中孔薄膜及其制造方法

文档序号:6867999阅读:297来源:国知局
专利名称:中孔薄膜及其制造方法
技术领域
本发明涉及一种中孔薄膜、使用该中孔薄膜的电子器件及其制造方法,尤其是涉及周期纳米细孔结构的导电性薄膜。
背景技术
目前,作为导电性多孔材料已提出的有非周期细孔结构的碳多孔体、及金属氧化物多孔体等,其中,金属氧化物多孔体等为具有导电性的氧化物,利用其电气特性现在已被广泛应用于气敏元件等上。另外,根据透明导电性氧化物即氧化锡(SnO2)、氧化铟锡(ITO)等的电气特性及光学特性,现在已被太阳能电池及EL元件等电子器件的电极、选择渗透膜、红外线反射膜、触摸面板等多方面采用。
另外,以二氧化硅为骨架的绝缘膜作为周期细孔结构的氧化物也已被提出(特许文献1)。该绝缘膜具有周期纳米细孔结构,因此,即使空孔率高,也能够维持充分的机械强度,因而作为半导体装置的层间绝缘膜被广泛应用。在半导体装置的高速化、低耗电化中,层间绝缘膜的低介电常数化是重要的课题。
在非周期细孔结构的情况下,稳定性不充分,当然,正在进行追求稳定性、耐热性、多孔化的各种各样的研究。
再有,在前者的情况下,由于多孔结构是随机的,因此,机械强度不充分,尤其是在高温下的使用中,成了易破损、可靠性低的原因。
另外,多孔结构多为不能封闭的情况,不封闭时就成了膜的耐湿性显著降低、半导体元件的可靠性降低的原因。
特许文献1特开2003-17482号公报在这种现有的金属氧化物多孔体中,存在不能得到足够的耐热性、空孔率和化学稳定性,且机械强度也不充分的问题。

发明内容
本发明就是鉴于所述实际问题而开发的,目的在于提供空孔率高、机械强度强的导电性多孔质膜。
那么,本发明的中孔薄膜特征在于,具有磷酸金属盐(M-POX)骨架的交联结构体以包围周期性排列的空孔的方式形成。
根据这样的构成,由于具有周期多孔结构,因此能够得到机械强度可提高的导电性薄膜。
另外,本发明的中孔薄膜,构成所述交联结构体的金属包含锡(Sn)、铟(In)锌(Zn)、铱(Ir)中的至少之一。
根据这样的构成,能够得到具有导电性的多孔质薄膜。
另外,本发明的中孔薄膜,所述交联结构体包括沿所述中孔薄膜的厚度方向周期性排列有圆柱状空孔的结构体。
根据这样的构成,由于晶粒边界沿膜的厚度方向形成,因此能够防止漫反射。
另外,本发明的中孔薄膜含有膜厚为10μm以下的薄膜。
根据这样的构成,能够高精度的图案形成。
另外,本发明的中孔薄膜含有具有透光性的膜。
根据这样的构成,能够得到具有透光性且具有导电性的多孔质薄膜。
另外,本发明的电子器件,其特征在于,使用上述中孔薄膜作为电极。
根据这样的构成,能够形成在低温下透光性高的导电性薄膜,因此,作为太阳能电池及光学传感器、EL元件等透光性电极是极其有效的。
另外,本发明中孔薄膜的制造方法,包括调制含有磷酸和界面活性剂的前驱体溶液的工序、将所述前驱体溶液供给到基板上形成前驱体薄膜的工序、使含有金属的蒸汽与在形成所述薄膜的工序中得到的前驱体薄膜接触的接触工序、所述含有金属的蒸汽与磷酸反应形成自组织化薄膜的工序、使界面活性剂从自组织化薄膜脱离的脱离工序,并且,以具有磷酸金属盐(M-POX)骨架的交联结构体为主要成分形成周期性排列有空孔的中孔薄膜。
根据这样的构成,能够提供控制性非常好且机械强度优良的多孔质导电性薄膜。并且,能够容易地形成具有周期性排列有筒状空孔的第一多孔结构区域层,和与基板表面平行且周期性排列有层状空孔的第二多孔结构区域层与基板表面平行地重复层叠的导电性薄膜等两种以上不同周期的结构的导电性膜。
另外,由于其可在低温下形成,因此,即使用于集成电路时也不对衬底产生影响,从而能够形成可靠性高的导电性薄膜。由于不必得到500℃以上的加热工序就能够形成,因此,即使使用铝布线时也能够适用。
另外,由于可通过液体的接触而形成,因此,即使在微小的区域也能够进行高精度的图案形成,从而,能够实现可靠性的提高。
再有,通过调整前驱体溶液的浓度,可适宜地变更空孔度,能够形成作业性非常好且具有所希望的导电率的多孔质薄膜。
本发明的中孔薄膜的制造方法,所述接触工序为在充填了含有金属的蒸汽的容器内使所述前驱体薄膜静置的工序。
根据这样的构成,因只进行静置,所以能够形成生产性高的具有导电性的多孔质膜。
本发明的中孔薄膜的制造方法,所述脱离工序是烧结所述交联结构体并除去界面活性剂的工序。
根据这样的构成,能够有效地将界面活性剂脱离,从而形成具有规则的细孔的交联结构体。
另外,本发明的中孔薄膜的制造方法,所述脱离工序是在300~550℃左右烧结的工序。
根据这样的构成,由于在低温下即可烧结,因此,即使在下层含有铝布线等的情况下也能够适用。
另外,本发明的方法,包括在除去所述界面活性剂之前,将被供给了所述前驱体溶液的基体暴露于所述含有金属的蒸汽中,使所述金属-磷酸骨架高密度化的工序。
根据这样的构成,可容易地进行密度的调整。
另外,本发明的方法,所述脱离工序包括使用酸提取界面活性剂的工序。
根据这样的构成,由于不经过烧结工序即可形成,因此,能够在更低的温度下形成。
另外,本发明的方法,包括在用酸提取的工序之前,将被供给了所述前驱体溶液的基体暴露于所述含有金属的蒸汽中,使所述交联结构体的金属-磷酸骨架高密度化的工序。
根据这样的构成,可容易地进行密度的微调。
另外,本发明的方法,其中,所述金属含有锡(Sn)、铟(In)锌(Zn)、铱(Ir)中的至少之一。
根据这样的构成,能够形成可靠性高的多孔质的导电性薄膜。
另外,本发明的方法,包括调制含有十六烷基三甲基溴化铵(C16TAB)、磷酸(H3PO4)、乙醇(EtOH)和水的前驱体溶液的工序、将所述前驱体溶液涂敷到基板上的工序、使由所述涂敷工序被运送的薄膜暴露在含有氯化锡(SnCl4)的蒸汽中工序、通过将所述薄膜烧结将界面活性剂从所述薄膜上除去而形成具有磷酸锡骨架的交联结构体的工序。
根据这样的构成,能够形成可靠性高的多孔质薄膜。
另外,优选为,所述接触工序可以包括将基板浸在前驱体溶液中,按照所要求的速度提拉的工序、和浸在所述第二前驱体溶液中按照所要求的速度拉升的工序。
还有,优选为,所述接触工序可以使用将所述第一和第二前驱体溶液依次重复涂敷在基板上的工序。
由此,能够容易地形成具有周期性结构的多个不同层的多孔质薄膜。
特别优选为,所述接触工序可以使用将所述前驱体溶液滴到基板上且使所述基板旋转的旋转涂敷工序。
根据这样的构成,能够容易地调整膜厚及空孔率,从而能够形成生产性高的多孔质薄膜。


图1是表示使用本发明实施方式1的中孔薄膜的太阳能电池元件的图;图2是同一太阳能电池元件的制造工序图;图3是同一中孔薄膜的制造工序图;图4是表示同一中孔薄膜的制造工序的示意图;
图5是表示本发明实施方式2的中孔薄膜的面间隔的图;图6是表示本发明实施方式2的中孔薄膜的图;图7是表示本发明实施方式2的中孔薄膜的烧结温度和面间隔的关系的图;图8是表示和本发明实施方式2的中孔薄膜的波长和光吸收率的关系的图;图9是表示本发明实施方式2的中孔薄膜的频率和光吸收率的关系的图;图10是表示本发明实施方式2的中孔薄膜(烧结温度550℃)的的特性的测定结果图;图11是表示本发明实施方式2的中孔薄膜(烧结温度400℃)的高频特性的测定结果的图;图12是表示本发明实施方式3的气敏元件的图。
符号说明1 透光性玻璃基板2 透光性电极3 P型非晶体硅层4 N型非晶体硅层具体实施方式
下面,参照附图对本发明的实施方式详细地进行说明。
实施方式1作为本发明实施方式1,对使用该导电性薄膜作为透光性导电性薄膜的太阳能电池元件进行说明。
该太阳能电池元件如图1所示,其特征在于,形成有由形成于透光性玻璃基板1的表面的周期结构磷酸锡表面(中孔薄膜)构成的透光性电极2、形成于其上层的P型非晶体硅层3、形成于其更上层的N型非晶体硅层4、作为形成于其更上层的铝制集电极的金属电极5。在此,也可以将I层设在P型非晶体硅层3和N型非晶体硅层4之间。
该透光性电极2由沿着厚度方向周期性排列有筒状空孔的中孔薄膜构成,由于其能够防止漫反射,因此不需要形成另外的漫反射防止层。因而,形成能够提高光吸收率且光电变换效率高的太阳能电池元件。
对于另一部分,因其为通常的结构,故省略其图示及说明。
参照图2(a)~(c)对包含该中孔薄膜的形成工序的太阳能电池元件的形成方法进行说明。
首先,如图2(a)所示,在透光性玻璃基板上形成本发明的中孔薄膜。
即,首先将阳离子型十六烷基三甲基溴化铵(CTAB:C16H33N+(CH3)3)、磷酸(H3PO4)、乙醇(EtOH)和水(H2O)作为界面活性剂,以溶液比为C16TAB∶H3PO4∶EtOH∶H2O=0.75∶1.5∶50∶100的比例充填到容器100内,将盖101盖上后进行混合,如图3(a)所示,用磁力搅拌器M搅拌10分钟,调制成前驱体溶液(前驱体原丝)102。
将该溶液滴到固定在悬图器103上的透光性玻璃基板上,如图3(b)所示,进行旋转镀膜。起始以50rpm旋转10秒钟,其后转速渐渐上升,以4000rpm旋转60秒钟。
其后,如图3(c)及图4所示,在密闭容器200内配置SnCl4·5H2O作为骨架基料,安置形成有该涂敷膜41的玻璃基板1,装入成为涂敷膜内的骨架基料的SnCl4·5H2O的蒸汽粒子42并在363K进行21小时热处理(蒸汽浸透(Vapor Infiltrition;VI处理)。此时的蒸汽浸透的状态如示意图4所示。图中△为P,黑圆点为Sn。前驱体溶液形成界面活性剂的周期性自凝聚体。即,该自凝聚体如图4所示,形成凝聚以C16H33N+为分子的多个分子的球状微胞结构体。
这样一来,进行21小时热处理之后,如图3(c)所示,发生自组织化。
然后,通过在523~823K烧结除去界面活性剂,如图3(d)所示,则形成由周期性排列有许多空孔的多孔质薄膜(中孔薄膜)构成的透光性电极2。该中孔薄膜的膜厚为100~300nm,周期结构的重复宽度约为4nm,细孔直径为3nm。另外,进行阻抗测定时的导电性为46.2S/cm(1.0×105Hz)。
其后,如图2(b)所示,使用通常的方法将PN接合。在此,利用减压CVD法依次层叠P型非晶体硅层3和N型非晶体硅层4,此时,在作为透光性电极的中孔薄膜的空孔中形成P型非晶体硅层3,且具有与在其上层形成的N型非晶体硅层4的表面的面积增大的效果。另外在此,也可以代替减压CVD法而使用等离子区CVD法。
接着,如图2(c)所示,在其上层形成铝薄膜并作为金属电极5。
这样一来,就得到了将周期性排列有筒状空孔的导电性中孔薄膜作为透光性电极的太阳能电池元件。
实施方式2其次,对该中孔薄膜进行评价。图5表示涂敷前驱体溶液之后使用SnCl4VI处理,之后在723K烧结后的硅基板上的表面XRD特性曲线。图中横轴代表面间隔,纵轴代表强度。由该图可知,利用涂敷了前驱体溶液后磷酸和界面活性剂分子间的静电的相互作用,形成六角形的结构。
再者,认为因使用SnCl4VI处理后面间隔(d100)增大,所以Sn浸透到薄膜内部六角形结构的面间隔增大。从这些来看VI处理时的骨架部的形成机理由图4可以明了。如图4(a)所示,认为界面活性剂的微胞凝聚体被暴露在含有磷P的蒸汽中时,如图4(b)所示,磷P进入微胞凝聚体之间,如图4(c)所示,微胞凝聚体的面间隔增大。
另外,烧结后也能够得到维持周期结构的中孔薄膜(d100=3.1nm)。烧结后的表面的TEM观察图如图6所示。a表示涂敷后,b表示VI处理后,c表示烧结后。由此可知,相对于纸面平行地排列着细孔。面间隔与以3.2nm由XRD图象得到的面间隔大致一致。
接着,改变烧结温度并测定面间隔。图7表示通过在烧结温度573~823K烧结得到的薄膜的XRD图象。随着烧结温度升高,薄膜面间隔收缩,但周期性被维持,且可以确认到823K的耐热性。另外,与EDAX测定结果相比,在烧结后的薄膜内Sn和P以Sn/P=36.57~54.91∶45.09~63.43的比存在。
另外,对相对于波长的光吸收率的测定结果用曲线a表示。用作比较的氧化锡(SnO2)用曲线b表示。由该曲线可知,在300nm以上具有极其良好的透光性。还可知,在300nm附近显示出比氧化锡更良好的透光性,即使超过300nm,也具有同等程度的透光性。另外,对在红外线域的光吸收率的测定结果如图9所示。该图中横轴代表频率,纵轴代表光吸收率。
对该薄膜的高频阻抗特性曲线的测定结果如图10所示。由该结果可知,具有良好地高频特性。在此,纵轴代表电阻率的倒数,横轴代表频率。
将烧结温度降低到400℃时的高频阻抗曲线的测定结果如图11所示。由图可知,这种情况下也具有良好地频率特性。
实施方式3作为本发明的第三实施方式,对将该中孔薄膜应用于气敏元件的例子进行说明。
该碳酸气敏元件,如图12所示,是作为检测极在碳酸锂301上形成的导电性的中孔薄膜302的结构,由检测极和锂离子导体303及标准极304三层结构构成。
即,构成检测极的材料为在用于直接和碳酸气体接触而产生起电力的碳酸锂的表面层叠了本发明的导电性中孔薄膜的材料。另外,锂离子导体是碳酸锂及结晶化玻璃,标准极材料是将金添加到两种类的锂铁氧体中而得到的材料。
根据该构成,被用于检测极的中孔薄膜为导电性高且多孔质的薄膜,因此,容易实现用于高效地透过气体且产生起电力的碳酸锂。在此,该中孔薄膜使用与在实施方式1中所说明的方法同样的方法形成。
在所述实施方式中,使用了阳离子型十六烷基三甲基溴化铵(CTAB:C16H33N+(CH3)3Br-)、磷酸(H3PO4)、乙醇(EtOH)和水(H2O)作为界面活性剂,但当然不限定于此,使用其他的界面活性剂也可以。
但是,由于使用Na离子等碱金属离子作为催化剂和作为半导体材料已成为劣化的原因,因此,使用阳离子型界面活性剂作为催化剂,优选使用酸催化剂。作为酸催化剂,除HCI以外也可以使用硝酸(HNO3)、硫酸(H2SO4)、磷酸(H3PO4)等。
另外,含有金属的物质除SnCl4以外可使用SnxIn1-xCI4、酢酸锡、锡的醇盐等各种化合物材料。
还有,作为溶媒使用水H2O/乙醇混合溶媒,但也可以只使用水。
再有,作为烧结氛围,使用氮气氛围,但也可以在减压下,也可以在大气中。
另外,界面活性剂、磷酸、溶媒的混合比可以适当变更。
再者,烧结工序设定为在400℃进行1小时,但在300℃~500℃进行1~5小时也可以。优选在350℃~450℃。
实施方式4还有,在所述实施方式1中,中孔薄膜的形成使用旋转镀膜法而进行,但也可以使用浸渍法。
即,将基板相对于调整好的液面以1mm~10mm/s的速度垂直下降并沉入溶液中,静置1秒~1小时。
然后,经过所要求的时间后再将基板以1mm~10mm/s的速度上升而从溶液中取出。
最后,与所述实施方式1同样,通过烧结将界面活性剂完全热分解并除去,从而形成纯中孔薄膜。
如上所述,根据本发明,能够容易地形成强度高且遍及大面积的、均匀的多孔质导电性薄膜,由于机械强度也高,因此,也可应用于可靠性高的太阳能电池元件、气敏元件、燃料电池用电极、选择渗透膜、红外线反射膜、触摸面板用导电膜等。
权利要求
1.一种中孔薄膜,其中,具有磷酸金属盐M-POX骨架的交联结构体以包围周期性排列的空孔的方式形成。
2.如权利要求1所述的中孔薄膜,其中,构成所述交联结构体的金属含有Sn、In、Zn、Ir中的至少一种。
3.如权利要求1或2所述的中孔薄膜,其中,所述交联结构体沿所述中孔薄膜的厚度方向周期性排列有圆柱状空孔。
4.如权利要求1~3中任一项所述的中孔薄膜,其中,膜厚为10μm以下。
5.如权利要求1~4中任一项所述的中孔薄膜,其中,所述中孔薄膜具有透光性。
6.一种电子器件,其中,使用权利要求1~5中任一项所述的中孔薄膜作为电极。
7.一种中孔薄膜的制造方法,其中,包括调制含有磷酸和界面活性剂的前驱体溶液的工序、将所述前驱体溶液供给到基板上形成前驱体薄膜的工序、使含有金属的蒸汽与在形成所述薄膜的工序中得到的前驱体薄膜接触的接触工序、使所述含有金属的蒸汽与磷酸反应形成自组织化薄膜的工序、使界面活性剂从自组织化薄膜脱离的脱离工序,并且,以具有磷酸金属盐的M-POX骨架的交联结构体为主要成分,形成周期性排列有空孔的中孔薄膜。
8.如权利要求7所述的中孔薄膜的制造方法,其中,所述接触工序包括在充填了含有金属的蒸汽的容器内静置所述前驱体薄膜的工序。
9.如权利要求7或8所述的中孔薄膜的制造方法,其中,所述脱离工序是煅烧所述交联结构体除去界面活性剂的工序。
10.如权利要求9所述的中孔薄膜的制造方法,其中,所述脱离工序是在300~550℃左右进行煅烧的工序。
11.如权利要求10所述的中孔薄膜的制造方法,其中,包括在除去所述界面活性剂之前,将被供给了所述前驱体溶液的基体暴露于所述含有金属的蒸汽中,使所述金属-磷酸骨架高密度化的工序。
12.如权利要求9所述的中孔薄膜的制造方法,其中,所述脱离工序包括用酸提取界面活性剂的工序。
13.如权利要求12所述的中孔薄膜的制造方法,其中,包括在所述用酸提取的工序之前,将被供给了所述前驱体溶液的基体暴露于所述含有金属的蒸汽中,使所述交联结构体的金属-磷酸骨架高密度化的工序。
14.如权利要求7~13中任一项所述的中孔薄膜的制造方法,其中,所述金属含有Sn、In、Zn、Ir中的至少一种。
15.如权利要求7~14中任一项所述的中孔薄膜的制造方法,其中,包括调制含有十六烷基三甲基溴化铵C16TAB、磷酸H3PO4、乙醇EtOH和水的前驱体溶液的工序、将所述前驱体溶液涂敷到基板上的工序、使由所述涂敷工序附着的薄膜暴露在含有氯化锡SnCl4的蒸汽中的工序、通过对所述薄膜进行煅烧,将界面活性剂从所述薄膜中除去,形成具有磷酸锡骨架的交联结构体的工序。
全文摘要
本发明提供一种空孔率高、机械强度强的导电性多孔质薄膜,本发明的中孔薄膜通过以下工序形成调制含有磷酸和界面活性剂的前驱体溶液的工序、将所述前驱体溶液供给到基板上形成前驱体薄膜的工序、使含有金属的蒸汽与在形成所述薄膜的工序中得到的前驱体薄膜接触的接触工序、所述含有金属的蒸汽与磷酸反应形成自组织化薄膜的工序、使界面活性剂从自组织化薄膜脱离的脱离工序,并且,具有磷酸金属盐(M-PO
文档编号H01L31/04GK101053067SQ200580036078
公开日2007年10月10日 申请日期2005年10月20日 优先权日2004年10月22日
发明者西山宪和, 高冈将树, 神泽公 申请人:国立大学法人大阪大学, 罗姆股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1