附着方法和使用该方法生产的器件的制作方法

文档序号:6924096阅读:224来源:国知局
专利名称:附着方法和使用该方法生产的器件的制作方法
技术领域
在此揭示的特定的实施方案通常涉及电子成份对基体的附着方法。更具体地说, 特定的实施例指向使用低于或等于300°C的温度使管芯附着的方法和使用这样的方法制作 的器件。
背景技术
在使管芯附着到基体上时,接点或电联结被用在管芯和基体之间。在制备接点时, 可能使用超过300°C的高温。这样高的温度能损害敏感的管芯,从而导致器件性能不佳或寿 命有限。

发明内容
下面描述的特定的特征、方面和实施例指向能在200°C或更高的温度下起作用和 /或工作接点。因为锡是低熔点金属,所以传统的通常是锡合金的焊接剂在这个温度下将很 快地失效。在此描述的接点实施方案通过把在900°C融化的银包括在内能在这样的高温下 工作。在一些方面中,在300°C以下的温度下使带特定数量的封端剂的银纳米粉末烧结的程 序可能用来提供接点。依照下面进一步的讨论,选定的封端量提供高密度的银接点而且能 在加压烧结期间防止硅管芯破裂。在第一方面中,揭示将电子成份附着到基体上的方法。在特定的实施例中,该方法 包括将封端的纳米材料安排在基体上,将电子成份安排在安排好的封端纳米材料上,干燥 安排好的封端纳米材料和安排好的电子成份,以及在300°C以下的温度下使经过干燥的安 排好的电子成份和经过干燥的封端纳米材料烧结把电子成份附着到基体上。在一些实施例 中,电子成份可能是管芯。在特定的实施方案中,封端的纳米材料可能包含用封端剂封端的银微粒,其中封 端剂是以封端的银微粒的重量为基础以大约0. 2wt. %到大约15wt. %,更具体地说大约 1. 5-2. 5wt. %出现的。在一些实施方案中,该方法可能进一步包括在将封端的银微粒安排 在基体上之前将封端的银微粒分散在溶剂中。在其它的实施方案中,该方法可能进一步包 括在烧结步骤期间把封端剂从封端银微粒中除去。在一些实施例中,封端的纳米材料可能 包含封端金属微粒,其中封端金属微粒的金属选自金、银、铜、镍、钼、钯、铁及其合金。在特 定的实施例中,干燥和烧结步骤两者都是在300°C以下完成的。在一些实施方案中,烧结步 骤可能是在氮气气氛中完成的。在特定的实施例中,氮气气氛提供实质上等于大气压力的 压力。在其它的实施例中,该压力可能是高于大气压力,举例来说,从大约0.2-20MPa或大约5MPa。在其它的实施例中,干燥步骤可能是在低于大气压力的压力下完成的。在另一个方面,提供一种包括基体、安排在基体上的电子成份和在电子成份和基 体之间的电接点的器件,其中电接点包括在300°C或更低的温度下烧结提供基体和电子成 份之间的电联结的纳米材料。在特定的实施例中,电子成份可能是管芯。在特定的实施方案中,基体可能是印刷电路板,而纳米材料包含封端的银微粒。 在一些实施方案中,封端的银微粒在形成接点之前以封端银微粒的重量为基础包含大约 Iwt. %到大约15wt. %的封端剂。在其它的实施例中,纳米材料可能包含金属微粒,其中金 属制微粒的金属选自金、银、铜、镍、钼、钯、铁及其合金。在一些实施例中,电接点可能在管 芯和基体之间有实质上统一的厚度。在特定的实施例中,电接点可能实质上是无空隙的。
在附加的方面,揭示一种用来产生电接点的成套用品,该成套用品包括由以纳米 材料的重量为基础包含大约Iwt. %到大约15wt. %的封端剂的封端金属微粒组成的纳米 材料和使用该纳米材料提供基体和安排在基体上的电子成份之间的电接点的指令。 在特定的实施方案中,该成套用品可能进一步包括连同纳米材料一起使用的电子 成份,举例来说,管芯。在其它的实施方案中,该成套用品可能进一步包括连同管芯和纳米 材料一起使用的基体。在一些实施方案中,基体可能是印刷电路板。在另一个方面,提供一种促成电子成份和基体电联结的方法,该方法包括提供纳 米材料,该纳米材料对在300°C或更低的温度下纳米材料烧结之后在电子成份和基体之间 提供电接点来说是有效的。在特定的实施例中,电子成份可能是管芯。在特定的实施方案中,纳米材料对在低于大气压力的压力下烧结之后提供电子成 份和基体之间的电接点可能是有效的。在一些实施方案中,纳米材料包含以封端的银微粒 的重量为基础有大约Iwt. %到大约15wt. %的封端剂的封端银微粒。在一些实施例中,纳 米材料可能包含金属微粒,其中金属微粒的金属选自金、银、铜、镍、钼、钯、铁及其合金。在 其它的实施例中,金属微粒可能是用选自硫醇和胺的封端剂封端的。下面将更详细地描述附加的方面、实施方案、实施例和特征。


特定的说明性的实施方案、特征和方面将在下面参照附图更详细地描述,在这些 附图中图1A-1D是依照特定的实施例在电子成份和基体之间产生电接点的方法示意图;图2-2E是依照特定的实施例在电子成份和基体之间产生电接点的另一种方法的 示意图;图3是依照特定的实施例附着在铜散热器上的管芯的X光照片;图4是依照特定的实施例展示纳米银接点的横截面的SEM图像。附图中特定成份的尺寸已经相对于附图中其它成份的尺寸被有意地变形、放大或 缩小,以有利于较好的理解在此描述的技术。举例来说,接点的厚度、电子成份的尺寸和/ 或基体的尺寸已经被有意地彼此不成比例地展示,以便提供对用户更友好的描述。在附图 中展示的成份的说明性的尺寸和厚度将在下面更详细地描述。
具体实施例方式在此描述的特定的实施方案指向用于将电子成份(包括但不限于管芯)附着到选定的基体(或其某些区域)(包括但不限于预浸片(pre-pregs)、印刷电路板或其它普遍用 于生产电子器件的的基体)上的材料和器件。在典型的管芯附着程序中,硅管芯在通过封装或密封得到保护之前先附着在基体上并且实现电连接。为了避免损坏器件,附着温度通常在300°C以下。有两种类型的管芯附 着材料当今被广泛地用于电子包装焊接剂合金和树脂基复合材料。这两种材料都有低的 处理温度和相对低的导热性和导电性。用这些材料粘合的管芯在低于125°C的操作温度下 可靠地运行。对于较高的操作温度,管芯通常是使用高温焊接剂(即,AuSn)或包含银-玻 璃的复合材料粘合的。这些材料需要高的处理温度,在器件中产生高的机械应力,而且这些 材料有相对低的导热性和导电性。银具有高的导电率和导热率,而且是有吸引力的管芯粘合材料,能代替焊接剂合金和复合材料用来包装功率半导体。虽然焊接剂的操作温度受它的熔点限制,但是烧结的 银接点能在烧结温度以上使用,从而使高性能器件能在高温下操作。微米大小和纳米大小 的银粉用来为管芯附着配制印刷软膏。用银软膏组装的器件证实在功率电子器件应用中的 高可信度。典型的附着程序包括Ag软膏模板印刷和随后的在 300°C温度和大约30-40MPa 的压力下烧结。外加的压力是保证在如此低的温度下银粉烧结和提供好的Ag与基体互连 的粘结必不可少的。外加这样高的压力使附着程序变得复杂而且可能损坏硅器件。在此揭示的特定的特征、方面和实施例指向利用专门配制的纳米材料(例如,纳 米银软膏)并且允许电子成份(例如,硅管芯)在300°C或更低的温度下和/或在零或 低于大气压的压力下附着到基体上的附着程序。这些材料在下面在特定的例证中被称为 “纳米材料”。说明性的纳米材料是在2006年8月3日申请的共同转让的美国专利申请第 11/462,089号中揭示的,在此通过引证将该申请的全部揭示并入。适合用于在此描述的器 件和方法的纳米材料可能包括用选定数量的封端剂封端的一种或多种类型的金属微粒。在特定的实施例中,使用单相溶液生产供附着程序使用的微粒允许省略在多元醇 程序中普遍用来生产微粒的相转移试剂(虽然相转移试剂可能仍然被用于特定的实施方 案)。通过在单相中完成反应,生产微粒的容易程度增加,而生产微粒的费用减少。除此之 夕卜,大规模工业化的微粒合成可能是使用单相反应实现的。微粒的附加利益和生产它们的 方法对于熟悉这项技术的人在得到这份揭示的提示之后将很容易选定。依照特定的实施例,用来提供在附着程序中使用的微粒的金属可能是未络合 的,也可能是与一种或多种配体络合的。举例来说,金属可能与EDTA、乙二胺、草酸盐、2, 2'-联吡啶(bypyridine)、环戊二烯、二亚乙基三胺、2,4,6_三甲基苯基-1,10邻二氮杂 菲、三亚乙基四胺或其它配体。在特定的实施例中,金属或金属盐可能被溶解在溶剂或溶剂 系统中,提供清澈但不必无色的溶液。举例来说,适当数量的金属或金属盐可能被加到溶剂 中,以致当金属或金属盐变成溶液状态的时候,整个溶液是清澈的。整个溶液可能是有色 的,也可能是无色的。适当的溶剂包括但不限于乙二醇、甲醇、乙醇、丙醇、异丙醇、丁醇、异 丁醇、戊醇、异戊醇、己醇和有大约1到大约10个碳原子的脂肪醇。其它适当的溶剂包括但 不限于苯、甲苯、丁烯、聚异丁烯、可从Exxon购买的Isopar (R)溶剂和有包含2_6个碳原 子的脂肪族支链的芳香族化合物。适当的溶剂系统包括在此讨论的说明性溶剂和对于这样的说明性溶剂是可溶解的、混溶的或部份混溶的其它流体的混合物。在特定的实施例中,溶 剂的组合提供单一的相。为了在使用混合溶剂的时候实现单一的相,可以调整每种溶剂的 数量,以致溶剂混合的时候单一的相产生。万一在混合之后出现不止一个相,可以改变(举 例来说,增加或减少)一种或多种溶剂的相对量,直到观察到单一的相。依照特定的实施例,金属微粒可能与封端剂混合。封端剂对于隔离微粒和限制其 生长的大小可能是有效的。在特定的实施例中,封端剂可能是高分子量的封端剂,举例来 说,有至少大约100克/摩尔的分子量。说明性的封端剂包括但不限于有12个以上碳原 子的有机胺。在特定的实施例中,有机胺有至少16个碳原子,举例来说,十六胺。胺的有 机部分可能是饱和的或者是不饱和的,而且可能非必选地包括其它的官能团,举例来说,硫 醇、羧酸、聚合体和酰胺。适合供在此揭示的材料的金属使用的另一组说明性封端剂是有12 个以上碳原子的硫醇。在特定的实施例中,硫醇有至少6个碳原子。硫醇的有机部分可能 是饱和的或者不饱和的,而且可能非必选地包括其它的官能团,举例来说,吡咯等等。适合 使用的另一组封端剂是基于嘧啶的封端剂,举例来说,三唑吡啶(triazolopyridine)、三联 吡啶(terpyridine),等等。倘若得到这份揭示的提示,其它适当的封端剂将很容易被原本 熟悉这项技术的人选定。在封端剂连同金属微粒一起使用提供用于附着程序的材料的特定实施例中,封端 剂可能在加到金属溶液中之前先溶解在适当的溶剂中。举例来说,封端剂可能先溶解在溶 剂中,而后该溶液与金属溶液混合。在其它的实施例中,封端剂可能被作为固体或液体直接 地添加到金属溶液中,无需先溶解在溶剂中。封端剂可能是,举例来说,按递增步骤添加的, 也可能是在单一步骤中添加的。在特定的实施例中,添加到金属溶液中的封端剂的精确数 量可能改变,取决于由此产生的封端微粒的预期性质。在一些实施例中,添加适当数量的封 端剂按重量在封端的微粒中提供预期数量的封端剂。对于在附着程序中有用的材料这样的封 端剂预期重量将在下面更详细地讨论。倘若得到这份揭示的提示,原本熟悉这项技术的人将 认识到依据由此产生的材料的预期性质或多或少地使用封端剂可能是令人想要的。举例来 说,为了增加安排在基体(举例来说,印刷电路板)上的微粒的导电率,调整封端剂的数量直 到导电率(或其它物理性质)达到最佳值或落在预期范围之内可能是令人想要的。倘若得到 这份揭示的提示,选择适当的封端剂量将在原本熟悉这项技术的人的能力范围之内。在特定的实施例中,当封端剂(或封端剂溶液)和金属盐溶液混合的时候,单一的 相产生或者保持。在替代实施方案中,金属盐溶液在添加封端剂或封端剂溶液之前可能是 单相的,而在添加封端剂或封端剂溶液之后保持单一的相。倘若得到这份揭示的提示,另外 的金属溶液和封端剂混合提供单一相的实施方案将很容易被原本熟悉这项技术的人选定。 在特定的实施例中,封端剂和金属溶液可能是使用传统技术(例如,搅拌、超声波、搅动、振 动、摇动,等等)混合的。在一些实施例中,封端剂可能是边搅拌金属溶液边添加到金属溶 液中的。在特定的实施例中,封端剂和金属溶液的混合物可能被一直搅拌到产生清澈的和 /或无色的单相溶液。依照特定的实施例,还原剂可能在沉积在基体上之前或之后被添加到金属_封端 剂溶液中。适当的还原剂包括能将溶解在溶液中的金属离子转换成在选定的条件下将从溶 液中析出的金属微粒的制剂。说明的还原剂包括但不限于硼氢化钠、氢化锂铝、氰基硼氢 化钠、硼氢化钾、三乙酸基硼氢化钠、二乙基二氢铝酸钠、三或四丁氧基氢铝酸钠、二(2-甲氧基乙氧基)二氢铝酸钠、氢化锂、氢化钙、氢化钛、氢化锆、氢化二异丁基铝(DIBAL-H)、二 甲基硫硼烷(dimethylsulfide borane)、二价铁离子、甲醛、蚁酸、胼、氢气、异丙醇、苯基硅 烷、多甲基氢化硅氧烷、铁氰化钾、硅烷、次硫酸钠、钠汞齐、钠(固体)、钾(固体)、连二亚 硫酸钠、二价锡离子、亚硫酸盐化合物、氢化锡、三苯基膦和锌-汞汞齐。添加到金属-封端 剂溶液中的还原剂的精确数量可能改变,但是通常还原剂是过量添加的,以致实质上所有 被溶解的金属都从带电状态转换成不带电状态,举例来说,Ag+1可能被转换成Ag°或者Cu+2 可能被转换成Cu°。在一些实施例中,还原剂可能在添加到金属-封端剂溶液中之前先溶解 在溶剂中,然而在其它的实施例中,还原剂可能直接添加到金属_封端剂溶液中,无需事先 溶解。当溶剂用来溶解还原剂的时候,溶剂优选是非活性的,以致该溶剂不会被还原剂变更 或改变。适合连同还原剂一起使用的说明性溶剂包括但不限于四氢呋喃(THF)、N,N-二 甲基甲酰胺(DMF)、乙醇、甲苯、庚烷、辛烷和有六个以上碳原子的溶剂,举例来说,有六个以 上碳原子的线形、环形或芳香族的溶剂。倘若得到这份揭示的提示,原本熟悉这项技术的人 将能够选择适合溶解还原剂的溶剂。
依照特定的实施例,还原剂和封端剂_金属溶液可能被混合或搅拌足够的时间以 允许还原剂与金属反应。在一些实施例中,搅拌可能是在室温下完成的,然而在其它的实施 例中,搅拌或混合是在升高的温度(举例来说,大约30°C到大约70°C)完成的,为的是加速 还原程序。当使用升高的温度的时候,保持温度低于溶剂或溶剂系统的沸点,减少溶剂蒸发 的概率可能是令人想要的,虽然在一些实施例中,减少溶剂的总体积可能是令人想要的。依照特定的实施例,金属微粒可能在沉积到基体上之前先从单相溶液中离析出 来。离析可能发生,举例来说,通过倾析(decanted)、离心分离、过滤、过筛或添加封端的金 属微粒不能溶解在其中的另一种液体,举例来说,萃取。举例来说,像甲醇、丙酮、水或极性 液体这样的液体可能被添加到从把金属盐、封端剂和还原剂添加到有机溶剂或有机溶剂系 统中获得的有机溶液中。在特定的实施例中,萃取液的多次分开添加可能被应用于该溶液 以除去封端的金属微粒。举例来说,第一数量的萃取液可能被添加,以除去一些金属微粒。 然后可能将这个第一数量的萃取液除去、倾析或以别的方式与有机溶液分开,而后可能把 另一数量的萃取液添加到该有机溶液中。用来离析金属微粒的萃取液的精确数量可能改 变,取决于用来生产封端金属微粒的溶剂的体积。在一些实施例中,大约二到四倍或更多的 溶剂用来萃取封端金属微粒,举例来说,如果金属微粒是在大约五公升的溶剂中生产的,那 么可能使用大约20公升或更多的萃取液。倘若得到这份揭示的提示,选择适当的溶剂和适 当的溶剂数量将在原本熟悉这项技术的人的能力范围之内。依照特定的实施例,封端的微粒可能是使用传统技术(例如,倾析、离心分离、过 滤等等)从萃取液中分离出来的。在一些实施例中,萃取液可能被蒸发掉,留下封端微粒。 封端微粒可能在与萃取液分离之前、之时或之后被洗涤、按粒度分级、加热或以别的方式处 理。在特定的实施方案中,萃取液可能如同在此更详细地讨论的那样非必选地连同一种或 多种溶剂一起作为载体流体用来提供油墨。在其它的实施例中,封端的金属微粒可能保持 在单相溶液中,而且微粒可能被安排在硅基体(或其它适当的基体)上,举例来说,依照基 体上的模子、形状或图案。烧结程序的高温导致溶剂蒸发和金属微粒烧结,这能提供金属键 增强导体对基体的附着。依照特定的实施例,封端的微粒可能通过干燥除去任何残留的液体。举例来说,封端的微粒可能在烘箱中干燥,可能使用真空干燥,或可能经受冷冻干燥,以别的方式除去任何残留的萃取液和/或溶剂。干燥的封端微粒可能被非必选地在室温下储存在密封的容器 中避免湿气进入。在替代实施方案中,独立的干燥步骤可能被省略,和微粒可能是在烧结程 序期间干燥的。依照特定的实施例,封端的微粒可能通过处理在使用之前除去封端剂。封端剂 通常在反应之后留在微粒的表面上,但是封端剂的出现可能是不受欢迎的。举例来说,在 希望以可能的最低有机污染水平使用微粒的场合,把封端剂从封端的微粒中除去将是有利 的。在特定的实施方案中,封端的微粒可能被处理,直到封端剂的水平按重量计减少到大约 2 %以下面,更具体地说按重量计减少到大约1 %以下,举例来说,封端剂按重量计以大约 1. 5-2. 5%出现。在一些实施例中,封端剂可能被除去提供实质上纯的金属,举例来说可能 沉积在基体上的实质上纯的银。在特定的实施方案中,准确的用来提供纳米油墨的金属可能改变,举例来说,传导 性的金属或传导性的金属盐包括但不限于过渡金属或过渡金属盐,可能使用金、银、铜、镍、 钼、钯、铁及其合金。金属或金属盐的确切形式可能改变,取决于选定的溶剂系统。令人想 要的是金属盐无需可能造成溶剂蒸发的不适当的加热就能溶解在选定的溶剂系统中。金属 盐的说明性阴离子包括硝酸根、氯离子、溴离子、碘离子、硫氰酸根、氯酸根、亚硝酸根和醋 酸根。倘若得到这份揭示的提示,其它适合用于生产适合使电子成份附着到基体上的纳米 油墨的金属盐将很容易被原本熟悉这项技术的人选定。在此使用的封端材料的特定的实施方案是这样选定的,即包括所需数量的封端 齐U,以致该材料的处理不在电子成份和基体之间拙劣地造成由此产生的最终产品或电接 点。举例来说,封端剂的数量可能是为提供有低空隙率、高导电率和几乎没有或根本没有间 断点的接点或联结而选定的。举例来说,在此揭示的特定的实施方案利用有选定数量的封 端剂的封端材料的有利特征在200-300°C的温度下烧结程序期间润湿和粘结固体表面。在把封端材料用于附着程序的特定实施例中,封端剂在材料中的重量百分比可能 因封端剂和/或所需接点的类型而改变。举例来说,有微乎其微的封端剂或干脆没有封端 剂的材料不可能有效地粘附到硅这样的基体材料上。不施加可观的外部压力使封端剂水平 太低的封端材料所形成的结构烧结可能很困难。封端剂太多可能也对由此产生接点产生不 受欢迎的影响。举例来说,如果封端剂的数量太高,在烧结期间有机物质的迅速释放可能造 成烧结结构是多孔的和机械强度低劣的。在使用十六胺(HDA)的实施例中,封端剂在由此 产生的材料中的水平可能是大约10-14wt. %。在使用其它封端剂的情况下,封端剂的重量 百分比可能改变,说明性的范围对于基于嘧啶的封端剂按重量计大约为1_10%,对于硫醇 封端剂按重量计大约为1_15%。在特定的实施方案中,在此描述的纳米材料可能用来提供电子成份(例如,管芯) 和基体之间的电接点。第一个说明性的方法展示在图1A-1D中。只是为了举例说明,展示在 附图中的电子成份指的是管芯,虽然其它适当的电子成份也可能使用,下面将进一步讨论。 参照图IA和1B,纳米材料110被安排在基体100上。如同在在此使用的那样,“安排”指的 是将一种材料沉积、涂布、刷涂、油漆、印刷、丝网印刷或以别的方式放到另一种材料或基体 上。用来安排纳米材料的确切方法可能改变,而且说明性的方法包括但不限于喷墨印刷、 模板印刷、涂布、刷涂、旋涂、汽相沉积等等。在一些例证中,基体的整个表面可能都被涂上一层纳米材料,一个或多个管芯可能被放在预期的位置而且多余的材料可能稍后被从基体 上除去或蚀刻掉。在其它的实施例中,纳米材料可能仅仅被安排在计划中管芯附着部位的 选定区域。在特定的实施方案中,纳米材料可能在基体上被安排到大约10微米到大约200微 米的厚度,更具体地说大约25微米到大约75微米。纳米材料可能是按实质上统一的厚度 安排的,或者特定区域可能与其它区域相比厚度有所增加(或减少)。举例来说,为第一类 型的电子成份附着到基体上选择第一厚度,为不同类型的电子成份附着到基体上选择第二 厚度可能是令人想要的。在一些实施例中,为了在成份的处理期间从基体表面除去任何氧化,在安排染料 之前,可能先将焊剂或其它材料沉积在基体上,说明性的焊剂包括但不限于在此通过引证 将其全部揭示并入的以“Flux Formulation(焊剂配方)”为题的共同转让的PCT申请第 PCT/US2007/81037号所描述的那些。然而,在其它的实施例中,纳米材料本身有适当的从基 体表面除去氧化(或者防止氧化发生)的性质,以致不需要焊剂或其它材料。适合连同在此揭示的方法和成套用品一起使用的基体的说明性尺 寸包括但不限 于有大约0. Icm到大约2cm的长度、大约0. Icm到大约2cm的宽度和大约0. 01毫米到大 约0. 5毫米的厚度的那些。用于在此揭示的程序和成套用品的管芯通常包括可能被放在基 体的选定部分上的半导体材料(或其它传导性材料)。管芯可能是这样生产的,举例来说, 使用适当的晶片制造工艺(包括但不限于晶片安装和半导体管芯切割)提供众多管芯(每 个管芯包含一个或多个集成电路)。可能使用在此揭示的材料和器件附着的说明性的其它 电子成份包括但不限于铜散热器、银或金导线、LED、MEMS和可能附着到电路板或基体上 的其它成份。在安排好纳米材料110之后,可以把电子成份120安排在安排好的纳米材料110 上(见图1C)。这样的安排可能是使用人工安置、自动化的捡起和放置设备或其它适当的能 把电子成份放在印刷电路板上的预期部位或区域的装置。电子成份120通常是在不使用外 力或压力的情况下放在安排好的纳米材料110上的。在烧结之前,电子成份120可能被适 当地保持与纳米材料110接触。在安排好电子成份120之后,整个组件可能被这样烧结,以致纳米材料110固化, 在电子成份120和基体110之间提供电接点(见图1D)。在烧结程序期间,纳米材料110的 厚度通常减少。希望烧结是在提供适当的电接点但是没有高到可能损坏电子成份的程度的 温度下完成的。举例来说,在此描述的纳米材料允许在300°C以下的温度下烧结提供厚度实 质上一致而且很少有或没有空穴的电接点。通过使用300°C以下的温度,潜在的损坏电子 成份的可能性有所减少。烧结可能是通过对整个组件加热或者将热量集中在特定的电子成 份-纳米材料-基体部位发生的。在一些实施例中,整个器件可能被放在烘箱之中。其它 适合烧结的器件包括但不限于铜散热器、银或金线、LED、MEMS,等等。在一些实施方案中,烧 结可能是在大约0. 2-20Mpa(例如,大约5MPa)的压力下完成的。在特定的实施例中,该组件可能是在选定的时间周期里使用选定的温度曲线图烧 结的。烧结的温度曲线图可能是线性的、阶梯状的或其它适当的温度曲线图。举例来说,在 烧结步骤期间,该温度可能在第一烧结温度和第二烧结温度之间循环多次。作为烧结的结 果,电子组件150 (图1D)被生产出来,其中该组件包括电子成份120、基体110和它们之间的电接点140。该电子组件可能经受进一步的处理,包括但不限于将追加的电子成份安置在 该基体上、加热、干燥、进一步烧结和其它在电子器件(例如,印刷电路板)的生产中普遍实 现的处理步骤。在特定的实施例中,在生产该组件期间,可能实现一个或多个干燥步骤。干燥可能用来,举例来说,在烧结步骤之前除去溶剂和表面活性剂。干燥可能是把管芯安置在基体上 之前或把管芯安置在基体上之后完成的。举例来说,参照图2A-2E,电子组件可能是通过把 纳米材料220安排在基体210上生产的。这样的安排可能是使用在此揭示的任何说明性方 法或其它适当的方法进行的。虽然没有展示,但是基体可能是在安置以230展示的电子成 份之前干燥的。电子成份230可能被安排在纳米材料220上(见图2C)。电子成份-纳米 材料-基体组件可能非必选地在适当的温度下使用适当的装置干燥的(见图2D)。然后,组 件240可能是在烧结温度下烧结提供烧结的组件250。在特定的实施例中,干燥温度可能是从大约5°C变化到大约200°C,更具体地说从 大约120°C到大约160°C,而且通常低于烧结温度。热吹风器、烘箱、IR灯、加热板和其它能 提供热量的装置可能用来干燥该成份。在一些实施例中,该组件可能是先在烘箱中在第一 温度下干燥,然后在同一烘箱中在第二温度下烧结。在其它的实施例中,干燥可能是在低于 大气压力的压力下完成的。在一些实施例中,可能完成两个或多个干燥步骤。举例来说,第 一干燥步骤可能是在第一温度下完成的,例如,该基体可能是在把电子成份安置在基体上 之前先被干燥,而后在高于或低于第一干燥步骤的温度的第二温度下实施第二干燥步骤。在特定的实施方案中,通过干燥和烧结该电子组件,在烧结的纳米材料中可能存 在少量的空隙或实质上没有空隙。在纳米材料中形成空隙能降低电接点的整体完整性和导 致不佳的性能。在一些实施例中,低于大气压力的压力可能用来进一步减少可能形成空隙 的可能性。某些特定的实施例将在下面更详细地描述,为的是进一步举例说明在此描述的技 术的一些新奇的特征。实施例1包含封端银微粒的纳米银粉浆是依照美国专利申请第11/462,089号的描述制备 的。扼要地说,银粉浆的组成是有数量范围从0到15wt. %的十六胺封端剂的80wt. %纳米 银粉。丁基卡必醇被用作溶剂(在粉浆中以19. 5wt. %存在),而且表面活性剂BYK163 (在 粉浆中以0. 5wt. % )也存在。该组合物先在高速混合器SpeedMixer DAC 150FVZ-K中以 2500转/分钟的转速混合1分钟,然后在来自EXAKT的3-辊碾磨机中磨细。由此产生的材 料用来润湿和在烧结处理期间在200-300°C的温度下粘结固体表面。使用有不同数量的十六胺封端剂的纳米银粉完成的实验表明不包含或包含最小 量的封端剂的纳米材料不粘附到硅或任何其它材料上。不施加相当大的外部压力,它也无 法烧结成密集的结构。使用有封端剂含量高(举例来说,IOwt. %以上)的纳米银粉完成的 实验也提供并非需要的结果。在封端剂含量高的情况下,有机物质在烧结期间的迅速释放 可能导致烧结结构是多孔的和机械性能差。通过实验人们发现对于十六胺(HAD)封端的纳米银粉,提供令人想要的性质的令 人想要的封端剂数量以封端的纳米银粉的重量为基础在大约1. 5-2. 5wt. %的范围内。实施例2
制备粉浆,该粉浆有下列成份70wt. %纳米银粉(基于封端的纳米银粉的重量以2wt. %HDA封端的)、15wt. %丁基卡必醇、2wt. % 甲苯、0. 75wt. %分散剂 Dysperbyk 163 和 0. 5wt. %润湿剂 Sylquest AllOOo该粉浆被模板印刷到来自Curamic Electronics的25毫米X 25毫米的氧化铝直 接键合铜(DBC)基体上。模板厚度是150微米而开口是20X20毫米。有溅射的镍/金金 属化层的15X15毫米的硅管芯被放在银印层的表面上。该组件是依照下列条件处理的在 50°C干燥5分钟,然后在140°C干燥30分钟,最后在300°C和5MPa的压力下烧结2分钟。所形成的接点用X光(见图3,管芯附着在铜散热片上的X光照片)和用横截面的 SEM观察(见图4,展示纳米银接点的横截面)对空隙进行考核。没有观察到空隙。银接点的可靠性是在温度在-50°C和+125°C之间的热冲击试验中考核的。用纳米 银粉浆形成的接点成功地通过了 700个周期的测试。实施例3包含封端金微粒的纳米金粉浆可以依照美国专利申请第11/462,089号的描述制 备。该粉浆可能包括用按重量计大约1-2%的封端剂封端的金微粒。封端剂可能是十六胺、 十二硫醇或其它基于胺或基于硫醇的封端剂。纳米金粉浆可能用来把管芯(或其它的电子 成份)附着到基体上。实施例4包含封端钼微粒的纳米钼粉浆可以依照美国专利申请第11/462,089号的描述制 备。该粉浆可能包括用按重量计大约1-2%的封端剂封端的钼微粒。封端剂可能是十六胺、 十二硫醇或其它基于胺或基于硫醇的封端剂。纳米钼粉浆可以用来把管芯(或其它的电子 成份)附着到基体上。实施例5包含封端钯微粒的纳米钯粉浆可以依照美国专利申请第11/462,089号的描述制 备。该粉浆可能包括用按重量计大约1-2%的封端剂封端的钯微粒。封端剂可能是十六胺、 十二硫醇或其它基于胺或基于硫醇的封端剂。纳米钯粉浆可以用来把管芯(或其它的电子 成份)附着到基体上。实施例6包含封端铜微粒的纳米铜粉浆可以依照美国专利申请第11/462,089号的描述制 备。该粉浆可能包括用按重量计大约1-2%的封端剂封端的钼微粒。封端剂可能是十六胺、 十二硫醇或其它基于胺或基于硫醇的封端剂。纳米铜粉浆可以用来把管芯(或其它的电子 成份)附着到基体上。在附着程序中,一个或多个烧结和/或干燥步骤可能是在氮气气氛 下完成的。实施例7包含银微粒和铜微粒的纳米银-纳米铜粉浆可以依照美国专利申请第 11/462,089号的描述制备。该粉浆可能包括用按重量计大约1-2%的封端剂封端的银微粒 或封端剂或用按重量计大约1-2%的封端剂封端的铜微粒或两者。封端剂可能是十六胺、 十二硫醇或其它基于胺或基于硫醇的封端剂。纳米银_纳米铜粉浆可以用来把管芯(或其 它的电子成份)附着到基体上。纳米银-纳米铜微粒可以分别按1 1、2 1、1 2的比 例或介于这些比例之间的任何比例存在。在附着程序中,一个或多个烧结和/或干燥步骤可能是在氮气气氛下完成的。实施例8包含银微粒和金微粒的纳米银-纳米金粉浆可以依照美国专利申请第 11/462,089号的描述制备。该粉浆可能包括用按重量计大约1-2%的封端剂封端的银微粒 或用按重量计大约1-2%的封端剂封端的金微粒或两者。封端剂可能是十六胺、十二硫醇或 其它基于胺或基于硫醇的封端剂。纳米银_纳米金粉浆可以用来把管芯(或其它的电子成 份)附着到基体上。纳米银-纳米金微粒可能分别按1 1、2 1、1 2的比例或介于这 些比例之间的任何比例存在。实施例9包含银微粒和钼微粒的纳米银-纳米钼粉浆可以依照美国专利申请第 11/462,089号的描述制备。该粉浆可能包括用按重量计大约1-2%的封端剂封端的银微粒 或用按重量计大约1-2%的封端剂封端的钼微粒或两者。封端剂可能是十六胺、十二硫醇或 其它基于胺或基于硫醇的封端剂。纳米银_纳米金粉浆可以用来把管芯(或其它的电子成 份)附着到基体上。纳米银-纳米钼微粒可能分别按1 1、2 1、1 2的比例或介于这 些比例之间的任何比例存在。实施例10包含银微粒和钯微粒的纳米银-纳米钯粉浆可以依照美国专利申请第 11/462,089号的描述制备。该粉浆可能包括用按重量计大约1-2%的封端剂封端的银微粒 或用按重量计大约1-2%的封端剂封端的钯微粒或两者。封端剂可能是十六胺、十二硫醇或 其它基于胺或基于硫醇的封端剂。纳米银-纳米金的粉浆可以用来把管芯(或其它的电子 成份)附着到基体上。纳米银-纳米钯的微粒可能分别按1 1、2 1、1 2的比例或介 于这些比例之间的任何比例存在。实施例11包含银微粒、铜微粒和钯微粒的纳米银_纳米铜_纳米钯粉浆可以依照美国专利 申请第11/462,089号的描述制备。该粉浆可能包括用按重量计大约1-2%的封端剂封端的 银微粒,或用按重量计大约1-2%的封端剂封端的铜微粒或用按重量计大约1-2%的封端 剂封端的钯微粒或所有的三种微粒。封端剂可能是十六胺、十二硫醇或其它基于胺或基于 硫醇的封端剂。纳米银_纳米铜_纳米钯粉浆可以用来把管芯(或其它的电子成份)附着 到基体上。纳米银-纳米铜-纳米钯微粒可能分别按1 1 1、1 2 1,1 1 2的 比例或介于这些比例之间的任何比例存在。在附着程序中,一个或多个烧结和/或干燥步 骤可能是在氮气气氛下完成的。实施例12包含银微粒、金微粒和钯微粒的纳米银_纳米金_纳米钯粉浆可以依照美国专利申请第11/462,089号的描述制备。该粉浆可能包括用按重量计大约1-2%的封端剂封端的 银微粒或用按重量计大约1-2%的封端剂封端的金微粒或用按重量计大约1-2%的封端剂 封端的钯微粒或所有的三种微粒。封端剂可能是十六胺、十二硫醇或其它基于胺或基于硫 醇的封端剂。纳米银_纳米金_纳米钯粉浆可以用来把管芯(或其它的电子成份)附着到 基体上。纳米银_纳米金-纳米钯的微粒可能分别按1 1 1、1 2 1、1 1 2的 比例或介于这些比例之间的任何比例存在。
实施例13包含银微粒、钼微粒和钯微粒的纳米银_纳米钼_纳米钯粉浆可以依照美国专利申请第11/462,089号的描述制备。该粉浆可能包括以按重量计大约1-2%的封端剂封端的 银微粒或以按重量计大约1-2%的封端剂封端的钼微粒或以按重量计大约1-2%的封端剂 封端的钯微粒或所有的三种微粒。封端剂可能是十六胺、十二硫醇或其它基于胺或基于硫 醇的封端剂。纳米银_纳米钼_纳米钯粉浆可以用来把管芯(或其它的电子成份)附着到 基体上。纳米银-纳米钼-纳米钯微粒可能分别按1 1 1、1 2 1、1 1 2的比 例或介于这些比例之间的任何比例存在。实施例14包含银微粒、金微粒和铜微粒的纳米银_纳米金_纳米铜粉浆可以依照美国专利 申请第11/462,089号的描述制备。该粉浆可能包括以按重量计大约1-2%的封端剂封端的 银微粒或以按重量计大约1-2%的封端剂封端的金微粒或以按重量计大约1-2%的封端剂 封端的铜微粒或所有的三种微粒。封端剂可能是十六胺、十二硫醇或其它基于胺或基于硫 醇的封端剂。该纳米银-纳米金-纳米铜粉浆可以用来把管芯(或其它电子成份)附着到 基体上。纳米银-纳米金-纳米铜微粒可以分别按1 1 1、1 2 1、1 1 2的比 例或介于这些比例之间的任何比例存在。在附着程序中,一个或多个烧结和/或干燥步骤 可能是在氮气气氛下完成的。得到这份揭示的提示,熟悉这项技术的人将认识到这些实施例的各种不同的组成 部分可以与其它实施例的各种不同的组成部分交换或用其它实施例的各种不同的组成部 分取代。虽然特定的特征、方面、实施例和实施方案已经在上面予以描述,但是熟悉这项技 术的人在得到这份揭示的提示之后将很容易识别所揭示的这些说明性的特征、方面、实施 例和实施方案的补充、取代、修改和变更。
权利要求
一种使管芯附着到基体上的方法,该方法包括将封端的纳米材料安排在基体上;将管芯安排在安排好的封端纳米材料上;干燥安排好的封端纳米材料和安排好的管芯;以及在300℃或更低的温度下使经过干燥的安排好的管芯和经过干燥的封端纳米材料烧结把管芯附着到基体上。
2.根据权利要求1的方法,其中封端的纳米材料包括用封端剂封端的银微粒,其中封 端剂基于封端银微粒的重量以大约IOwt. %到大约15wt. %的比例出现。
3.根据权利要求2的方法,进一步包括在将封端的银微粒安排在基体上之前先将封端 的银微粒分散在溶剂中。
4.根据权利要求2的方法,进一步包括在烧结步骤期间把封端剂从封端银微粒中除去。
5.根据权利要求1的方法,其中封端的纳米材料包括封端的金属微粒,其中封端金属 微粒的金属选自金、银、铜、镍、钼、钯、铁及其合金。
6.根据权利要求1的方法,其中干燥和烧结步骤是在300°C或更低的温度完成的。
7.根据权利要求1的方法,其中烧结步骤是在氮气气氛中完成的。
8.根据权利要求8的方法,其中氮气气氛提供实质上等于大气压的压力。
9.根据权利要求8的方法,其中干燥步骤是在小于大气压的压力下完成的。
10.一种器件,其中包括基体;安排在基体上的管芯;以及管芯和基体之间的电接点, 该电接点包括在300°C或更低的温度下烧结提供基体和管芯之间的电耦合的纳米材料。
11.根据权利要求10的器件,其中基体是印刷电路板,而纳米材料包含封端的银微粒。
12.根据权利要求11的器件,其中封端的银微粒在形成接点之前基于纳米材料(封端 银微粒)的重量包含大约l_3wt. %的封端剂。
13.根据权利要求10的器件,其中纳米材料包含金属微粒,其中金属微粒的金属选自 金、银、铜、镍、钼、钯、铁及其合金。
14.根据权利要求10的器件,其中电接点在管芯和基体之间有实质上统一的厚度。
15.根据权利要求10的器件,其中电接点实质上是无空隙的。
16.一种生产电接点的成套用品,该成套用品包括纳米材料,该纳米材料由基于纳米材料的重量包含大约IOwt. %到大约15wt. %的封 端剂的封端金属微粒组成;使用纳米材料在基体和安排在基体上的管芯之间提供电接点的指令。
17.根据权利要求16的成套用品,进一步包括与纳米材料一起使用的管芯。
18.根据权利要求17的成套用品,进一步包括与管芯和纳米材料一起使用的基体。
19.根据权利要求18的成套用品,其中基体是印刷电路板。
20.一种促成管芯和基体电耦合的方法,该方法包括提供对在300°C或更低的温度下 纳米材料烧结之后在管芯和基体之间提供电接点来说有效的纳米材料。
21.根据权利要求20的方法,其中纳米材料对在低于大气压的压力下烧结之后在管芯 和基体之间提供电接点是有效的。
22.根据权利要求21的方法,其中纳米材料包含封端的银微粒,该封端的银微粒基于封端银微粒的重量有大约IOwt. %到大约15wt. %的封端剂。
23.根据权利要求21的方法,其中纳米材料包含金属微粒,其中金属微粒的金属选自 金、银、铜、镍、铂、钯、铁及其合金。
24.根据权利要求23的方法,其中金属微粒是用选自硫醇和胺的封端剂封端的。
全文摘要
这项发明揭示一些附着方法和使用这样的方法生产的器件。在特定的实施例中,该方法包含将封端的纳米材料安排在基体上,将管芯安排在安排好的封端纳米材料上,干燥安排好的封端纳米材料和安排好的管芯,以及在300℃或更低的温度下使经过干燥的安排好的管芯和经过干燥的封端纳米材料烧结把管芯附着到基体上。还描述了使用该方法生产的器件。
文档编号H01L23/52GK101803016SQ200880107504
公开日2010年8月11日 申请日期2008年7月18日 优先权日2007年7月19日
发明者A·利福顿, B·思恩赫, M·T·玛克兹, M·鲍瑞赫达, N·德赛, O·卡萨列夫 申请人:弗赖斯金属有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1