氮化钽及双层的等离子体增强原子层淀积的制作方法

文档序号:6833628阅读:427来源:国知局
专利名称:氮化钽及双层的等离子体增强原子层淀积的制作方法
技术领域
本发明涉及电互连结构。更具体的,其涉及高性能集成电路中的“后段工艺”(BEOL),以及在这些器件中使用的扩散阻隔。
背景技术
考虑这样的事实,铜具有较高的电迁移阻抗,因而可靠性好,并且电导率比铝线的高,在半导体器件制造中,铜互连被作为标准互连技术广泛采用。然而,要成功实现铜互连技术,由于铜与铝相比具有较高的扩散率,容易通过电介质扩散,产生危害CMOS晶体管性能的深能级缺陷,必须要有合适的具有高热稳定性,低电阻率以及与铜反应活性低的扩散阻隔材料。因此,通常采用一种薄的钽/氮化钽(Ta/TaN)双层作扩散阻隔来包封铜互连部件中所用的铜线和通路。目前,离子化物理气相淀积(I-PVD)是制备这些Ta/TaN层的一种常用的淀积技术。然而,对于这些层所用的PVD技术不能期望用于采用的节点小于大约45纳米的技术中,因为其淀积膜的形状与这些较小的部件一致(保形)的能力有限。
近来,作为一种可供选择的淀积技术,原子层淀积(ALD)已被广泛研究。由于其固有的原子级控制和自饱和化学,由ALD制备的膜可以高度保形并且均匀。尽管可能采用ALD用一种卤化钽前体来淀积金属Ta膜,由于两个原因,Ta和TaN双层的ALD却鲜有成功。首先,常规可用的TaN的ALD用一种无机源(例如TaCl5)与氨气(NH3)反应,已经被报导制备氮化钽的一种高阻相,Ta3N5相,这使用这些膜在导电电路中作阻隔具有实用上的困难。第二,尽管可能用一种金属-有机Ta源比如像TBTDET(叔丁基酰亚氨基三(二乙基酰氨基)钽)来淀积TaN膜,却不可能用这种前体通过ALD来淀积金属Ta膜,因为在这种化学系统中不能还原TaN键。
最近已经发展了用氯化物和原子氢作金属前体和反应剂的钽等离子体增强ALD(PE-ALD)。可以在2000年7/8月的J.Vac.Sci.Technol.B18(4)中,于S.M.Rossnagel所作的Plasma-Enhanced Atomic LayerDeposition of Ta and Ti For Interconnect Diffusion Barriers中找到ALD的完美说明和执行ALD的设备,这里将此文整体作为参考。
发明简述所以,本发明的一个方面是提供一种制备可靠的铜扩散阻隔的方法。
本发明的另一个方面是提供一种由相对高纯的材料,特别是不含碳的材料,制成的铜扩散阻隔。
本发明针对一种采用PE-ALD,淀积氮量可控的氮化钽层,以及淀积氮化钽/钽阻隔的新颖简单的方法。低电阻率的立方氮化钽薄膜可以通过等离子体增强原子层淀积(PE-ALD),用一种卤化钽,比如TaCl5作金属前体以及一种氢/氮等离子体来生长。淀积可以通过交替暴露在TaCl5和由一种氢和氮的混和物组成的等离子体中进行,或者连续暴露在氢等离子体和氮等离子体中进行。在ALD程序的第二个反应步骤中,可以通过改变氮的分压来控制膜中的氮含量,使氮和钽的比率在从0到最高1.7。在淀积了氮化钽之后,通过简单的关闭氮气流就可以淀积氮化钽/钽双层(或者多层)。这种双层表现出好的铜扩散阻隔性能。
因此,本发明涉及一种在衬底上制备一种氮化钽层的方法,包括在存在氢等离子体和氮等离子体的条件下,通过卤化钽前体的等离子体增强原子层淀积在衬底上淀积该层。优选的,卤化钽前体是五氯化钽。该方法进一步包括改变氮等离子体的浓度,因而改变层中的氮含量。可以改变氮等离子体的浓度使层中含有的氮与钽的浓度比在0-1.7之间。该方法还进一步包括将氮等离子体的浓度减小到0,这样就可制备基本上不含氮的钽层。因而,在第一个时间段,氮的浓度是0以外的其它值,在第二个阶段,氮等离子体的浓度基本上是0,这样,制备出的第一层是氮化钽,第二层是基本上不含氮的钽。这种第一层和第二层的组合可用作铜的扩散阻隔。优选的,第二层淀积在第一层的上面。在淀积过程中,衬底的温度在100℃-400℃之间,或许是300℃。
其上淀积这种层的衬底选自硅,上面有一层二氧化硅的硅以及具有低介电常数的其它介电材料,包括多孔介电质。低介电常数的衬底具有的介电常数可在2.0-3.0的范围。衬底可以具有铜导体。
依据本发明,此淀积可以包括将衬底暴露在一种惰性气体携带的卤化钽中;将衬底暴露在氢和氮等离子体中;并重复这些步骤,例如,共进行40到250次,直到使该层具有所希望的厚度,例如,2到10纳米。将衬底暴露在惰性气体携带的卤化钽中可以在3.0×10-2Torr的压力下进行。在将衬底暴露在氢和氮的等离子体中的过程中,氢的分压可以是2.5×10-2Torr。将衬底暴露在惰性气体携带的卤化钽中可以进行大约2秒;在将衬底暴露在氢和氮的等离子体中可以进行大约5秒。衬底可以同时或者顺序暴露在氮等离子体和氢等离子体中。
本发明还涉及包括衬底和在该衬底上有氮化钽和钽双层的加工制品,氮化钽和钽每个都是基本上不含碳的。优选的,钽层包括无定形钽。还优选的是钽淀积在氮化钽上。
附图简述进一步结合附图阅读下面的本发明的详细描述,本发明的这些和其它方面,特征以及优点将变得明显。


图1是在氮分压和氢分压的不同比率下,由PE-ALD淀积的一系列TaNx层的X光衍射数据图(强度对角度)。
图2是由PE-ALD淀积TaNx层的生长速率以及氮含量与氮氢分压的比率之间的函数关系图。
图3是由PE-ALD制备的TaNx层的电阻率与N/Ta比率之间的函数关系图。
图4是在给定的等离子体分压的比率和给定的温度下,由PE-ALD淀积TaNx层的生长速率和氮含量与其在等离子体中的暴露时间之间的函数关系图。
图5是在给定的等离子体分压的比率和给定的温度下,氯和氢的含量以及电阻率值与在等离子体中的暴露时间之间的函数关系图。
图6是不同生长温度下的一系列x光衍射数据(强度对角度)。
图7是由PE-ALD淀积的TaNx层的氮含量和生长速率与温度之间的函数关系图。
图8是由PE-ALD淀积的TaNx层的氯和氢的含量以及电阻率与温度之间的函数关系图。
图9所示的是铜扩散阻隔失效与PE-ALD TaN/Ta双层的退火温度之间的函数关系。
发明描述在针对每一个具体的应用的期望组合中能够实现本发明中所描述的各种形式。这样,具体的限制,以及/或者这里描述的实施方案改良,或许对特定的应用具有特定的优点,不必在所有的应用中都采用。并且,也应该意识到在包括本发明的一个或者多个概念的方法,系统和/或设备中,也不需要全部的限制都满足。
可以用来执行依据本发明的方法的装置在上面提到的2000年7/8月的J.Vac.Sci.Technol.B18(4)里的,由S.M.Rossnagel所作的题为Plasma-Enhanced Atomic Layer Deposition of Ta and Ti ForInterconnect Diffusion Barriers的论文中进行了描述。如前所示,将此文的教导在这里整体并入作为参考。
将尺寸大小在,例如,但不限于,直径200mm的样品装入一个商购的或者非商业的ALD室中。该室用一个反应气体级涡轮分子泵(reactive-gas grade turbo molecular vacuum pump)抽吸,工作本底压力为10-7Torr。样品可以用加热器比如陶瓷电阻加热盘加热,提供高达,比如,但不限于,450℃的生长温度。可以通过改变加热器上的电流来控制这个温度,加热器可用一个贴在样品上的热偶来进行初始标定。
用一个装在玻璃管中的固态TaCl5(粉体)源作为金属前体。尽管可以用TaCl5作Ta的卤化物前体,也可以使用其它的卤化Ta,包括TaF5,TaI5和TaBr5。可以将玻璃管保持在100℃以形成足够的蒸汽压。将所有的传输管道优选的加热到130℃至150℃之间,以防止前体的凝聚。为了提高传输性,可用氩作为携载气体,通过例如一个位于装有此源的管具上游的泄漏阀来控制流量。
原子氢和活性氮可由一个通过例如闸门阀连到样品室的石英管来生成。氢气和氮气可以通过例如泄漏阀供应。该石英管可用一个携带的射频能量在13.56MHz的多匝线圈缠绕,其功率水平例如达到最高1200瓦。优选的,在样品室和管区之间使用闸门阀,这样前体不会暴露在管区中。可以用发光谱来监测生成的自由基。对于H等离子体,观测到大的原子H的峰,而对于N等离子体,仅有与N2+相关的峰,表明对N来讲,活性前体是活化的分子氮,而不是原子氮。H与N之间的这种不同或许是因为分子氮的离解能较高。
淀积循环包括如下步骤将衬底暴露在Ar气携带的TaCl5中,将腔室抽空,打开氢和氮源的阀门并启动RF等离子体一段设定的时间,然后将氢和氮源与等离子体关闭,让腔室回复到本底压力。在循环开始之前,用泄漏阀设定氢和氮的分压。理想的,该循环可以使吸附的TaCl5层完全反应并淀积成TaN单层的一部分。对于Ta PE-ALD,采用相同的步骤,但是不用氮,氮的阀门是关闭的。
尽管淀积采用的是硅或者二氧化硅衬底,对于铜扩散阻隔性能的测量,采用的是多晶硅衬底。然而,本发明并不局限于使用硅或者二氧化硅衬底。淀积可以在各种衬底上进行,例如金属,包括Cu,Ta,TaN,Ru,W和电介质,比如SiCO,MSQ(甲基硅倍半氧烷),低k值的HSQ(氢硅倍半氧烷)或者高k值的氧化物,包括HfO2,ZrO2。为此目的,要在不中断真空的情况下在ALD膜上淀积溅射的铜膜,可以采用一个通过加载闸室(load lock chamber)连接的超高真空(UHV)直流(DC)磁控溅射室。可以用一种原位电阻率和光散射测量系统来确定扩散阻隔的温度。退火可以在氦气氛中进行,例如,3℃/s升高到1000℃。
实施例一般通过在TaCl5中暴露2秒钟,在等离子体中暴露5秒钟来生长氮化钽膜,这与ALD的饱和条件相一致。这种饱和归因于前体的自限制吸附。一个循环的总时间一般是12秒,包括在TaCl5中和等离子体中暴露之后的抽空时间。暴露过程中,将氢分压设定在2.5×10-3Torr,氮分压是可变的。暴露在TaCl5过程中的总压力(氩和TaCl5蒸汽)恒定在3.0×10-2Torr。为了制备厚度在20到400埃范围之内的氮化钽膜,依赖于生长条件,进行的循环数一般为50-800。
图1所示是在Ts=300℃下,生长的PE-ALD TaNx得到的X光衍射(XRD)。在低氮分压(氮与氢的分压比等于0.001)时,XRD谱在大约2θ=38°处有一个宽峰。对于较高的分压比(0.004),宽峰移到较低的2θ值,表明形成了其它相。该衍射峰在大约34°的峰值可标为Ta2N(100)(2θ=33.968°)或者六方TaN(110)(曲线b,2θ=34.528°)。由于峰宽大,难以区分之间的差别。
进一步将氮分压提高到分压比大于0.025,观察到了非常明显的立方TaN峰(111峰在2θ=34.876°,200峰在2θ=41.638°)。这表明与在相似的温度下生长的PE-ALD Ta膜相比,PE-ALD TaN膜由多晶晶粒构成。高分辨透射电镜(TEM)观测也表显出TaN膜的完美的晶格条纹。在分压比最高达到PN2/PH2=0.25时,没有观察到其它相,比如六方TaN,Ta5N6或者Ta3N5的衍射峰。在PN2/PH2=0.5以上时,开始在大约2θ=35°处出现其它的特征,其可以标为一种N含量较高的相,比如Ta3N5(004或者040峰在2θ=34.939°)或者Ta5N6(040或110峰在2θ=34.629°)。
在图2中,用卢瑟福背散射谱(RBS)确定了TaN膜中的氮含量。结果表明,对Ts=300℃下生长的膜,其是氮氢分压比(PN2/PH2)的函数。随着PN2/PH2从0.001升到1,生长的TaN膜中的N/Ta比率从0.3变化到1.4。这些结果和上面提到的XRD分析表明生长立方TaN膜的分压比在0.7-1.3之间。在PN2/PH2=0.025-0.035时,可得到化学计量比的TaN。TaN的化学计量比可以控制,由于原子H提取Cl原子,而N取自活化氮。这种可以改变化学计量比的能力对于TaN的PE-ALD有潜在的好处。随着PN2/PH2从0升到1,生长的TaN膜中的N/Ta比率从0(Ta)变化到1.7。
相应于生长速率,由RBS获得的在一个循环中结合的Ta原子的数目,同样也在图2中绘制成分压比PN2/PH2的函数。图2表明随着氮分压的增加,生长速率连续的线性增加。在化学计量比组分时,每个循环中淀积的钽原子的数目为1.0×1014/cm2。
参照图3,生长的TaN的电阻率一般对立方TaN来讲为350-400μΩcm,并且总体上,电阻率倾向于随氮浓度的增加而增加。例如,在PN2/PH2=0.65时,生长的TaN膜具有的电阻率为7200μΩcm。这种高的电阻率可以解释为形成了高电阻率的Ta3N5相。
图4表明了TaN膜的生长速率和N/Ta比率与等离子体暴露时间tp之间的函数关系。生长速率随着等离子体暴露时间的增加而提高,直到tp=2秒,然后有点下降,在tp>4秒以上时达到饱和。生长速率是TaCl5暴露时间TTaCl的函数(数据没有标出),在TTaCl>1秒时饱和,在饱和之前没有任何最大值。在饱和条件下每个循环淀积的Ta原子的数目为1.2×1014/cm2。另外,在膜中的N/Ta比率倾向于随tp增加。
在图5中,TaN膜的RBS和FRES(Forward Recoil ElasticSpectrmetry)结果表现为tp的函数。Cl的含量与tp有强的函数关系,同时标出的电阻率值也是如此,表明低Cl和电阻率的膜的生长需要tp>5秒。膜中氢的浓度随tp增加,但在5秒钟以上达到饱和。氢浓度的最大值大约为11%。
在饱和条件下生长的膜的氧含量一般在5-10%之间,与生长温度无关。然而,氧含量表现出随膜厚度的减小而增加的倾向。另外,非常薄的膜(特别是低于100埃)的表面电阻值在暴露在空气中后会提高5-10%。这些结果表明相对于在生长过程中,更倾向于在暴露在空气中时结合氧。对于用铜覆盖的之间没有被空气隔断的TaN膜,详细的RBS分析表明膜中的氧含量低于检测极限(5%)。氧仅能在界面区域处测得,支持了氧是因空气暴露而结合入的。在5at%的检测极限内,RBS没有检测到碳。
在Ts=100-400℃的范围内研究了在TaN的PE-ALD过程中,生长温度的影响。图6所示是在不同温度下生长的TaN膜的XRD谱。所有的谱线都仅表现出立方TaN相关的峰,尽管111和200峰的强度比依赖于生长温度。甚至在100℃的最低生长温度下,111峰仍清晰可见。
图7表明,膜中的N/Ta比率几乎与生长温度无关,而生长速率是生长温度的强函数。随着生长温度从100℃升到400℃,生长速率几乎提高了3倍,然后在Ts=300℃以上饱和。
图8所示的是TaN膜中的氯和氢的含量以及电阻率同生长温度的函数关系。氯和氢的含量都随着生长温度的提高而下降。在典型的生长温度(300℃)下,氯的含量低于0.5%,氢的含量低于10%。尽管这种依赖性比较微弱,电阻率同样随生长温度而下降。这种电阻率的下降可能归因于较高生长温度下的较小的氯含量。
总之,上述讨论表明,由本发明可以方便的淀积不同氮含量的TaNx(x=0-1.7)膜。而依据本发明,通过在PE-ALD的TaN上生长所希望厚度的,比如25埃的Ta PE-ALD膜,淀积了一种TaN/Ta双层。这可以通过在淀积过程中简单的关闭氮的阀门来实现。为了比较,生长了相同厚度的PE-ALD Ta和TaN膜。在没有暴露在空气中时,淀积一个铜PVD盖层,之后,为了测量铜扩散阻隔性能,在退火过程中进行了电阻率和光散射的测量。
图9所示是比单独的层具有好的扩散阻隔失效温度的双层结构。这部分由于Ta PE-ALD层具有一种无定形结构,这通过减少晶界的数量而有助于铜扩散阻隔的性能(晶界是主要的铜扩散机制)。进一步的,与Ta单层相反,TaN本身固有的较好的铜扩散阻隔性能有助于提高最终的扩散阻隔性能。总之,无定形的PE-ALD钽层和PE-ALD氮化钽层共同有助于提高扩散阻隔的性能。
这种双层结构的概念可以扩展到由Ta和TaN组成的多层淀积结构。氮流可以容易的打开和关闭。这样,通过利用简单的计算机控制,可以方便的淀积每层都具有所希望的厚度的多层结构。这种多层结构可以用作扩散阻隔,或者用于其它的与半导体相关的工艺中。另外,通过改变每个Ta和TaN层步骤的循环数,能够更精确的确定对氮含量的整体控制。
注意到上述已经勾画出了本发明的一些比较合适的目的和实施方案。本发明的概念可以用到许多应用中。因此,尽管描述是相对于具体的安排和方法进行的,本发明的目的和概念同样适合用于其它的安排和应用中。本领域技术人员要清楚,可以在不脱离本发明的精神和范围的条件下,对所公开的实施方案进行其它修改。所描述的实施方案应该理解为仅仅是为了说明本发明的一些比较主要的特征和应用。通过以不同的方式应用本公开的发明或者用熟悉本领域的人员所知的方法对本发明进行改良,可以得到其它好的结果。因此,应该理解为,已经提供的实施方案是例子而不是限制。本发明的范围由所附权利要求界定。
权利要求
1.一种在衬底上制备一种氮化钽和钽双层的方法,该方法包括在存在氢等离子体和氮等离子体的情况下,通过卤化钽前体的等离子体增强原子层淀积,在衬底上淀积这种层;并将氮等离子体的浓度降低到0,制备基本上不含氮的钽层。
2.权利要求1中的方法,进一步包括改变氮等离子体的浓度,由此改变氮化钽层中的氮含量。
3.权利要求2中的方法,其中改变氮等离子体的浓度,这样氮化钽层中的氮与钽的浓度比在0和1.7之间。
4.权利要求1中的方法,其中,对第一个时间段,氮浓度是0以外的其它值,对第二个时间段,氮等离子体的浓度基本为0,这样制备的第一层是氮化钽,制备的第二层是基本上不含氮的钽。
5.权利要求4中的方法,其中将第一层和第二层的组合用作铜的扩散阻隔。
6.权利要求4中的方法,其中所述的第二层淀积在所述的第一层上面。
7.权利要求1中的方法,其中衬底的温度在100℃到450℃之间。
8.权利要求1中的方法,其中衬底的温度是300℃。
9.权利要求1中的方法,其中淀积这些层的衬底选自硅,其上有二氧化硅层的硅,低介电常数的衬底以及多孔的低介电常数的衬底。
10.权利要求9中的方法,其中,衬底是一种低介电常数的衬底,其介电常数在2.0-3.0的范围。
11.权利要求9中的方法,其中衬底具有铜导体,该层作为所述铜的扩散阻隔。
12.权利要求1中的方法,其中的卤化钽是五氯化钽。
13.权利要求1中的方法,其中所述的淀积包括a.将衬底暴露在由惰性气体携带的卤化钽中;b.将衬底暴露在氢和氮等离子体中;并c.重复a.和b.,直到获得所希望厚度的氮化钽层。
14.权利要求13中的方法,其中将衬底暴露在惰性气体携带的卤化钽中进行时的压力为3.0×10-2Torr。
15.权利要求13中的方法,其中将衬底暴露在氢和氮的等离子体中的过程中,氢的分压为2.5×10-2Torr。
16.权利要求13中的方法,其中a.和b.大约重复40-800次。
17.权利要求13中的方法,其中将衬底暴露在惰性气体携带的卤化钽中进行大约2秒;将衬底暴露在氢和氮的等离子体中进行大约5秒。
18.权利要求1中的方法,其中将衬底同时暴露在氮等离子体和氢等离子体中。
19.权利要求1中的方法,其中将衬底顺序暴露在氮等离子体和氢等离子体中。
20.一种加工制品,包括衬底;在所述衬底上的氮化钽和钽的双层,所述氮化钽和钽的每个中都基本上不含碳。
21.权利要求20中的加工器件,其中钽层中包括无定形的钽。
22.权利要求20中的加工器件,其中所述的钽淀积在所述的氮化钽上。
23.权利要求20中的加工器件,其中碳含量低于5%。
全文摘要
一种通过等离子体增强层淀积不同氮含量的TaN的方法。采用氢和氮等离子体的混和物,可以控制膜中的氮含量从0到N/Ta=1.7。通过关闭淀积TaN过程中的氮流,可方便的生长一种TaN/Ta双层,其与单独的Ta层或者单独的TaN层相比,具有优越的铜扩散阻隔性能。
文档编号H01L21/205GK1652319SQ20041007863
公开日2005年8月10日 申请日期2004年9月14日 优先权日2003年10月31日
发明者金亨俊, A·J·凯洛克, S·M·罗斯纳戈尔 申请人:国际商业机器公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1