具有三维联通纳米网络结构的五氧化二钒及其制备方法和应用的制作方法

文档序号:7055627阅读:339来源:国知局
具有三维联通纳米网络结构的五氧化二钒及其制备方法和应用的制作方法
【专利摘要】本发明涉及一种具有三维联通纳米网络结构的五氧化二钒及其制备方法,该材料可作为高功率长寿命锂离子电池的正极活性材料,其由直径为10~50nm、长度为20~200nm的纳米棒相互交错连通而成三维联通网络结构,所述的三维联通网络结构形成的介孔的比体积为0.1~1.0cm3g-1,本发明的有益效果是:该三维联通纳米网络结构的五氧化二钒表现出优异的循环稳定性和高倍率性能。作为锂离子电池正极材料时具有明显改善的高倍率性能和长循环寿命,是一种潜在的高倍率、长循环寿命锂离子电池正极材料。本发明工艺简单经济,资源丰富,易于大规模生产,非常有利于市场化应用。
【专利说明】具有三维联通纳米网络结构的五氧化二钒及其制备方法和应用

【技术领域】
[0001]本发明属于纳米材料与电化学【技术领域】,具体涉及一种具有三维联通纳米网络结构的五氧化二钒及其制备方法,该材料可作为高功率长寿命锂离子电池的正极活性材料。

【背景技术】
[0002]高性能储能设备的持续发展对于其在便携式电子设备、电动汽车和可再生能源的大规模存储装置的应用至关重要。锂离子电池由于其高比能量和长循环寿命而被视为能够满足实际应用要求的最佳选择。高比容量可以通过采用比当今商业应用的点击材料具有更高比容量的材料来实现。在这些正极材料中,五氧化二钒由于其成本低、存储丰富和高理论容量(每分子式嵌入/脱出两个Li+时约为294mAh g—1)而被广泛的研究。而且当其只有一个Li+嵌入/脱出时,其依旧可以提供与商业应用的LiCoO2 (HOmAr1) LiMn2O4 (146mAh g—1)相近的容量(147mAh g—1)。然而,锂离子电池较慢的电化学动力学和较差的结构稳定性导致其具有较差的倍率性能和循环性能,从而限制了其实际的广泛应用。
[0003]许多研究表明,构建具有高比表面积和较短的锂离子扩散距离以及具有简单的应变松弛结构的纳米尺寸的钒氧化物是促进锂离子电池电化学动力学并缓解其循环过程中结构退化最有效的方法。而且现今报道的一些纳米结构材料表明其尺寸、形貌、孔隙度、结构等因素对材料的电化学性能具有十分重要的作用。因此,设计并合成合适的纳米结构是改善其电化学性能的关键。


【发明内容】

[0004] 本发明所要解决的技术问题是针对上述现有技术而提出一种具有三维联通纳米网络结构的五氧化二钒及其制备方法,其原料来源广、制备工艺简单、成本低且所得的三维联通纳米网络结构的五氧化二钒具有优良的电化学性能。
[0005]本发明解决上述技术问题所采用的技术方案是:具有三维联通纳米网络结构的五氧化二f凡,其由直径为10~50nm、长度为20~200nm的纳米棒相互交错连通而成三维联通网络结构,所述的三维联通网络结构形成的介孔的比体积为0.1~1.0cm3g'其为下述制备方法得到的产物,包括有以下步骤:
[0006]I)量取五氧化二钒溶胶并稀释于去离子水中得到溶液;
[0007]2)向步骤I)所形成的溶液中加入无机胶凝剂溶液直接形成V2O5水凝胶;
[0008]3)将步骤2)得到的V2O5水凝胶在室温下陈化I~5h ;
[0009]4)将步骤3)得到的凝胶用去离子水和酒精反复洗涤,将得到的产物置于烘箱中进行干燥;
[0010]5)将步骤4)得到的干燥产物在马弗炉中加热,并保温,自然冷却至室温取出,即可得到具有三维联通纳米网络结构的五氧化二钒。
[0011]按上述方案,所述的五氧化二钒溶胶和无机胶凝剂的摩尔比为1:3至1:24。
[0012]按上述方案,所述的无机胶凝剂为NH4H2P04、(NH4)2SO4.NH4CU Li2SO4.LiCl或
Na2SO4O
[0013]按上述方案,步骤5)中煅烧温度为300~400°C,煅烧时间为I~3h。
[0014]具有三维联通纳米网络结构的五氧化二钒的制备方法,包括有以下步骤:
[0015]I)量取五氧化二钒溶胶并稀释于去离子水中得到溶液;
[0016]2)向步骤I)所形成的溶液中加入无机胶凝剂溶液直接形成V2O5水凝胶;
[0017]3)将步骤2)得到的V2O5水凝胶在室温下陈化I~5h ;
[0018]4)将步骤3)得到的凝胶用去离子水和酒精反复洗涤,将得到的产物置于烘箱中进行干燥;
[0019]5)将步骤4)得到的干燥产物在马弗炉中加热,并保温,自然冷却至室温取出,即可得到具有三维联通纳米网络结构的五氧化二钒。
[0020]所述的具有三维联通纳米网络结构的五氧化二钒作为锂离子电池正极活性材料的应用。
[0021]本发明利用三维联通纳米网络结构的五氧化二钒,极大的缩短锂离子扩散距离,同时有效的释放充放电过程中因材料膨胀收缩而造成的内部应力,提高材料的循环稳定性与倍率性能。本发明的相互联通的纳米网络结构的五氧化二钒具有相互连通的多孔结构,以及明显增大的比表面积从而有效地增大了电解液和电极材料的接触面积,有效降低了离子扩散距离。此外这种多孔结构也有效地缓解了电极材料在循环过程中的结构退化。实验证明,这种具有三维联通纳米网络结构的五氧化二钒具有很好的倍率性能和长循环寿命,是极具有实际应用价值的锂离子电池正极材料。
[0022]本发明的有益效果是:本发明通过简单经济的工艺巧妙地合成了三维联通的纳米网络结构的五氧化二钒。当作为锂离子电池正极活性材料时,该三维联通纳米网络结构的五氧化二钒表现出优异的循环稳定性和高倍率性能。在0.1A g-1的电流密度下进行的恒流充放电测试结果表明,其首次放电比容量可达为149mAh/g,100次循环后为145mAh/g,容量保持率为97.3%,在整个循环过程中库伦效率一直保持在100%左右;在IA g—1和2k_l的大电流密度下,经过1000次循环,分别有96.4%和98.8%的容量保留。上述性能表明这种三维联通纳米网络结构的五氧化二钒作为锂离子电池正极材料时具有明显改善的高倍率性能和长循环寿命,是一种潜在的高倍率、长循环寿命锂离子电池正极材料。本发明工艺简单经济,资源丰富,易于大规模生产,非常有利于市场化应用。

【专利附图】

【附图说明】
[0023]图1是本发明实施例1三维联通纳米网络结构的五氧化二钒的合成机理图;
[0024]图2时本发明实施例1三维联通纳米网络结构的五氧化二钒的扫描图;(其中a图为加入凝胶剂后形成的水凝胶的扫描图,b图为将得到的水凝胶350°C煅烧2h得到的扫描图)
[0025]图3是本发明实施例1三维联通纳米网络结构的五氧化二钒的XRD图;
[0026]图4是本发明实施例1三维联通纳米网络结构的五氧化二钒的氮气吸附等温线及孔径分布图;
[0027]图5是本发明实施例1三维联通纳米网络结构的五氧化二钒在0.1A g—1电流密度下的电池循环性能曲线图;
[0028]图6是本发明实施例1三维联通纳米网络结构的五氧化二钒在IA g—1和2A g—1电流密度下的电池循环性能曲线图;
[0029]图7为实施例2-7使用不同胶凝剂得到的V2O5凝胶的SEM图(a/b/c/d/e/f分别为加入(NH4)2SO4, NH4C, Li2SO4, LiCl,Na2SO4, K2SO4相应得到的水凝胶的扫描图。)。

【具体实施方式】
[0030]为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。
[0031]实施例1:
[0032]具有三维联通纳米网络结构的五氧化二钒制备方法,它包括若下步骤:
[0033]I)量取1.0mmol的五氧化二钒溶胶并稀释于去离子水中得到1mL溶液,
[0034]2)向步骤I)所形成的溶液中加入30mL浓度为0.2mol/L的NH4H2PO4溶液直接形成V2O5水凝胶。
[0035]3)将步骤2)得到的V2O5水凝胶在室温下陈化2h。
[0036]4)将步骤3)得到的凝胶用水和酒精洗涤5次,将得到的产物在烘箱中烘干。
[0037]5)将步骤4)得到的干燥产物在马弗炉中加热到350°C,并保温2h,自然冷却至室温取出,即可得到三维联通纳米网络结构的五氧化二钒。
[0038]如图1所示,本发明的合成机理是:基于溶胶凝胶技术,合成反应主要包括凝胶化,陈化,煅烧等过程。该过程操作简单,反应条件温和且经济节约。
[0039]以本实例产物三维联通网络结构的五氧化二钒为例,其结构由X-射线衍射仪确定,如图3所示,X-射线衍射图谱(XRD)表明,该三维联通纳米网络结构的五氧化二钒为正交五氧化二钒相(JCPDS卡片号为00-041-1426)。如图2所示,SEM测试表明,该三维联通纳米网络结构的五氧化二钒由许多直径为10~50nm长度为20~200nm的纳米棒组成。如图4所示,从其氮气脱吸附等温线图可以知道其比表面积为43.3!!?'从其孔径分布图中可以得知其包含许多比体积为0.1~1.0cm3g-1的介孔。这种三维联通纳米网络结构的五氧化二钒具有明显增大的比表面积从而增加了电解液和电极材料的接触面积,并有效降低了离子扩散距离,此外,这种相互连通的网络中的孔隙不仅能够促进离子传输也能缓解电极材料在循环过程中的应力应变,进而使其具有高倍率性能和长循环寿命。
[0040]本实例制备的三维联通纳米网络结构的五氧化二钒作为锂离子电池正极活性材料,锂离子电池的制备方法其余步骤与通常的制备方法相同。正极片的制备方法如下,采用三维联通纳米网络结构的五氧化二钒作为活性材料,乙炔黑作为导电剂,聚四氟乙烯作为粘结剂,活性材料、乙炔黑、聚四氟乙烯的质量比为70:20:10 ;将它们按比例充分混合后,加入少量异丙醇,研磨均匀,在对辊机上压约0.2mm厚的电极片;压好的正极片置于60°C的烘箱干燥24小时后备用。以IM的LiPF6溶解于乙烯碳酸酯(EC)和碳酸二甲酯(DMC)中作为电解液,锂片为负极,Celgard 2325为隔膜,CR 2025型不锈钢为电池外壳组装成扣式锂离子电池。
[0041]以本实例制备的三维联通纳米网络结构的五氧化二钒作为锂离子电池正极材料为例,如图5所示,在0.1A g—1的电流密度下进行的恒流充放电测试结果表明,其首次放电比容量可达为149mAh/g,100次循环后为145mAh/g,容量保持率为97.3%,在整个循环过程中库伦效率一直保持在100%左右;如图6所示,在IA g—1和2A g—1大电流密度下,经过1000次循环,分别有96.4%和98.8%的容量保留。该结果表明三维联通纳米网络结构的五氧化二钒具有优异的倍率特性,是高功率、长寿命锂离子电池的潜在应用材料。
[0042]实施例2:
[0043]具有三维联通纳米网络结构的五氧化二钒制备方法,它包括若下步骤:
[0044]I)量取Immol的五氧化二钒溶胶并稀释于去离子水中得到溶液。
[0045]2)向步骤I)所形成的溶液中加入30mL浓度为0.lmol/L的(NH4)2SO4溶液直接形成V2O5水凝胶。
[0046]3)将步骤2)得到的V2O5水凝胶在室温下陈化lh。
[0047]4)将步骤3)得到的凝胶用水和酒精洗涤5次,将得到的产物烘箱中烘干。
[0048]5)将步骤4)得到的干燥产物在马弗炉中加热到300°C,并保温3h,自然冷却至室温取出,即可得到三维联通纳米网络结构的五氧化二钒。
[0049]以本实例产物为例,如图7所示,图7a为向含有Immol五氧化二钒溶胶的溶液中加入30mL 0.lmol/L的(NH4)2SO4溶液得到的凝胶的SEM图,从图中可以看到该凝胶由许多直径在10~50nm的纳米线组成。将本实例制备的三维联通纳米网络结构的五氧化二钒作为锂离子电池正极材料进行测试时,当电流密度为0.1A g—1时,其初始容量为144mAh/g,100次循环后为139mAh/g,容量保持率为96.5%。每次衰减率为0.0347%。
[0050]实施例3:
[0051]具有三维联通纳米网络结构的五氧化二钒制备方法,它包括若下步骤:
[0052]I)量取2mmol的五氧化二钒溶胶并稀释于去离子水中得到溶液。
[0053]2)向步骤I)所形成的溶液中加入30mL浓度为0.2mol/L的NH4Cl溶液直接形成V2O5水凝胶。
[0054]3)将步骤2)得到的V2O5在室温下陈化5h。
[0055]4)将步骤3)得到的凝胶用水和酒精洗涤5次,将得到的产物在烘箱中烘干。
[0056]5)将步骤4)得到的干燥产物在马弗炉中加热到350°C,并保温3h,自然冷却至室温取出,即可得到三维联通纳米网络结构的五氧化二钒。
[0057]以本实例产物为例,如图7所示,图7b为向含有2mmol五氧化二钒溶胶的溶液中加入30mL 0.2mol/L的NH4Cl溶液得到的凝胶的SEM图,从图中可以看到该凝胶由许多直径在10~50nm的纳米线粘连而成。将本实例制备的三维联通纳米网络结构的五氧化二钥;作为锂离子电池正极材料进行测试时,当电流密度为0.1A g—1时,其初始容量为143mAh/g,100次循环后为138mAh/g,容量保持率为96.5%。每次衰减率为0.035%。
[0058]实施例4:
[0059]具有三维联通纳米网络结构的五氧化二钒制备方法,它包括若下步骤:
[0060]I)量取Immol的五氧化二钒溶胶并稀释于去离子水中得到溶液。
[0061]2)向步骤I)所形成的溶液中加入30mL浓度为0.3mol/L的Li2SO4溶液直接形成V2O5水凝胶。
[0062]3)将步骤2)得到的V2O5水凝胶在室温下陈化2h。
[0063]4)将步骤3)得到的凝胶用水和酒精洗涤5次,将得到的产物在烘箱中烘干。
[0064]5)将步骤4)得到的干燥产物在马弗炉中加热到350°C,并保温2h,自然冷却至室温取出,即可得到三维联通纳米网络结构的五氧化二钒。
[0065]以本实例产物为例,如图7所示,图7c为向含有Immol五氧化二钒溶胶的溶液中加入30mL 0.3mol/L的Li2SO4溶液得到的凝胶的SEM图,从图中可以看到该凝胶由许多直径在10~50nm的纳米线组成。将本实例制备的三维联通纳米网络结构的五氧化二钒作为锂离子电池正极材料进行测试时,当电流密度为0.1A g—1时,其初始容量为144mAh/g,100次循环后为137mAh/g,容量保持率为95.1 %。每次衰减率为0.0486 %。
[0066]实施例5:
[0067]具有三维联通纳米网络结构的五氧化二钒制备方法,它包括若下步骤:
[0068]I)量取Immol的五氧化二钒溶胶并稀释于去离子水中得到溶液。
[0069]2)向步骤I)所形成的溶液中加入30mL浓度为0.5mol/L的LiCl溶液直接形成V2O5水凝胶。
[0070]3)将步骤2)得到的V2O5水凝胶在室温下陈化2h。
[0071]4)将步骤3)得到的凝胶用水和酒精洗涤5次,将得到的产物在烘箱中烘干。
[0072]5)将步骤4)得到的干燥产物在马弗炉中加热到350°C,并保温lh,自然冷却至室温取出,即可得到三维联通纳米网络结构的五氧化二钒。
[0073] 以本实例产物为例,如图7所示,图7d为向含有Immol五氧化二钒溶胶的溶液中加入30mL 0.5mol/L的LiCl溶液得到的凝胶的SEM图,从图中可以看到该凝胶由许多直径在10~50nm的纳米线组成。将本实例制备的三维联通纳米网络结构的五氧化二钒作为锂离子电池正极材料进行测试时,当电流密度为0.1A g—1时,其初始容量为145mAh/g,100次循环后为140mAh/g,容量保持率为96.6%。每次衰减率为0.0345%。
[0074]实施例6:
[0075]具有三维联通纳米网络结构的五氧化二钒制备方法,它包括若下步骤:
[0076]I)量取1.0mmol的五氧化二钒溶胶并稀释于去离子水中得到溶液。
[0077]2)向步骤I)所形成的溶液中加入30mL浓度为0.2mol/L的Na2SO4溶液直接形成V2O5水凝胶。
[0078]3)将步骤2)得到的V2O5水凝胶在室温下陈化lh。
[0079]4)将步骤3)得到的凝胶用水和酒精洗涤5次,将得到的产物在烘箱中烘干。
[0080]5)将步骤4)得到的干燥产物在马弗炉中加热到400°C,并保温lh,自然冷却至室温取出,即可得到三维联通纳米网络结构的五氧化二钒。
[0081]以本实例产物为例,如图7所示,图7e为向含有Immol五氧化二钒溶胶的溶液中加入30mL 0.2mol/L的Na2SO4溶液得到的凝胶的SEM图,从图中可以看到该凝胶由许多直径在10~50nm的纳米线组成。将本实例制备的三维联通纳米网络结构的五氧化二钒作为锂离子电池正极材料进行测试时,当电流密度为0.1A g—1时,其初始容量为146mAh/g,100次循环后为140mAh/g,容量保持率为95.9%。每次衰减率为0.0411%。
[0082]实施例7:
[0083]具有三维联通纳米网络结构的五氧化二钒制备方法,它包括若下步骤:
[0084]I)量取1.0mmol的五氧化二钒溶胶并稀释于去离子水中得到溶液。
[0085]2)向步骤I)所形成的溶液中加入30mL浓度为0.8mol/L的K2SO4溶液直接形成V2O5水凝胶。
[0086]3)将步骤2)得到的V2O5水凝胶在室温下陈化5h。
[0087]4)将步骤3)得到的凝胶用水和酒精洗涤5次,将得到的产物在烘箱中烘干。
[0088]5)将步骤4)得到的干燥产物在马弗炉中加热到350°C,并保温2h,自然冷却至室温取出,即可得到三维联通纳米网络结构的五氧化二钒。
[0089]以本实例产物为例,如图7所示,图7f为向含有Immol五氧化二钒溶胶的溶液中加入30mL 0.8mol/L的K2SO4溶液得到的凝胶的SEM图,从图中可以看到该凝胶由许多直径在10~50nm的纳米线组成。将本实例制备的三维联通纳米网络结构的五氧化二钒作为锂离子电池正极材料进行测试时,当电流密度为0.1A g—1时,其初始容量为146mAh/g,100次循环后为140mAh/g, 容量保持率为95.9%。每次衰减率为0.41%。
【权利要求】
1.具有三维联通纳米网络结构的五氧化二钒,其由直径为10~50nm、长度为20~200nm的纳米棒相互交错连通而成三维联通网络结构,所述的三维联通网络结构形成的介孔的比体积为0.1~1.0cm3g'其为下述制备方法得到的产物,包括有以下步骤: 1)量取五氧化二钒溶胶并稀释于去离子水中得到溶液; 2)向步骤I)所形成的溶液中加入无机胶凝剂溶液直接形成V2O5水凝胶; 3)将步骤2)得到的V2O5水凝胶在室温下陈化I~5h; 4)将步骤3)得到的凝胶用去离子水和酒精反复洗涤,将得到的产物置于烘箱中进行干燥; 5)将步骤4)得到的干燥产物在马弗炉中加热,并保温,自然冷却至室温取出,即可得到具有三维联通纳米网络结构的五氧化二钒。
2.根据权利要求1所述的具有三维联通纳米网络结构的五氧化二钒,其特征在于所述的五氧化二钒溶胶和无机胶凝剂的摩尔比为1:3至1:24。
3.根据权利要求1所述的具有三维联通纳米网络结构的五氧化二钒,其特征所述的无机胶凝剂为 NH4H2P04、(NH4)2SO4, NH4CULi2SO4, LiCl 或 Na2S04。
4.根据权利要求1所述的具有三维联通纳米网络结构的五氧化二钒,其特征在于步骤5)中煅烧温度为300~400°C,煅烧时间为I~3h。
5.权利要求1所述的具有三维联通纳米网络结构的五氧化二钒的制备方法,包括有以下步骤: 1)量取五氧化二钒溶胶并稀释于去离子水中得到溶液; 2)向步骤I)所形成的溶液中加入无机胶凝剂溶液直接形成V2O5水凝胶; 3)将步骤2)得到的V2O5水凝胶在室温下陈化I~5h; 4)将步骤3)得到的凝胶用去离子水和酒精反复洗涤,将得到的产物置于烘箱中进行干燥; 5)将步骤4)得到的干燥产物在马弗炉中加热,并保温,自然冷却至室温取出,即可得到具有三维联通纳米网络结构的五氧化二钒。
6.根据权利要求5所述的具有三维联通纳米网络结构的五氧化二钒的制备方法,其特征在于所述的五氧化二钒溶胶和无机胶凝剂的摩尔比为1:3至1:24。
7.根据权利要求5所述的具有三维联通纳米网络结构的五氧化二钒的制备方法,其特征所述的无机胶凝剂为 NH4H2P04、(NH4)2SO4, NH4CULi2SO4, LiCl 或 Na2S04。
8.根据权利要求5所述的具有三维联通纳米网络结构的五氧化二钒的制备方法,其特征在于步骤5)中煅烧温度为300~400°C,煅烧时间为I~3h。
9.权利要求1所述的具有三维联通纳米网络结构的五氧化二钒作为锂离子电池正极活性材料的应用。
【文档编号】H01M4/48GK104176779SQ201410396489
【公开日】2014年12月3日 申请日期:2014年8月12日 优先权日:2014年8月12日
【发明者】麦立强, 赵露滋, 冯威, 安琴友, 魏湫龙 申请人:武汉理工大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1