各向异性导电膜及其制备方法与流程

文档序号:11142668阅读:545来源:国知局
各向异性导电膜及其制备方法与制造工艺

本发明涉及各向异性导电膜及其制备方法。



背景技术:

IC芯片等电子部件的安装中广泛使用各向异性导电膜,近年来,从适用于高密度安装的观点出发,以提高导电粒子捕捉效率或连接可靠性、降低短路发生率为目的,有人提出了使用转印型,而使导电粒子单层排列(专利文献1)。

该各向异性导电膜的制备方法中,首先,在具有多个孔部的转印型的该孔部使导电粒子保持,从其上压合形成有转印用粘着层的粘着膜,使导电粒子一次转印到粘着层上。其次,对于附着于粘着层的导电粒子,压合成为各向异性导电膜的构成因素的高分子膜,进行加热加压,使导电粒子二次转印到高分子膜表面上。其次,在二次转印有导电粒子的高分子膜的导电粒子一侧表面上,形成使导电粒子包覆的粘接层。由此,制备导电粒子的配置间距为9μm左右的各向异性导电膜。

现有技术文献

专利文献

专利文献1:特开2010-33793号公报。



技术实现要素:

发明所要解决的课题

但是,根据专利文献1的各向异性导电膜的制备方法,若导电粒子的配置间距进一步狭窄,则难以按照转印型使导电粒子保持、或难以确实地转印所保持的导电粒子,各向异性导电膜的生产率降低。另外,各向异性导电膜的制备工序、或将各向异性导电膜用于电子部件的安装时,有3个以上导电粒子连接,由此还容易产生短路的问题。

本发明的课题在于,为了与高密度安装对应,即使各向异性导电膜中的导电粒子的配置间距窄,也可以高生产率制备各向异性导电膜,抑制将各向异性导电膜用于电子部件安装时的短路发生率。

用于解决课题的手段

本发明人发现:使用转印型制备导电粒子分散于绝缘性树脂层的各向异性导电膜时,若使用转印型使分散有导电粒子的第1和第2的绝缘性树脂层彼此贴合,则能够以高生产率制备导电粒子的配置间距窄的各向异性导电膜,而且可以控制导电粒子的不必要的连接,从而完成了本发明。

即,本发明提供各向异性导电膜,其为导电粒子分散于绝缘性树脂层的各向异性导电膜,所述各向异性导电膜具有:在各向异性导电膜的膜厚的规定深度分散有导电粒子的第1导电粒子层和在与第1导电粒子层不同的深度分散有导电粒子的第2导电粒子层,在各导电粒子层中,相邻的导电粒子的最接近距离为导电粒子的平均粒径的2倍以上。

另外,本发明可以提供制备上述的各向异性导电膜的方法,所述制备方法具有下述的工序:

工序A,在形成有多数凹部的第1转印型的凹部装入导电粒子;

工序B,形成第1转印型内的导电粒子转帖于绝缘性树脂层的第1绝缘性树脂层;

工序C,在形成有多数凹部的第2转印型的凹部装入导电粒子;

工序D,形成第2转印型内的导电粒子转贴到绝缘性树脂层的第2绝缘性树脂层;

工序E,使第1绝缘性树脂层的导电粒子的转贴面与第2绝缘性树脂层的导电粒子的转贴面对置,将它们叠层制成一体化,

其中,各转印型中,相邻的凹部的最接近距离为该转印型中装入的导电粒子的平均粒径的2倍以上。

发明效果

本发明的各向异性导电膜可以通过使用转印型使分散有导电粒子的第1和第2的绝缘性树脂层贴合进行制备。因此,可以使贴合前的转印型的导电粒子的间距较各向异性导电膜中的导电粒子的间距变宽,可以提高各向异性导电膜的生产率。

另外,制备各向异性导电膜时、或各将向异性导电膜用于电子部件的安装时,即使第1导电粒子层中所含的第1导电粒子和第2导电粒子层中所含的第2导电粒子在膜面方向上连接,第1导电粒子层和第2导电粒子层的各层中,相邻的导电粒子的最接近距离也为导电粒子的平均粒径的2倍以上,因此,除了所连接的第1导电粒子和第2导电粒子之外、几乎不进一步连接第3导电粒子。因此,可以降低短路的发生率。

附图简述

图1A是实施例的各向异性导电膜1A的截面图;

图1B是实施例的各向异性导电膜1A的、显示导电粒子的配置的平面图。

图2A是实施例的各向异性导电膜1B、且第1导电粒子层的导电粒子与第2导电粒子层的导电粒子呈连接的方式的截面图;

图2B是实施例的各向异性导电膜的、第1导电粒子层的导电粒子与第2导电粒子层的导电粒子呈连接的方式的平面图。

图3A是各向异性导电连接时实施例的各向异性导电膜1B的导电粒子捕捉性能的说明图;

图3B是各向异性导电连接时实施例的各向异性导电膜1B的导电粒子捕捉性能的说明图。

图4是实施例的各向异性导电膜1C的、显示导电粒子的配置的平面图。

图5是实施例的各向异性导电膜1D的、显示导电粒子的配置的平面图。

图6是导电粒子的配置间距小的各向异性导电膜1X的截面图。

图7A是各向异性导电膜的制备方法的工序说明图;

图7B是各向异性导电膜的制备方法的工序说明图;

图7C是各向异性导电膜的制备方法的工序说明图;

图7D是各向异性导电膜的制备方法的工序说明图;

图7E是各向异性导电膜的制备方法的工序说明图;

图7F是各向异性导电膜的制备方法的工序说明图;

图7G是各向异性导电膜的制备方法的工序说明图。

图8是各向异性导电膜的制备方法的工序说明图。

图9A是各向异性导电膜的制备方法的工序说明图;

图9B是各向异性导电膜的制备方法的工序说明图。

图10A是各向异性导电膜的制备方法的工序说明图;

图10B是各向异性导电膜的制备方法的工序说明图。

图11是各向异性导电膜的截面图。

图12是各向异性导电膜的截面图。

具体实施方式

以下,参见附图详细地说明本发明的各向异性导电膜的一个例子。需要说明的是,各图中,相同符号表示相同或相等的构成因素。

<<各向异性导电膜的整体构成>>

图1A是本发明的一个实施例的各向异性导电膜1A的截面图,图1B是该各向异性导电膜1A的、显示导电粒子的配置的平面图。该各向异性导电膜1A是在绝缘性树脂层4中分散有导电粒子2a、2b,具有在各向异性导电膜1A的膜厚方向z的规定深度分散有导电粒子2a(图中,以深色表示)的第1导电粒子层3a和在与第1导电粒子层3a不同的深度分散有导电粒子2b(图中,以浅色表示)的第2导电粒子层3b。

如图1B所示,在各导电粒子层3a、3b中,导电粒子2a、2b分别正方排列,第2导电粒子层3b的导电粒子2b的排列,对于第1导电粒子层3a的导电粒子2a的排列,在第1导电粒子层3a的排列方向x上,形成排列格子的半间距分错位的配置。

在此,第1导电粒子层3a的分散有导电粒子2a的膜厚方向z的深度与第2导电粒子层3b的分散有导电粒子2b的膜厚方向z的深度不同是指,平行于膜面的导电粒子2a的中心线Pa与平行于膜面的导电粒子2b的中心线Pb的距离S为导电粒子2a、2b的平均粒径的1/5以上隔开。该距离S优选为导电粒子2a、2b的平均粒径的1/2以上、更优选为1/2~5倍。在此,导电粒子2a、2b的平均粒径为导电粒子2a、2b整体的平均粒径。

该各向异性导电膜1A中,在第1导电粒子层3a内相邻的导电粒子的最接近距离La为第1导电粒子层3a中的导电粒子2a的平均粒径Da的2倍以上、优选为2倍以上且50倍以下。在第2导电粒子层3b内相邻的导电粒子的最接近距离Lb也为第2导电粒子3b中的导电粒子2b的平均粒径Db的2倍以上、优选为2倍以上且50倍以下。如此,在各导电粒子层3a、3b中,通过使相邻的导电粒子的最接近距离La、Lb为导电粒子2a、2b的平均粒径Da、Db的2倍以上,在各向异性导电膜的制备工序中,第1导电粒子层3a与第2导电粒子层3b的彼此配置产生错位,如图2A、图2B所示的各向异性导电膜1B,第1导电粒子层3a的导电粒子2a与第2导电粒子层3b的导电粒子2b形成2个连接,即使各向异性导电膜的平视中的最接近导电粒子间距离Lc为0,使用窄间距的转印型时,导电粒子也不存在3个以上连接。因此,可以抑制将各向异性导电膜1B用于电子部件的各向异性导电连接时的短路发生。

另外,若将第1导电粒子层3a的导电粒子2a和第2导电粒子层3b的导电粒子2b呈2个连接的各向异性导电膜1B用于各向异性导电连接时,如图3A所示,2个连接的导电粒子2a、2b有时夹持于电子部件20的端子21的边缘与电子部件22的端子23的边缘之间,如图3B所示,位于端子21、23的边缘的导电粒子,与为1个时相比,为2个连接时,各向异性导电连接的加热加压后容易被捕捉到端子21、23上。因此,根据本发明的各向异性导电膜,还可以使各向异性导电连接中的导电粒子捕捉性能提高。

另一方面,如图6所示的各向异性导电膜1X,即使具有2层的导电粒子层3a、3b,各导电粒子层中的导电粒子2a、2b的配置间距也小,若各导电粒子层3a、3b中相邻的导电粒子2a、2b的最接近距离La、Lb为不足导电粒子2a、2b的平均粒径Da、Db的2倍,则使用各向异性导电膜进行各向异性导电连接时容易发生短路,因此不优选。

本发明的各向异性导电膜中,导电粒子2a、2b,只要各导电粒子层3a、3b中的导电粒子的最接近距离为导电粒子的平均粒径的2倍以上即可,可以获取各种的配置。例如,如图4所示的各向异性导电膜1C,第1导电粒子层3a的导电粒子2a的排列和第2导电粒子层3b的导电粒子2b的排列分别为正方排列,第2导电粒子层3b的导电粒子2b的排列,相对于第1导电粒子层3a的导电粒子2a的排列,可以设为在斜方向上排列格子的半间距分错位的排列。各导电粒子层中的导电粒子排列,不限于正方排列,可以是三方排列、也可以是无规排列。无规排列可以如下制作:例如在可以延伸的膜上配置,使该膜延伸,使导电粒子间具有规定距离。

另外,在第1导电粒子层3a和第2导电粒子层3b中排列图案及其间距可以相同也可以不同,排列图案及其间距相同时,容易判定贴合后的导电粒子的分散状态的良否,在制备上有利。例如,关于图5所示的各向异性导电膜1D,第1导电粒子层3a的导电粒子2a为正方排列、第2导电粒子层3b的导电粒子2b为斜方排列,第2导电粒子层3b的导电粒子2b常常与第1导电粒子层3a的导电粒子2a形成横向的排列。此时容易明确:若第2导电粒子层3b的导电粒子2b与第1导电粒子层3a的导电粒子2a存在不形成横向的部分,则在其部分中不形成导电粒子所意图的排列。

<<导电粒子>>

作为导电粒子2a、2b,可以从以往公知的用于各向异性导电膜的导电粒子中适宜选择使用。例如可以举出:镍、钴、银、铜、金、钯等金属粒子,金属包覆树脂粒子等。也可以并用2种以上。

作为导电粒子的平均粒径,为了容易吸收布线的高度的偏差而不使电阻升高、而且不成为短路的原因,优选为1~10μm、更优选为2~6μm。第1导电粒子层3a的导电粒子2a的平均粒径和第2导电粒子层3b的导电粒子2b的平均粒径,可以相同也可以不同。

导电粒子为金属包覆树脂粒子时,为了获得良好的连接可靠性,树脂芯材粒子的粒子硬度(20%K值;压缩弹性形变特性K20)优选为100~1000kgf/mm2、更优选为200~500kgf/mm2。另外,第1导电粒子层3a的导电粒子2a的粒子硬度和第2导电粒子层3b的导电粒子2b的粒子硬度,可以相同也可以不同。

作为这样的树脂芯材,优选使用由压缩形变优异的塑料材料构成的粒子,例如可以由(甲基)丙烯酸酯类树脂、聚苯乙烯类树脂、苯乙烯-(甲基)丙烯酸共聚树脂、氨基甲酸乙酯类树脂、环氧类树脂、酚醛树脂、丙烯腈-苯乙烯(AS)树脂、苯并胍胺树脂、二乙烯基苯类树脂、聚酯树脂等形成。在此,“(甲基)丙烯酸酯”包含丙烯酸酯和甲基丙烯酸酯。

树脂芯材可以由上述的(甲基)丙烯酸酯类树脂或聚苯乙烯类树脂的任一种树脂单独形成,也可以由这些树脂的共混组合物形成。另外,可以由后述的(甲基)丙烯酸酯类单体与苯乙烯类单体的共聚物形成。

(甲基)丙烯酸酯类树脂优选为:(甲基)丙烯酸酯类单体、与进一步根据需要可以与该单体共聚的具有反应性双键的化合物(例如,乙烯基类单体、不饱和羧酸单体等)和二官能或多官能性单体的共聚物。在此,在单体中,只要是通过加热或紫外线照射等进行聚合的单体即可,还包含2个以上单体的聚合物即低聚物。

作为(甲基)丙烯酸酯类单体,可以举出:(甲基)丙烯酸甲酯,(甲基)丙烯酸乙酯、(甲基)丙烯酸丙酯、(甲基)丙烯酸丁酯、2-乙基己基(甲基)丙烯酸酯、月桂基(甲基)丙烯酸酯、十八烷基(甲基)丙烯酸酯、环己基(甲基)丙烯酸酯、2-羟基乙基(甲基)丙烯酸酯、2-丙基(甲基)丙烯酸酯、氯-2-羟基乙基(甲基)丙烯酸酯,二乙二醇单(甲基)丙烯酸酯、甲氧基乙基(甲基)丙烯酸酯、缩水甘油基(甲基)丙烯酸酯、二环戊基(甲基)丙烯酸酯、二环戊烯基(甲基)丙烯酸酯和异佛尔酮基(甲基)丙烯酸酯等。

另一方面,聚苯乙烯类树脂优选为:苯乙烯类单体、与进一步根据必要可以与该单体共聚的具有反应性双键的化合物(例如,乙烯基类单体、不饱和羧酸单体等)和二官能或多官能性单体的共聚物。在此,在单体中,只要是通过加热或紫外线照射等进行聚合的单体即可,还包含2个以上单体的聚合物即低聚物

作为苯乙烯类单体,可以举出:苯乙烯、甲基苯乙烯、二甲基苯乙烯、三甲基苯乙烯、乙基苯乙烯、二乙基苯乙烯、三乙基苯乙烯、丙基苯乙烯、丁基苯乙烯、己基苯乙烯、庚基苯乙烯、和辛基苯乙烯等的烷基苯乙烯;氟苯乙烯、氯苯乙烯、溴苯乙烯、二溴苯乙烯、碘苯乙烯、和氯甲基苯乙烯等的卤代苯乙烯;以及,硝基苯乙烯、乙酰基苯乙烯、和甲氧基苯乙烯。

作为构成树脂芯材的优选的(甲基)丙烯酸酯类树脂的一个例子,可以举出:由氨基甲酸乙酯化合物与(甲基)丙烯酸酯类单体的聚合物构成的情形。作为氨基甲酸乙酯化合物,可以使用多官能氨基甲酸乙酯丙烯酸酯、例如可以使用2官能氨基甲酸乙酯丙烯酸酯等。在此,相对于单体100重量份,上述氨基甲酸乙酯化合物优选含有5重量份以上、更优选含有25重量份以上。

需要说明的是,关于导电粒子2a和导电粒子2b,应该各向异性导电连接的二个电子部件的对置电极间距离几乎一定时(例如、IC芯片的凸点(Bump)高度为均匀时),在实际应用上优选为尺寸或硬度或材质等方面相同。由此,可以使各向异性导电连接时存在于应该连接的对置电极间的导电粒子均匀地压溃,因此可以使初期导通电阻值降低、使导通可靠性改善、使短路的发生率降低。

另一方面,应该各向异性导电连接的二个电子部件的对置电极间距离存在偏差时(例如,IC芯片的凸点的高度存在偏差时),作为导电粒子2a和导电粒子2b,若使用尺寸或硬度或材质等方面相同的粒子,则存在产生不合适的情形。例如,若作为导电粒子仅使用比较小的尺寸的粒子,则在相对广的电极间距离的对置电极间,导电粒子不能充分地压溃,因此各向异性导电连接时压痕变得不均匀,从而有可能在产品检查时被判定为不良、初期导通电阻升高、或者导通可靠性降低。另外,若作为导电粒子仅使用粒子硬度比较高的粒子,则在相对窄的电极间距离的对置电极间只是出现强的压痕而粒子本身不能充分压溃,因此有可能存在初期导通电阻值升高,导通可靠性降低。因此,应该各向异性导电连接的二个电子部件的对置电极间距离存在偏差时,作为导电粒子2a和导电粒子2b,优选使用在尺寸或粒子硬度等方面彼此不同的粒子,以能够消去其偏差。此时,导电粒子的排列图案优选能够消去应该各向异性导电连接的二个电子部件的对置电极间距离的偏差的图案。

绝缘性树脂层4中的、第1导电粒子层3a的导电粒子2a和第2导电粒子层3b的导电粒子2b的总计的粒子量,若过少,则导电粒子捕捉数降低而难以进行各向异性导电连接,若过多,则有可能发生短路,因此优选每1平方mm为50~50000个、更优选每1平方mm为200~50000个。

<<绝缘性树脂层>>

作为绝缘性树脂层4,可以适宜采用公知的各向异性导电膜中使用的绝缘性树脂层。例如,可以使用由包含(甲基)丙烯酸酯化合物和光自由基聚合引发剂的光聚合性树脂形成的树脂层、由包含(甲基)丙烯酸酯化合物和热自由基聚合引发剂的热聚合性树脂形成的树脂层、由包含环氧化合物和热阳离子聚合引发剂的热聚合性树脂形成的树脂层、由包含环氧化合物和热阴离子聚合引发剂的热聚合性树脂形成的树脂层等。使用光自由基聚合引发剂时,除了光自由基聚合引发剂之外,还可以使用热自由基聚合引发剂。另外,还可以由多数的树脂层形成绝缘性树脂层4。

在此,作为(甲基)丙烯酸酯化合物,可以使用以往公知的光聚合型(甲基)丙烯酸酯单体。例如,可以使用单官能(甲基)丙烯酸酯类单体、二官能以上的多官能(甲基)丙烯酸酯类单体。本发明中,各向异性导电连接时为了可以使绝缘性树脂层热固化,优选在(甲基)丙烯酸酯类单体的至少一部中使用多官能(甲基)丙烯酸酯类单体。

作为光自由基聚合引发剂,例如可以举出:苯乙酮类光聚合引发剂、苯甲基缩酮类光聚合引发剂、磷类光聚合引发剂等的公知聚合引发剂。

光自由基聚合引发剂的使用量,相对于丙烯酸酯化合物100质量份,若过少,则无法充分聚合,若过多,则成为刚性降低的原因,因此优选为0.1~25质量份、更优选为0.5~15质量份。

作为热自由基聚合引发剂,例如可以举出:有机过氧化物、偶氮类化合物等。特别是可以优选使用不发生成为气泡原因的氮的有机过氧化物。

关于热自由基聚合引发剂的使用量,若过少,则固化不良,若过多,则产品寿命降低,因此,相对于丙烯酸酯化合物100质量份,优选为2~60质量份、更优选为5~40质量份。

作为热阳离子聚合引发剂,可以采用作为环氧化合物的热阳离子聚合引发剂而公知的引发剂,例如,可以使用通过热而产生酸的碘鎓盐、硫鎓盐、磷鎓盐、二茂铁类等,特别是,可以优选使用对温度显示良好的潜在性的芳香族硫鎓盐。

关于热阳离子聚合引发剂的掺混量,若过少,则存在固化不良的倾向,若过多,则存在产品寿命降低的倾向,因此,相对于环氧化合物100质量份,优选为2~60质量份、更优选为5~40质量份。

作为热阴离子聚合引发剂,可以采用作为环氧化合物的热阴离子聚合引发剂而公知的引发剂,例如可以使用通过热而产生碱的脂肪族胺类化合物、芳香族胺类化合物、二级或三级胺类化合物、咪唑类化合物、聚硫醇类化合物、三氟化硼-胺络合物、双氰胺、有机酰肼等,特别优选使用对温度显示良好的潜在性的胶囊化咪唑类化合物。

关于热阴离子聚合引发剂的掺混量,若过少,则存在固化不良的倾向,若过多,则存在产品寿命降低的倾向,因此相对于环氧化合物100质量份,优选为2~60质量份、更优选为5~40质量份。

作为由多数的树脂层形成绝缘性树脂层4的方式,可以由各自的树脂层形成保持第1导电粒子层3a的绝缘性树脂层和保持第2导电粒子层3b的绝缘性树脂层。另外,在保持第1导电粒子层3a的绝缘性树脂层和保持第2导电粒子层3b的绝缘性树脂层之间,为了将它们粘接,可以设置中间树脂层,另外,该中间树脂层,在各向异性导电膜的卷取时、卷出时、运输时、各向异性导电连接工序的膜的导出时等,可以具有缓和导电粒子加入的应力的功能。另外,该绝缘性树脂层4的一面上可以设置不含有导电粒子的比较厚的绝缘性粘合剂层(未图示)。

中间树脂层具有应力缓和功能时,中间树脂层可以由不含有聚合引发剂的树脂形成。作为此时的中间树脂层的形成树脂,例如可以举出:苯氧基树脂、环氧树脂、聚烯烃树脂、氨基甲酸乙酯树脂、丙烯酸树脂等。

<<各向异性导电膜的制备方法>>

(i) 概要

图1A、图1B所示的各向异性导电膜1A可以简略地如下制备。

首先,如图7A所示,在平面上开口了多数凹部11的第1转印型10a的该凹部11装入导电粒子2a(工序A)。其次,形成第1转印型10a内的导电粒子2a转贴到绝缘性树脂层的第1绝缘性树脂层4a(工序B)(图7B~图7E)。

同样地,在形成有多数凹部的第2转印型的凹部装入导电粒子(工序C),形成该第2转印型内的导电粒子转贴到绝缘性树脂层的第2绝缘性树脂层(工序D)。

此时,第1转印型、第2转印型中,使相邻的凹部的最接近距离为该转印型所装入的导电粒子的平均粒径的2倍以上。

然后,使第1绝缘性树脂层4a的导电粒子2a的转贴面与第2绝缘性树脂层4b的导电粒子2b的转贴面对置,将它们叠层制成一体化(工序E)(图7F~图7G)。

通过使如此转贴有导电粒子的绝缘性树脂层彼此贴合来制备各向异性导电膜,可以提高各向异性导电膜的生产效率。即,在所贴合的各绝缘性树脂层中,可以使导电粒子的分散密度变低,因此可以使转印型中的导电粒子的填充量变少,可以提高填充工序中的收率。另外,在不将转贴有导电粒子的绝缘性树脂层彼此贴合的以往的各向异性导电膜的制备方法中,填充到转印型中的导电粒子数少,因此,即使是由此所得的各向异性导电膜不能用于细间距布线的情形,根据本发明的制备方法,也可以制备:使用其转印型,导电粒子高密度地分散,能够用于细间距端子的各向异性导电膜。

(ii) 转印型

作为第1转印型和第2转印型,例如可以使用:对于硅胶、各种陶瓷、玻璃、不锈钢等的金属等的无机材料或、各种树脂等的有机材料等,通过光刻法等公知的开口形成方法形成开口的转印型。另外,转印型可以获取板状、辊状等的形状。

作为第1转印型、第2转印型的凹部的形状,可以示例:圆柱状、四棱柱等的柱形状、圆锥台、棱锥台、圆锥形、四棱锥形等的锥体形状等。

作为凹部的排列,可以根据导电粒子的排列制成格子状、千鸟状等。

关于导电粒子的平均粒径与凹部的深度之比(=导电粒子的平均粒径/开口的深度),从转印性提高与导电粒子保持性的平衡角度考虑,优选为0.4~3.0、更优选为0.5~1.5。需要说明的是,转印型的凹部的直径和深度可以通过激光显微镜进行测定。

关于凹部的开口径与导电粒子的平均粒径之比(=凹部的开口径/导电粒子的平均粒径),从导电粒子的收容容易度、绝缘性树脂的压入容易度等的平衡角度考虑,优选为1.1~2.0、更优选为1.3~1.8。

需要说明的是,相比凹部的开口径,其底径小时,优选使底径为导电粒径的1.1倍以上且不足2倍、使开口径为导电粒径的1.3倍以上且不足3倍。

(iii) 工序A、工序C

作为将导电粒子2a、2b收容在第1转印型、第2转印型的凹部内的方法,没有特别限定,可以采用公知的方法。例如,将干燥的导电粒子或或使其分散于溶剂中而得的分散液散布或涂布于转印型的凹部的形成面上,可以使用刷子或刮板等涂抹凹部11的形成面。

(iv) 工序B、工序D

关于形成转贴有导电粒子2a的第1绝缘性树脂层4a的工序B、形成转贴有导电粒子2b的第2绝缘性树脂层4b的工序D、且将它们进行叠层一体化的工序E,可以根据构成第1绝缘性树脂层4a或第2绝缘性树脂层4b的绝缘性树脂的种类获取各种的方式。

(iv-1) 由粘着性树脂形成绝缘性树脂的情形

例如,在工序B、工序D中,分别由对于导电粒子具有粘着性的粘着性树脂形成第1绝缘性树脂层4a和第2绝缘性树脂层4b时,将粘着性树脂层挤压于转印型中收容的导电粒子2a、2b上,仅通过从转印型剥离其粘着性树脂层即可获得转贴有导电粒子2a、2b的第1、第2的绝缘性树脂层4a、4b。

(iv-2) 由热聚合性树脂形成绝缘性树脂层的情形

在工序B、工序D中,分别使用热聚合性树脂形成第1绝缘性树脂层4a和第2绝缘性树脂层4b时,作为工序B中的第1方法,通过将热聚合性树脂层挤压于第1转印型10a中收容的导电粒子2a上,而使导电粒子2a附着于热聚合性树脂层上,从转印型剥离附着有导电粒子2a的热聚合性树脂层,其次,将热聚合性树脂层进行加热聚合制成热重合树脂层,从而使导电粒子2a固定于热重合树脂层上。或者,作为第2方法,将热聚合性树脂层挤压于第1转印型10a中收容的导电粒子2a上,以第1转印型10a中收容有导电粒子2a的状态将热聚合性树脂进行加热聚合,通过从第1转印型10a进行剥离可以获得转贴有导电粒子2a的第1绝缘性树脂层4a。

同样地,在工序D中,使用热聚合性树脂,通过第1方法或第2方法获得转贴有导电粒子2b的第2绝缘性树脂层4b。

如后所述,在工序E中,通过将半固化状态的第1绝缘性树脂层和第2绝缘性树脂层叠层且使之加热固化而一体化时,工序B和工序D中的加热聚合可以进行使热聚合性树脂层成为半固化状态。另一方面,在工序E中,另外隔着中间树脂层将第1绝缘性树脂层和第2绝缘性树脂层进行叠层一体化时,工序B和工序D中的加热聚合还可以是将热聚合性树脂层完全固化。

(iv-3) 由光聚合性树脂形成绝缘性树脂层的情形

使用光聚合性树脂形成第1绝缘性树脂层4a时,可以容易地制备转贴有转印型中收容的导电粒子的第1绝缘性树脂层,因此优选。作为使用光聚合性树脂形成第1绝缘性树脂层4a的方法,例如还可以举出如下进行的方法:作为第1方法,(a1) 通过将光聚合性树脂层挤压于第1转印型10a内的导电粒子2a上,而使导电粒子附着于光聚合性树脂层上;(a2) 通过从转印型剥离其光聚合性树脂层,获得转贴有导电粒子的光聚合性树脂层;(a3) 对转贴有导电粒子的光聚合性树脂层照射紫外线而使光聚合性树脂制成光聚合树脂。

更具体而言,如图7B所示,使由形成于剥离膜5a上的光聚合性树脂构成的第1绝缘性树脂层4a与收容于第1转印型10a中的导电粒子2a对置,如图7C所示,对第1绝缘性树脂层4a施加压力,将绝缘性树脂压入凹部11内而使导电粒子2a埋入第1绝缘性树脂层4a中,如图7D所示,从第1转印型10a剥离转贴有导电粒子2a的第1绝缘性树脂层4a,对第1绝缘性树脂层4a进行UV照射。此时,如图7E所示,优选从导电粒子2a一侧照射紫外线UV。由此,可以将导电粒子2a固定于第1绝缘性树脂层4a上。并且,通过UV照射导电粒子2a的下方可以使成为影子的区X的固化率与其周围的区Y相比降低,因此使各向异性导电连接时的导电粒子2a的压入变得容易。

作为使用光聚合性树脂形成第1绝缘性树脂层4a时的第2方法,(b1) 如图7C所示,将第1光聚合性树脂层4a挤压于第1转印型10a内的导电粒子上之后,(b2) 如图8所示,通过对第1转印型10a上的第1光聚合性树脂层4a从第1转印型10a一侧照射紫外线而将第1光聚合性树脂层4a聚合,形成保持有导电粒子的光聚合树脂层,(b3) 通过从转印型剥离保持有导电粒子的光聚合性树脂层,可形成转贴有导电粒子的光聚合树脂层。此时,作为第1转印型10a,使用紫外线透射性的转印型。

同样地,在工序D中,使用光聚合性树脂,通过第1方法或第2方法获得转贴有导电粒子2b的第2绝缘性树脂层4b。

无论在第1方法中还是在第2方法中,在工序E中,将第1绝缘性树脂层4a和第2绝缘性树脂层4b分别以半固化状态叠层、光聚合而一体化时,工序B和工序D中的紫外线照射的光聚合,均可进行以使光聚合性树脂层成为半固化状态。另一方面,在工序E中,另外隔着中间树脂层将第1绝缘性树脂层和第2绝缘性树脂层进行叠层一体化时,在工序B和工序D中的光聚合中可将光聚合性树脂层完全固化。

(iv-4) 由具有热聚合性和光聚合性的树脂形成绝缘性树脂层的情形

使用通过热或通过光而聚合的热聚合性和光聚合性的树脂来形成第1绝缘性树脂层4a和第2绝缘性树脂层4b时,根据使用上述的热聚合性树脂或光聚合性树脂的情形也可获得转贴有导电粒子的绝缘性树脂层。

(v) 工序E

(v-1) 半固化状态的绝缘性树脂层的叠层一体化

在工序B或工序D中,使用具有光聚合性的树脂,将第1绝缘性树脂层4a和第2绝缘性树脂层4b形成为半固化状态时,在工序E中,使第1绝缘性树脂层4a的导电粒子2a的转贴面与第2绝缘性树脂层4b的导电粒子2b的转贴面对置(图7F),将它们叠层,通过紫外线照射而叠层一体化(图7G)。通过从如此获得的的叠层体将剥离膜5a、5b剥离,可以获得图1A所示的各向异性导电膜1A。

在工序B或工序D中,使用具有热聚合性的树脂,将第1绝缘性树脂层4a和第2绝缘性树脂层4b形成为半固化状态时也同样,将它们叠层,通过加热聚合而一体化。

(v-2) 完全固化状态的绝缘性树脂层的叠层一体化

在工序B或工序D中,使用具有光聚合性的树脂,将第1绝缘性树脂层4a和第2绝缘性树脂层4b形成为完全固化状态时,在工序E中,如图9A所示,通过将作为中间树脂层的绝缘性粘接剂层6夹在第1绝缘性树脂层4a和第2绝缘性树脂层4b之间,将它们一体化,可以获得各向异性导电膜。此时,绝缘性粘接剂层6可以通过液状粘接性树脂的涂布、膜状粘接性树脂的粘贴等进行设置。

另外,绝缘性粘接剂层6可以由与第1绝缘性树脂层4a或第2绝缘性树脂层4b同种的树脂形成。由此,如图9B所示,在单层的绝缘性树脂层中设置第1导电粒子层4a和第2导电粒子层4b,可以扩宽其第1导电粒子层4a的膜面方向的导电粒子2a的中心线Pa与第2导电粒子层4b的膜面方向的导电粒子2b的中心线Pb的距离S。需要说明的是,若过度地扩宽距离S,则各向异性导电连接时由于绝缘性树脂的流动,导电粒子变得容易流动,因此距离S为导电粒子2a、2b的平均粒径的优选5倍以内、更优选3倍以内。

另外,在工序E中,如图10A所示,设置由不含有聚合引发剂的树脂构成的应力缓和层7作为中间树脂层,可以如图10B所示进行叠层一体化。

需要说明的是,绝缘性树脂层4为保持第1导电粒子层3a的第1绝缘性树脂层4a、保持第2导电粒子层3b的第2绝缘性树脂层4b和它们所夹持的中间树脂层8(绝缘性粘接剂层、应力缓和层等)的多层构成时,通过适宜调整转印型的凹陷的深度、第1绝缘性树脂层4a的层厚、第2绝缘性树脂层4b的层厚等,如图11所示,可使形成第1导电粒子层4a的导电粒子2a自第1绝缘性树脂层4a突出,同样地,可使形成第2导电粒子层3b的导电粒子2b自第2绝缘性树脂层4b突出。并且,通过适宜调整自第1绝缘性树脂层4a突出的第1导电粒子层3a的突出量或自第2绝缘性树脂层4b突出的第2导电粒子层3b的突出量,如图12所示,可以形成使第1导电粒子层4a的导电粒子2a和第2导电粒子层4b的导电粒子2b大致位于同一面上的各向异性导电膜。

<<连接构造体>>

本发明的各向异性导电膜可以优选适用于IC芯片、IC模块、FPC等的第1电子部件和FPC、玻璃基板、刚性基板、陶瓷基板等的第2电子部件进行各向异性导电连接时。如此获得的连接构造体也是本发明的一部分。

作为使用各向异性导电膜的电子部件的连接方法,例如,对于各种基板等的第2电子部件,将各向异性导电膜进行假贴合(形成有绝缘性粘合剂层时从绝缘性粘合剂层一侧进行假贴合)、对于假贴合的各向异性导电膜,搭载IC芯片等的第1电子部件,从第1电子部件一侧进行热胶合,这从提高连接可靠性的角度考虑优选。另外,还可以利用光固化进行连接。

实施例

以下,通过实施例具体地说明本发明。

实施例1~7、比较例1~4

调制含有苯氧基树脂(新日铁住金化学(株)、YP-50)60质量份、环氧树脂(三菱化学(株)、jER828)40质量份、热阳离子聚合引发剂(潜在性固化剂)(三新化学工业(株)、SI-60L)2质量份的热聚合性绝缘性树脂,将其涂布于膜厚度50μm的PET膜上,在80℃的烘箱中干燥5分钟,由此在PET膜上形成了厚度20μm的粘着性的绝缘性树脂层。

另一方面,制作对应于表1所示的排列图案的具有凸部的排列图案的模型,向该模型中浇注使公知的透明性树脂的粒料熔融而得的熔融液,通过冷却而固化,制作了凹部如表1所示的排列图案的树脂制的转印型。向该转印型的凹部填充导电粒子(积水化学工业(株)、AUL704、粒径4μm),在其上被覆上述的绝缘性树脂层,使之进行热固化。然后,从转印型剥离绝缘性树脂层,制作了转贴有导电粒子的第1绝缘性树脂层。另外,同样地制作了转贴有导电粒子的第2绝缘性树脂层。

使第1绝缘性树脂层的导电粒子的转贴面和第2绝缘性树脂层的导电粒子的转贴面对置,通过将它们加热压合制备了各向异性导电膜。此时,在实施例3中,在第1绝缘性树脂层与第2绝缘性树脂层之间隔着各向异性导电连接时具有应力缓和作用的作为中间树脂层的厚度6μm的绝缘性树脂膜(苯氧基树脂60质量%、环氧树脂40质量%)。另外,在实施例4中,除了使用实施例1的转印型的凹部浅的转印型(转印型的深度为粒径的0.4倍)之外,与实施例1同样地制备了各向异性导电膜。

<评价>

对于实施例1~7和比较例1~4的各向异性导电膜,将(a)初期导通电阻、(b)导通可靠性、(c)短路发生率分别如下进行了评价。结果如表1所示。

(a) 初期导通电阻

将各实施例和比较例的各向异性导电膜夹在初期导通和导通可靠性的评价用IC与玻璃基板之间,进行加热加压(180℃、80MPa、5秒)获得各评价用连接物,测定了该评价用连接物的导通电阻。在此,关于评价用IC与玻璃基板,它们的端子图案相对应,尺寸如下。

初期导通和导通可靠性的评价用IC:

外径0.7×20mm;

厚度0.2mm;

Bump规格镀金、高度12μm、尺寸15×100μm、凸点间Gap15μm。

玻璃基板:

玻璃材质コーニング公司制造;

外径30×50mm;

厚度0.5mm;

电极ITO布线。

(b) 导通可靠性

对将(a)的评价用IC与各实施例和比较例的各向异性导电膜的评价用连接物放置于温度85℃、湿度85%RH的恒温槽中500小时之后的导通电阻,与(a)同样地进行了测定。需要说明的是,若该导通电阻为5Ω以上,则从所连接的电子部件的实际应用的导通稳定性的角度考虑不优选。

(c) 短路发生率

作为短路发生率的评价用IC,准备了下面的IC(7.5μm间隔的梳齿TEG(test element group))。

外径1.5×13mm;

厚度0.5mm;

Bump规格镀金、高度15μm、尺寸25×140μm、Bump间Gap7.5μm。

将各实施例和比较例的各向异性导电膜夹在短路发生率的评价用IC与对应于该评价用IC的图案的玻璃基板之间,在与(a)同样的连接条件下进行加热加压,获得连接物,求出了该连接物的短路发生率。短路发生率由“短路的发生数/7.5μm间隔总数”算出。实际应用上期望短路发生率为100ppm以下。

[表1]

由表1可知,关于实施例1~7的各向异性导电膜,对于初期导通电阻、导通可靠性、短路发生率的所有评价项目,均显示出在实际应用上令人满意的结果。特别是,实施例3由于设置了各向异性导电连接时具有应力缓和作用的中间树脂层,因此第1导电粒子层的中心线与第2导电粒子层的中心线的厚度方向的距离较其它实施例或比较例宽,但初期导通电阻、导通可靠性、短路发生率均为令人满意的结果。而且,根据实施例4可知:第1导电粒子层的中心线与第2导电粒子层的中心线的厚度方向的距离S为导电粒径的1/5、该距离S即使较其它实施例或比较例窄,初期导通电阻、导通可靠性、短路发生率也均获得了令人满意的结果,在实际应用上没有问题。

另一方面,比较例1、2由单层的导电粒子层形成,初期导通电阻、导通可靠性、短路发生率均显示出在实际应用上令人满意的结果。但是,在比较例1、2中,制备时将导电粒子从转印型转印到绝缘性树脂层上时,有必要使用凹部密集地配置的转印型,难以在所期望的排列无欠缺的情形下配置导电粒子。因此,根据本发明的实施例确认到:使用凹部稀疏地配置的转印型可以简便地制备与比较例1、2同等地配置有导电粒子的各向异性导电膜。

另外,关于比较例3、4,第1导电粒子层、第2导电粒子层的各层中,导电粒子间的距离窄,导电粒子密集地呈过度挤满的状态,因此短路发生率提高。

需要说明的是,在实施例1~7中,使用包含苯氧基树脂、丙烯酸酯树脂和光自由基聚合引发剂的光聚合性绝缘性树脂代替热聚合性绝缘性树脂时,与使用热聚合性绝缘性树脂时同样,初期导通电阻、导通可靠性、短路发生率也均获得了在实际应用上令人满意的结果。

实施例8~13、比较例5~9

调整含有苯氧基树脂(新日铁住金化学(株)、YP-50)60质量份、环氧树脂(三菱化学(株)、jER828)40质量份、和热阳离子聚合引发剂(潜在性固化剂)(三新化学工业(株)、SI-60L)2质量份的热聚合性绝缘性树脂,将其涂布于膜厚度50μm的PET膜上,在80℃的烘箱中干燥5分钟,在PET膜上形成了厚度20μm的粘着性的绝缘性树脂层。

另一方面,制作对应于二次元的面心格子排列图案的具有凸部的排列图案的模型,向该模型中浇注使公知的透明性树脂的粒料熔融而得的熔融液,通过冷却而固化,制作了凹部为二次元的面心格子排列图案的树脂制的转印型。向该转印型的凹部填充表2所示的具有平均粒径和粒子硬度的镀金导电粒子,在其上被覆上述的绝缘性树脂层,使之进行热固化。然后,从转印型剥离绝缘性树脂层,制作了转贴有导电粒子的第1绝缘性树脂层。另外,同样地制作了转贴有导电粒子的第2绝缘性树脂层。

使第1绝缘性树脂层的导电粒子的转贴面与第2绝缘性树脂层的导电粒子的转贴面对置,通过将它们进行加热压合制备了各向异性导电膜。

其中,对于比较例5~8,将第1导电粒子层的导电粒子制成单分散(无规)或面心格子排列,在相当于第2导电粒子层的层中,不含有导电粒子、制成绝缘性粘接层。关于比较例9,第1和第2导电粒子层中的导电粒子制成单分散。

需要说明的是,表2中以平均粒径和粒子硬度确定的镀金导电粒子使用了如下制作而得的粒子。

需要说明的是,表2中作为以平均粒径和粒子硬度确定的导电粒子,使用了利用如下所示制成的树脂芯材制作而得的粒子。

<树脂芯材的制作>

向调整了二乙烯基苯、苯乙烯、甲基丙烯酸丁酯的混合比的溶液中,投入作为聚合引发剂的过氧化苯甲酰,边在高速下均匀搅拌边进行加热,进行聚合反应,由此获得了微粒分散液。通过将上述微粒分散液过滤、减压干燥,获得了作为微粒凝集体的块状体(block body)。并且,将上述块状体粉碎、分级,由此获得了作为树脂芯材的平均粒径3、4或5μm的二乙烯基苯类树脂粒子。粒子的硬度通过调整二乙烯基苯、苯乙烯、甲基丙烯酸丁酯的混合比来进行。

<导电粒子的制作>

其次,通过浸渍法使钯催化剂担载于所得的二乙烯基苯类树脂粒子(5g)上。其次,对于该树脂粒子,使用由六水合硫酸镍、次磷酸钠、柠檬酸钠、三乙醇胺和硝酸铊调制的无电解镀镍液(pH12、镀液温度50℃)进行无电解镀镍,制作了具有镀镍层作为表面金属层的镍包覆树脂粒子。

接着,向使氯金酸钠10g溶解于离子交换水1000mL而得的溶液中,混合该镍包覆树脂粒子(12g),调整了水性悬浮液。向所得的水性悬浮液中投入硫代硫酸铵15g、亚硫酸铵80g、和磷酸氢铵40g,由此调整了镀金浴。向所得的镀金浴中投入羟胺4g之后,使用氨将镀金浴的pH值调节为9,然后将浴温在60℃维持15~20分钟,由此如下制作了在镀镍层的表面形成有镀金层的导电粒子。

(i) 平均粒径3μm、粒子硬度200kgf/mm2

(ii) 平均粒径3μm、粒子硬度400kgf/mm2

(iii) 平均粒径3μm、粒子硬度500kgf/mm2

(iv) 平均粒径4μm、粒子硬度200kgf/mm2

(v) 平均粒径5μm、粒子硬度50kgf/mm2

(vi) 平均粒径5μm、粒子硬度200kgf/mm2

(vii) 平均粒径5μm、粒子硬度300kgf/mm2

<评价>

对于实施例8~13和比较例5~9的各向异性导电膜,将(a)初期导通电阻、(b)导通可靠性、(c)短路发生率分别如下进行了评价。追加观察并评价了(d)凸点的压痕状态。结果如表2所示。

(a) 初期导通电阻

将各实施例或比较例的各向异性导电膜夹在初期导通和导通可靠性的评价用IC与玻璃基板之间,进行加热加压(170℃、60MPa、10秒)获得各评价用连接物,测定了该评价用连接物的导通电阻。导通电阻不足5Ω时评价为非常良好“A”,5Ω以上且不足10Ω时评价为良好“B”,10Ω以上时评价为不良“C”。需要说明的是,关于评价用IC与玻璃基板,它们的端子图案相对应,尺寸如下。

初期导通和导通可靠性的评价用IC:

外径1.8×20mm;

厚度0.5mm;

Bump规格镀金、高度14或15μm、尺寸30×85μm。

(需要说明的是,凸点高度的“14或15μm”表示在一个凸点中存在1μm的高低差。将高度14μm的部分作为凸点凹部、将高度15μm的部分作为凸点凸部。)

玻璃基板:

玻璃材质コーニング公司制造;

外径30×50mm;

厚度0.5mm;

电极ITO布线。

(b) 导通可靠性

对将(a)的评价用IC与各实施例或比较例的各向异性导电膜的评价用连接物放置于温度85℃、湿度85%RH的恒温槽中500小时之后的导通电阻,与(a)同样地进行了测定。导通电阻不足10Ω时,评价为导通可靠性非常良好“A”,10Ω以上且不足20Ω时评价为良好“B”,20Ω以上时评价为不良“C”。

(c) 短路发生率

作为短路发生率的评价用IC,准备了下面的IC(7.5μm间隔的梳齿TEG(test element group))。

外径1.5×13mm;

厚度0.5mm;

Bump规格镀金、高度15μm、尺寸25×140μm、Bump间隔10μm、Bump间Gap7.5μm、Gap数16组(每1组10处)。

玻璃基板:

外径30×50mm;

厚度0.5mm;

电极ITO布线。

将各实施例和比较例的各向异性导电膜夹在短路发生率的评价用IC与对应于该评价用IC的图案的玻璃基板之间,进行加热加压(170℃、60MPa、10秒)获得各评价用连接物,求出了该评价用连接物的短路发生率。短路发生率由“短路的发生数/7.5μm间隔总数”算出。短路发生率不足50ppm时评价为非常良好“A”,50ppm以上且不足250ppm时评价为良好“B”,250ppm以上时评价为不良“C”。

(d) 凸点的压痕状态

对于在初期导通电阻评价中使用的评价用连接物,利用倍率20倍的光学显微镜对10个凸点从玻璃基板一侧观察凸点的压痕,所观察的压痕数为10处以上时,评价为非常良好“A”,观察到8或9个压痕时,评价为良好“B”,所观察的压痕为7个以下时评价为不良“C”。如果凸点的凸部和凹部的任一项为A或B评价则评价为在实际应用上没有问题。

[表2]

实施例8~13、比较例5~9是对导电粒子的粒径和粒子硬度、与评价结果的关系进行研究的例子。

由表2可知,实施例8~13的各向异性导电膜的粒子间距离为平均粒径的2倍以上,且导电粒子的粒径与粒子硬度的平衡良好,因此对于初期导通电阻、导通可靠性、短路发生率、凸点的压痕状态的所有评价项目,显示出实际应用上良好的结果。需要说明的是,实施例11~13中,虽然凸点凹部的压痕状态评价为C,但凸点凸部的压痕状态评价为B,因此实际应用上没有问题。

相对于此,比较例5~8的各向异性导电膜的情形,与实施例不同,相当于第2导电粒子层的层为不含有导电粒子的绝缘性树脂层。

另外,比较例5的各向异性导电膜的情形,导电粒子的平均粒径为5μm、较大,粒子个数密度为60000个/mm2、较高,且无规地分散,因此短路的发生率评价为C。相反,比较例7的各向异性导电膜的情形,粒子个数密度为60000个/mm2、较高,且无规地分散,但平均粒径为3μm、较小,因此难以消去凸点的凹凸,导通可靠性评价为C。

比较例6的各向异性导电膜的情形,虽然将导电粒子进行面心格子排列,但粒子间距离平均粒径为5μm、较大,且粒子硬度为50kgf/mm2、过软,因此压痕状态的凸点凸部、凹部均评价为C,在有凹凸的凸点上无法充分对应。相反,比较例8的各向异性导电膜的情形,导电粒子的平均粒径为3μm、较小,且粒子硬度为500kgf/mm2、较硬,因此在凸点凸部的压痕状态评价为A,但导通可靠性评价为C。这认为:由于粒径过小,特别是无法保持在凸点的凹部的连接,而使电阻值升高。

比较例9的各向异性导电膜的情形,虽然第1导电粒子层和第2导电粒子层叠层,但各层均为无规配置,导电粒子的粒子个数密度分别为30000个/mm2,因此短路发生率评价为C。这认为:由于容易发生导电粒子彼此接触的状况。

需要说明的是,实施例8~13中,使用包含苯氧基树脂、丙烯酸酯树脂和光自由基聚合引发剂的光聚合性绝缘性树脂代替热聚合性绝缘性树脂时,与使用热聚合性绝缘性树脂时同样,对于初期导通电阻、导通可靠性、短路发生率、凸点的压痕状态的所有评价项目也均获得了实际应用上没有问题的结果。

产业上的可利用性

本发明的各向异性导电膜对IC芯片等的电子部件的布线基板的各向异性导电连接有用。随着电子部件的布线窄小化的不断进展,本发明在将窄小化的电子部件进行各向异性导电连接时特别有用。

符号说明

1A、1B、1C、1D、1X 各向异性导电膜;

2a、2b  导电粒子;

3a  第1导电粒子层;

3b  第2导电粒子层;

4  绝缘性树脂层;

4a  第1绝缘性树脂层;

4b  第2绝缘性树脂层;

5a  剥离膜;

6  绝缘性粘接剂层;

7  应力缓和层;

8  中间树脂层;

10a  转印型;

11  凹部;

20  电子部件;

21  端子;

22  电子部件;

23  端子;

Da  第1导电粒子层中的导电粒子的平均粒径;

Db  第2导电粒子层中的导电粒子的平均粒径;

La  第1导电粒子层中的导电粒子的最接近距离;

Lb  第2导电粒子层中的导电粒子的最接近距离;

Lc  各向异性导电膜的平视中的导电粒子的最接近距离;

Pa  第1导电粒子层中的导电粒子的中心线;

Pb  第2导电粒子层中的导电粒子的中心线;

S  第1导电粒子层的导电粒子的中心线与第2导电粒子层的导电粒子的中心线的距离;

z  膜厚方向。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1