聚丙烯熔融指数预报方法。
本发明是通过以下技术方案实现的一种基于非线性最小二乘改进方法的聚丙烯熔融指数预报,首先通过将机理模型的非线 性项泰勒展开并做变量替换而得到线性化模型,采用线性神经网络辨识该模型;再将线性神 经网络的辨识结果作为非线性最小二乘的参数初值,对所述机理模型进行非线性最小二乘辨 识,得到最终的辨识结果,该模型作为熔融指数的实时预报模型。
作为优选的一种方案所述预报方法包括如下步骤
(1) 建立熔融指数与操作变量参数的机理模型,参见式(8):
ln(A//) = /tl +爭+ 3.36 ln(A:3 + M[/f2 ]) ( 8)
(2) 采用线性神经网络辨识参数对所述机理模型做线性化处理,采用泰勒公式展开底 数是变量线性组合的对数项,即公式(8)的最后一项,保留其二阶以下的部分,结果为
In(/B + /W[//2 ]) "3 + W[//2 ]-丄("+ >M[//2》2 = A:3 + >M[//2 ]
其中A:3' =yt3-i(W)2,yt4' =M- .A:4,A:5'=—丄(A:4)2 2 2
熔融指数的对数表达式写成
In, = Kl + 7 + 3.36K3' [//2 ]+ ' [//2 ]2
(9)
(10)
其中:
若令ln(M/) = 7,条=Jc2,3.36[//2] = ",3.36[//2]2 = x4 ,则有
y二^l'xl +〖2.;c2 +〖3.Jc3 +尺4';c4 (11) 其中,xl代表常数矩阵,是与x2、 x3、 x4同维的单位向量;
将户-[xU2,;c3,x4]'作为输入、r-乂作为输出,在输入输出己知的情况下,应用 恥W/"0设计出特定的神经网络,其权值和阈值能保证均方差最小,并将辨识的阈值《1,权值〖2,《3,《4转化成A:2, A:3,,即得到参数辨识初值4> = (W, A:2, A:3,M);
(3)非线性最小二乘辨识lsqcurvefit是非线性最小二乘曲线拟合函数,基本表达式为 I = /Wcwn^/^(/w",xO,xdato,:^toa),即已知输入数据;a/ato 、输出数据ydato和非线性函数 >",函数从初始值xO开始搜索,寻找与数据拟合最好的非线性函数/""中的系数X;将线 性神经网络辨识得到的参数作为非线性最小二乘的初值,调用寄存在存储器中的现场采集数 据作为模型的输入输出,采用MATLAB中的lsqcurvefit函数实现该非线性模型的非线性最小 二乘辨识,得到的系数即为参数的最终辨识结果。 本发明的技术构思为
建立模型根据聚丙烯生产的动态化学反应机理,并査阅相关文献,建立熔融指数与操
作变量参数的机理模型(含待定参数),通过适当假设来简化该模型。
将Ziegler-Natta作为催化剂的反应体系的烯烃聚合反应主要受反应动力学影响,催化剂 不同活化位置上的聚合物特性决定了整个聚合物产品的特性。已知,在活化位置类型为j处, 新产物的瞬时MI和瞬时数均聚合程度r"(力的关系如下
将数均聚合程度/;C/)表示成聚合反应中活化链的增长速率i^C/)(丙烯和乙烯之和)与 链转移速率&C/)(向丙烯和乙烯单体转移、向氢气转移、向催化剂转移和杂质失活影响之
和)之比,并将链增长速率表示如下
& g)=[仏(胁u (讽")+(肌(力) (2)
(力=[W ")(m2 (,! ") +机2 ")①2 (力)
其中[M」、[M」和C'C/)分别表示丙烯浓度、乙烯浓度以及活化位置j的催化剂浓度, i^,C/),z、l,2代表丙烯和乙烯的链增长速率,= l,2,m = 1,2表示单体m在末端加上单体
i的活化链增长速率常数,0,(_/),/ = 1,2代表末端单体为i的单体链占全部链增长的分率。
考虑到实际工业生产中,吸收的乙烯单体远远小于丙烯单体,即末端单体是乙烯(—2) 的增长链的概率相当小,为简化模型,可近似认为该值为0,这样,得到总的链增长速率的
6简化表达式
a (力=C* (力([M, k (力+ [M2 fe12 (力) 同理,得到链转移速率的简化表达式
& ") = c* (力([M,]仏(y) + [M2 ]仏(力+ [//2 (力+ ,R (力+ [辆力)
这样,可得到瞬时数均聚合程度的表达式并将其近一步简化处理,有
〖M》u(j,) [M,feu(刀[MfeuC/) [Ml(/)J
(3)
(4)
(5)
假设链增长的活化能为五^,各种类型链转移的活化能均为五^,利用Arrhenius方程,
分别得到链增长速率常数^ (r)链转移速率常数^ (r)的表达式
机T)=机。exp(-
a Ly 々J
(6)
(7)
将(6)代入(5),得到熔融指数的表达式,并将表达式两边取对数,结果为 ln(M/) = Zt6(丄—丄)+ a ln(A5 + A:l N +1^ + A:3厲+ A:4
、r [Mj K] [m] [W
考虑到环管反应器内,乙烯浓度很小,丙烯浓度、催化剂浓度及杂质影响比较固定, 令a为3.36,得到均聚PP的最终简化表达式
ln(M/)41 + t + 3.361n(/b3 + A;4[H2]) (8)
采用线性神经网络辨识参数若非线性最小二乘的参数初值选择不当,将会使系统陷入 局部最优而影响最终的辨识结果。这里的选择不当是指大范围偏离辨识结果,不要求精确值。 由于线性神经网络只具有线性神经元,结构清晰,算法简洁,在对辨识精度要求不高的场合 得到了广泛的应用。
由于熔融指数表达式非线性,首先要对其做线性化处理,这里采用泰勒公式展开底数是 变量线性组合的对数项,即公式(8)的最后一项,保留其二阶以下的部分,结果为ln(W + M[//2 ]) "3 + Zb4[//2 ]-会(A:3 + M[//2 ])2 = W + M[//2 ] —^&3)2 — I*4)2]2 — W. A4[^2]= W + "'[仏]+ " [A]2
这样,熔融指数的对数表达式可以写成
ln(均=/a +学+ 3.36幻.[7/2 ]+ . [i/2 ]2
(9)
(10)
其中
in = ytl + 3.36B' 41 + 3.36
A:3 — i(B)2
若令ln(M/) = = x2,3.36[/f2 ] = x3,3.36[H2 ]2 = x4 ,则有
_y = ^l-;cl +〖2-x2 + i:3'x3 + i:4-x4 (11)
其中,xl代表常数矩阵,是与x2、 x3、"同维的单位向量。
将尸-[;d,x2,;c3,;c4]'作为输入、r-y'作为输出,在输入输出已知的情况下,应用 朋^//"^)可以设计出特定的神经网络,其权值和阈值能保证均方差最小,并将辨识的阈值 〖1,权值《2,〖3,《4转化成Al,yt2,A:3,A:4,即得到参数辨识初值《。=(W,A:2,yB,A:4)。
非线性最小二乘辨识lsqcurvefit是非线性最小二乘曲线拟合函数,基本表达式为 X = /wcwn^/ /(/朋,xO,x&to,j^/ato),即已知输入数据x由to 、输出数据ydato和非线性函数
>",函数可从初始值XO开始搜索,来寻找与数据拟合最好的非线性函数/W7中的系数I。
将线性神经网络辨识得到的参数作为非线性最小二乘的初值,调用寄存在存储器中的现场采
集数据(这里选择178组数据的前100组)作为模型的输入输出,采用MATLAB中的lsqcurvefit
函数实现该非线性模型的非线性最小二乘辨识,得到的系数即为参数的最终辨识结果。
本发明的有益效果是,先通过动态反应机理建立模型,再通过现场数据,将线性神经网
络辨识结果作为初值,采用非线性最小二乘方法辨识模型。此综合建模方法得到的模型简洁、
易用,同时具有较高的预测精度。该模型可用于指导实际的聚丙烯生产过程。


图1是某石化企业Spheripol法生产聚丙烯的工艺流程图。图2是用给定的前100组数据进行聚丙烯熔融指数拟合的曲线图。图3是用给定的后78组数据进行聚丙烯熔融指数校验的曲线图。
具体实施例方式
以Spheripol工艺生产聚丙烯的工业流程为例。图1给出了典型的Spheripol法生产聚丙烯的工艺流程图,从图中可以看出,影响反应的物理量有催化剂、丙烯、乙烯、氢气和温度(图中未标温度)。
第一步确定数据组。
参考技术方案l所述内容,对生产工艺流程做了简化,此时涉及影响聚丙烯熔融指数的参数只有温度T和氢气浓度[//」。对反应流程有一定了解的情况下,得知主反应在反应器R201和R202中发生,且各自的贡献比例分别为55%和45%。这样,如果对反应过程的要求不严格,涉及到的温度和氢气浓度可近似认为是两反应器内反应温度和供给氢气浓度的平均值。
第二步线性神经网络辨识。
对技术方案2所推导出的表达式(11),采用线性神经网络函数newlind,辨识出幻,《2,〖3,《4,其中幻作为阈值,夂2,K3,K4作为权值。这里需要说明的是,由于[//2]2的数值很大,造成其对应的权值系数很小,要通过增加小数点位数输出得到较精确值。
将得到的辨识结果代入变量替换表达式,得原模型的参数辨识初值
& =(A;l,A:2,A:3,it4) = (—1.7478,87.2730,0.6173,6.7210xl0—4) (12)
第三步非线性最小二乘辨识。
将A作为非线性最小二乘的初值,调用lsqcurvefit函数,选取存储器中的前100组数据,对该非线性模型进行最小二乘辨识,得到的辨识结果为
(W, A:2,yt3, A4) = (-1.0713,87.9498,1.2946,8.3559 x 1(T5) (13)
这样,熔融指数的表达式可以写成ln(M/) = —1.0713 +;+ 3.361n(l .2946 + 8.3559 x 10画5 [//2 ]) (14)
第四步模型的拟合与校验。
为了验证所建模型的性能,需要对模型进行拟合和校验。选取存储器中的前100组数据
用于模型拟合,后78组数据用于模型校验,得到如图2和图3所示的仿真图。可以看出,无论是拟合结果还是校验结果,误差都很小。特别是拟合效果非常好,量测数据跟踪模型的能力很强。
该模型用于聚丙烯生产过程控制能明显提高控制精度,提高经济效益。
上述实施例用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明做出的任何修改,都落入本发明的保护范围。
权利要求
1、一种基于非线性最小二乘改进方法的聚丙烯熔融指数预报,其特征在于所述预报首先通过将机理模型的非线性项泰勒展开并做变量替换而得到线性化模型,采用线性神经网络辨识该模型;再将线性神经网络的辨识结果作为非线性最小二乘的参数初值,对所述机理模型进行非线性最小二乘辨识,得到最终的辨识结果,该模型作为熔融指数的实时预报模型。
2、 如权利要求1所述的基于非线性最小二乘改进方法的聚丙烯熔融指数预报,其特征在 于所述预报方法包括如下步骤(1) 建立熔融指数与操作变量参数的机理模型,参见式(8):ln(M/) = W +爭+ 3.36 ln(A:3 + &4[//2 ]) (8 )(2) 采用线性神经网络辨识参数对所述机理模型做线性化处理,采用泰勒公式展开底 数是变量线性组合的对数项,即公式(8)的最后一项,保留其二阶以下的部分,结果为ln(B + A:4[//2 ]) = A:3 + M[//2 ]-丄(A:3 + M[//2 ])2 "3 + *4fc ]其中A3' —会(B)W =A:4-A:3.H"=—会阔2熔融指数的对数表达式写成In,=幻+ f + 3.36K3.[仏]+ 3.36K4. [H2 ]2(9)(10)其中A3-丄(W)2 2若令ln(M/)=少,如=jc2,3.36[//2] = x3,3.36[//2]2 = x4 ,则有y = J0-;d + _O-Jc2 +〖3.jc3 +〖4.x4 (11) 其中,xl代表常数矩阵,是与x2、 jc3、 x4同维的单位向量;将P二[xl,x2,Jc3,x4]'作为输入、r-;/作为输出,在输入输出已知的情况下,应用 恥M^;^()设计出特定的神经网络,其权值和阈值能保证均方差最小,并将辨识的阈值iH, 权值K2,兀3,ii:4转化成A:l,A:2,A:3,A:4 ,即得到参数辨识初值^。 = (WJ2,A:3,M);(3)非线性最小二乘辨识lsqcurvefit是非线性最小二乘曲线拟合函数,基本表达式为 X = /Wcwn^/^(/w",xO,X(iato,j^"to),艮卩已知输入数据j /ato 、输出数据_y^rta禾口非线性函数 /朋,函数从初始值xO开始搜索,寻找与数据拟合最好的非线性函数/朋中的系数X;将线 性神经网络辨识得到的参数作为非线性最小二乘的初值,调用寄存在存储器中的现场采集数 据作为模型的输入输出,采用MATLAB中的lsqcurvefit函数实现该非线性模型的非线性最小 二乘辨识,得到的系数即为参数的最终辨识结果。
全文摘要
一种基于非线性最小二乘改进方法的聚丙烯熔融指数预报,首先通过将机理模型的非线性项泰勒展开并做变量替换而得到线性化模型,采用线性神经网络辨识该模型;再将线性神经网络的辨识结果作为非线性最小二乘的参数初值,对所述机理模型进行非线性最小二乘辨识,得到最终的辨识结果,该模型作为熔融指数的实时预报模型。本发明建模可靠性好、计算简单、建模精度高。用生产数据进行模型拟合和校验,得到比较好的仿真效果。此模型可用于工业中,指导聚丙烯的生产,提高熔融指数的预测精度,大幅度提高产品质量。
文档编号G06F17/50GK101458730SQ20081016325
公开日2009年6月17日 申请日期2008年12月11日 优先权日2008年12月11日
发明者立 俞, 王静芳 申请人:浙江工业大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1